UNIVERSITY OF LEEDS

This is a repository copy of *The development of a Mechanistic-Chemometrics model with multi-degree of freedom for pitting corrosion of HP-13Cr stainless steel under extremely oilfield environments.*

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/169434/

Version: Accepted Version

Article:

Zhao, Y, Hua, Y orcid.org/0000-0002-7457-1813, Liu, B et al. (5 more authors) (2021) The development of a Mechanistic-Chemometrics model with multi-degree of freedom for pitting corrosion of HP-13Cr stainless steel under extremely oilfield environments. Corrosion Science, 181. 109237. ISSN 0010-938X

https://doi.org/10.1016/j.corsci.2021.109237

© 2021 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	The development of a Mechanistic-Chemometrics model with
2	multi-degree of freedom for pitting corrosion of HP-13Cr stainless
3	steel under extremely oilfield environments
4	
5	Yang Zhao ¹ , Yong Hua ² , Bin Liu ³ , Xuanpeng Li ⁴ *, Junfeng Xie ⁵ , Guanxin Zeng ⁵ , Tao
6	Zhang ¹ *, Fuhui Wang ¹
7	
8	¹ Shenyang National Laboratory for Materials Science, Northeastern University, 3-11
9	Wenhua Road, Shenyang 110819, China.
10	² Institute of Functional Surfaces, School of Mechanical Engineering, University of
11	Leeds, Leeds, LS2 9JT, United Kingdom.
12	³ Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and
13	Surface Technology, Harbin Engineering University, Ministry of Education, Nantong
14	ST 145, Harbin 150001, China.
15	⁴ State Key Laboratory of Performance and Structural Safety for Petroleum Tubular
16	Goods and Equipment Materials, Tubular Goods Research Institute, CNPC, Xi'an
17	710077, China
18	⁵ Petrochina Tarim Oilfield Company, Shihua RD, Korla 841000, China.
19	
20	Corresponding authors: Xuanpeng Li (lixuanpeng127@163.com); Tao Zhang
21	(zhangtao@mail.neu.edu.cn).
22	

23 Abstract

A multi-degree of freedom mechanistic-chemometrics model for predicting the pitting damage of HP-13Cr stainless steel is developed by combining the mechanistic models and chemometrics method. The mechanistic model is reconstructed by considering the effect of single factors, such as high temperature, high CO₂ pressure, flow rates and complex stress distribution. The single mechanistic models are combined together considering the weight coefficients of variable interaction using the chemometrics method. Finally, the predicted results are validated by six-year-served field data, which indicates that the newly developed mechanistic-chemometrics model is accurate and highly reliable. Keywords: A. Stainless steel; B. Modeling studies; B. Polarization; C. Pitting corrosion

45 **1. Introduction**

The increasing demand for resources has shifted the exploration towards ultra-deep oil wells at Tarim oilfield in the Northwest of China. Due to the complicated downhole conditions and geological characteristics in Tarim area [1-3], Oil Country Tubular Goods (OCTG) are in the oilfield environment (as depicted in Fig. 1). Fig. 1 represents the characteristics of complex oil-well environment, which is conducive to corrosion and can be described as [4]:

52

(1) Super corrosive media: the well depth reached 8000 m, high temperature (95 180 °C), high CO₂ pressure (2.8 - 3.8 MPa). The measured water cut was more than
30%. Moreover, the formation water contains high salinity (Cl⁻ concentration is about
60, 000 ppm).

57

(2) Stress Corrosion Cracking (SCC) mechanism: A neutral point, with zero stress
above the packer, exists due to the gravity and mechanical properties of the structure
tubing. Meanwhile, the tensile stress is located above the neutral point, while the
stress transforms into compressive stress between the neutral point and the packer.
Later on, due to the gravity, the compressive stress transforms into tensile stress below
the packer [5].

64

HP-13Cr stainless steel (SS) is widely used as an OCTG in oil industry, as they offer
 improved CO₂ corrosion resistance in relation to carbon steels, and offer lower costs

than the duplex SS grades or Ni alloys [6-10]. However, the inspected field results 67 have revealed that HP-13Cr SS suffers severe pitting corrosion. In general, the pitting 68 69 corrosion can be divided into two processes, namely the pit initiation and the pit growth. The complex oilfield environment in terms of temperature, CO₂ pressure, 70 71 flow rate and stress can influence the pitting processes. Nesic et al. [11] reported that temperature and CO_2 pressure accelerate the pitting corrosion by the electrochemical, 72 chemical, and transport processes. Additionally, the effect of temperature and CO₂ 73 pressure on the pitting corrosion has been studied on passive films and corrosion 74 75 scales [6, 9, 10, 12-15]. The results illustrate that the enhanced pitting susceptibility of HP-13Cr SS can be attributed to the effects of temperature and CO₂ pressure on the 76 microstructure and composition of corrosion scales [14]. In addition, Zhao et al. [15] 77 78 discussed the influence of temperature and CO₂ pressure on the growth of pit on HP-13Cr SS. The results indicated that pit cavities grew deeper with the increase in 79 temperature and CO₂ pressure from 95 °C / 2.8 MPa to 180 °C / 3.8 MPa after being 80 81 immersed for 30 days.

82

Nesic et al. [11, 16] systematically studied the influence of flow rate on the carbon steel pipeline in the presence of CO₂ corrosion. It has been acknowledged that, high flow rate affects the CO₂ corrosion by increasing the mass transfer of corrosive species as well as damaging the corrosion scales. Schmitt et al. [17] indicated that 0.2 Pa of wall shear stress was enough to induce pitting corrosion. Moreover, Xu et al. [18] reported that flow rate can suppress the development of potential pits by

uniformly distributing ions at the interface of metal. Wharton et al. [19] reported that 89 the flow rate (0.04- 2.7 m/s) had a negligible influence on pit nucleation and 90 91 metastable pitting, whereas the growth of pits became obvious when the flow rate was slower than 1.5 m/s. Furthermore, these experimental results were confirmed by 92 hydrodynamic and electrochemical noise measurements for AISI 304 SS. Wei et al. 93 [20] proposed that the flow rate (0.5-2 m/s) accelerated the pitting corrosion by 94 damaging the corrosion scales and inhibiting the formation of FeCO₃ on the surface of 95 X70 under supercritical CO₂ environment. Recently, Zhao et al. [15] demonstrated 96 97 that the flow rate altered the pitting geometry from bullet shape to shallow-disk shape at the flow rate of 3 m/s. 98

99

100 Moreover, it has been reported that the applied tensile stress increased the pitting susceptibility, whereas the compression stress could reduce the pitting susceptibility 101 [21-26]. Iwanaga et al. [26] performed polarization tests and reported that pitting 102 103 susceptibility of stainless steels increased with the increase in tensile stress. Vignal et al. [27] demonstrated that the local tensile stress gradient played a key role in 104 accelerating the pit initiation process. Additionally, Feng et al. [28] proposed two 105 degradation modes for the passive film under tensile or compressive stress. The 106 results suggested that tensile stress produced micro-cracks, which were perpendicular 107 to the surface, whereas the compressive stress induced de-bonding of the passive film 108 from the steel substrate [28]. Moreover, Guo et al. [29] and Fatoba et al. [30] reported 109 that, based on Gutman model, the influence of tensile stress on the acceleration of 110

111 metastable pit and pit growth based on Gutman model can be attributed to the 112 mechanical-electrochemical effect at the local plastic deformation around the bottom 113 of the pit [31].

114

Significant progress has been achieved in understanding the effect of temperature, 115 CO₂ pressure, flow rate and stress on the pitting corrosion [32-33]. However, the 116 synergistic effect of these factors on pitting corrosion of HP-13Cr SS has not yet been 117 studied in detail. The development of a theoretical model to predict corrosion damage 118 119 of HP-13Cr SS in the extremely oilfield environments has become necessary. In recent years, CO₂ corrosion has been extensively investigated to understand the 120 fundamental corrosion mechanism, whereas corrosion prediction models have also 121 122 been developed to predict the CO₂-induced corrosion for various steels [11]. The current prediction models, including empirical models [34, 35], semi-empirical 123 models [36-38], and comprehensive mechanistic models [39-41], mainly focus on 124 CO₂-induced general corrosion of mild steel. It should be noted that the pitting 125 corrosion plays a major role in the failure of wells. Therefore, a significant research 126 effort has been devoted to predict the pitting corrosion using the stochastic model and 127 deterministic model [42-46]. Recently, Zhang' group [47] proposed a novel model to 128 129 predict the pitting corrosion, which considers the influence of the initiation and growth of a pit. The proposed model was based on a combination of Sridhar model, 130 Macdonald model, Weibull extreme value statistics and Gumbel extreme value 131 statistics method. The proposed model was successfully applied to predict the 132

development of pitting at various times for 304 SS. However, the modelling became a
challenge for corrosion under complex coupling environments due to which, the
model required further reconstruction.

136

In addition, chemometrics method belongs to a discipline that provides an efficient 137 approach through statistical or mathematical methods to investigate the effect of each 138 variable and the interaction between variables [48-50]. A combination of chemometric 139 method and the model proposed by Zhang's group results in a novel 140 141 mechanistic-chemometric prediction model, which is developed herein in order to incorporate the influence of temperature, CO₂ pressure, flow rate and stress on the 142 growth kinetics of pits. The model has then been used to perform pitting corrosion 143 144 calculations. In order to verify the accuracy of mechanistic-chemometric model, the predicted results are compared with the field data of HP-13Cr SS well after being 145 used for six years in the Tarim area. 146

147

148 **2. Experimental**

149	2.1	Materials
149	4.1	Mattials

150 HP-13Cr SS was used in the current study, and had the composition of (wt. %) Si

151 (0.15), Mn (0.51), Cr (12.77), Mo (2.19), S (0.002), P (0.02), Cu (0.047), Ni (5.36), V

- 152 (0.014), Al (0.037) and Fe (balance). The formation water was prepared by using the
- analytical grade reagents and distilled water. The compositions of various materials
- are listed in Table 1. The specimens of 50 mm \times 5 mm \times 3 mm (Fig. 2 (a)) were used

for the immersion and electrochemical tests under various temperatures and pressures. 155 As shown in Figs. 2 (b-d), the specimen had the dimensions of 32 mm \times 10 mm \times 1 156 mm and was designed to investigate the pit growth process under different flow rates, 157 tensile stresses and compressive stresses. In addition, based on the factorial design 158 method [51], heteromorphic electrode was used to determine the weight coefficient. 159 Prior to the testing, the specimen surface was ground by silicon carbide (SiC) paper 160 up to 2000 grit. The formation water was deoxygenated with N₂ for 4 h. Then, 3.5 L 161 formation water was introduced into the autoclave, sealed, and continuously bubbled 162 with CO₂ at ambient temperature and pressure for 2 h to remove oxygen in the 163 autoclave. Subsequently, the autoclave was heated to the required temperature, and 164 high-pressure CO₂ was added to the autoclave using a booster pump. 165

166

167 **2.2** Computational fluid dynamics and stress distribution

Herein, computational fluid dynamics (CFD) simulation of the flow distribution of 168 heteromorphic electrode in the closed system was performed using the ANSYS 169 FLUENT 14.0. A simulation geometry was constructed based on the dimensions of 170 heteromorphic electrode and a tetrahedral computational 13000 element mesh was 171 generated. Reynolds number (Re) is about 64,000 were in this experiment based on 172 the fluid theory [52]. The SST $k-\omega$ turbulent model was used to approach the 173 governing equations with an enhanced wall treatment. A uniform velocity-inlet 174 boundary condition was selected, and a pressure-outlet boundary condition was set 175 with a gauge pressure of zero for the closed system. The iterative calculations of the 176

semi-implicit method for pressure-linked equations (SIMPLE) algorithm were used to solve the momentum equations (*N-S* equations), which modified the pressure term in the discretized *N-S* equations and simultaneously renewed the velocity and pressure field. The simulations were converged when the minimum value reached less than 5×10^{-4} [52-53].

182

In addition, the stress distribution was carried out using the COMSOL MULTIPHYSICS 3.5a. A static solid stress-strain isotropic elastic analysis module was used to simulate the stress distribution of high throughput tensile stress heteromorphic specimens. Based upon the literature, the maximum applied stress (350 MPa) was lower than the yield strength (800 MPa) [5, 54].

188

189 **2.3 Methods**

The influence of each factor was quantified by 2^3 factorial design [54]. The lower and 190 upper values for temperature/CO₂ pressure, flow rate and stress were selected based 191 on the depth of well (Fig.1), and are presented in Table 2. The values of -1 and +1 192 indicated low and high levels for each factor. Meanwhile, after being immersed for 193 720 h, the maximum pitting depth (D_{max}) of HP-13Cr SS was taken as the response. 194 The multiple regression analysis through least-squares method was used to describe 195 the relationship between the factors (x) and responses (D_{max}) . Moreover, the analysis 196 of variance (ANOVA) was performed to statistically evaluate the significance of 197 various factors. ANOVA was also used to test the null hypothesis. This method is 198

based on the decomposition of total variability in the selected response (y) and assesses the relationship between the factors and the variability of responses. The significant factors or interactions can be identified as the ratio of the mean square of a factor or as an interaction and the residual mean square (*F*-value) [49-50]. If the *F*-value was less than 11.27, the factors were considered as negligible [55].

204

205 **2.4 Electrochemical characterization**

The electrochemical measurements were carried out using a standard three-electrode system within the high-temperature high-pressure autoclave, as reported in some previous works [14-15]. HP-13Cr SS was used as a working electrode, whereas platinum was used as a counter electrode. Furthermore, an external pressure balanced Ag/AgCl was used as the reference electrode (0.1 M KCl solution). The electrode potentials were converted to standard hydrogen electrode (SHE) potential using Equation (1) [56].

213
$$E_{\text{SHE}} = E_{\text{obs}} + 0.2866 - 0.001(T - T_0) + 1.754 \times 10^{-7}(T - T_0)^2 - 3.03 \times 10^{-7}(T - T_0)^2 -$$

214

$$10^{-9}(T - T_0)^3 \tag{1}$$

where E_{SHE} represents the electrode potential vs SHE, E_{obs} represents the measured electrode potential vs the Ag/AgCl reference electrode (V), T refers to the experimental temperature (°C) and T_0 denotes the room temperature (25 °C).

218

The specimens were potentiostatically polarized at -1.3 V_{SHE} for 3 min to remove the surface oxide layer. The re-passivation potential (E_{rp}) was measured using the cyclic

potentiodynamic polarization measurements according to ASTM G61-86 [57]. The 221 cyclic potentiodynamic polarization curves were recorded from a potential of -100 222 223 mV vs the Open Circuit Potential (OCP). When the increased potential was up to a current density of 1 mA/cm² with the scan rate of 1 mV/s, the scan was reversed to 224 obtain the E_{rp} . Then, the scan rates were changed through values of 0.5 mV/s, 0.333 225 mV/s and 0.167 mV/s. The temperature and pressure of electrochemical tests were 226 maintained at 95 °C/2.8 MPa, 120 °C/3.2 MPa, 150 °C/3.6 MPa and 180 °C/3.8 MPa. 227 For each electrochemical test, the measurement was repeated at least three times. 228

229

230 **2.5 Immersion tests**

Immersion experiments were performed in a 5-L high-temperature and high-pressure 231 232 autoclave. A schematic of the experimental setup can be viewed in our previous study [15]. Similar to the previous study [15, 47], the specimens were immersed in 6 wt. % 233 FeCl₃ solution for 20 s at 30 °C to eliminate the pit initiation time prior to immersion 234 experiments according to the ASTM G48-2000 [58]. After the pre-initiated pits, the 235 specimens were ultrasonically cleaned in acetone for 3 min and dried in cold air. The 236 specimens were fixed to the rotating cage and immediately immersed into the 237 autoclave. 238

239

The heteromorphic electrode was designed to investigate the pit growth at various flow rates [59]. Fig. 3 shows the flow distribution at the surface of the heteromorphic electrode, whereas the corresponding results are presented in Table 3. When the flow

rate of the marked surface 6 was controlled at 1 m/s, the marked surfaces 1, 2, and 5 experienced the flow rates of 0.31 m/s, 0.5 m/s and 0.72 m/s, respectively. The bump-shaped specimens were evenly arranged around the central axis of the rotating cage and mounted within the autoclave.

247

A schematic of the corrosion rotating cage with various stress levels is displayed in 248 Fig. 4. The calculated tensile stress distribution is shown in Fig. 5(a). The finite 249 element analysis results showed that various tensile stresses for different width 250 251 sections could be achieved. For the Surface-3, the tensile stress was fixed at 350 MPa, whereas the tensile stresses of 210 MPa, 175 MPa and 270MPa were set for 252 Surfaces-1, -2, and -4, respectively. In addition, the tensile stress and flow rate 253 254 distribution of T-type flat specimen are shown in Figs. 5(b) and 5(c). The constant tensile stress area exhibited a stable flow rate, which indicated that the T-type sample 255 and the stress corrosion rotating cage could be used to simulate the stress, flow rate 256 257 and the coupling experiments.

258

According to the experimental design presented in Table 4, the immersion experiments were performed at various temperatures/CO₂ pressures, flow rates, and stresses using the stress corrosion rotating cage with T-type tensile stress specimens for 30 days. Four independent specimens were used to measure the maximum pitting depth in each experiment.

264

After the experiments, the specimens were ultrasonically cleaned in acetone for 5 min. Then, the specimens were dried using cold air and stored in a desiccator before measuring the pit depth. The morphology of the pits was determined using an OLS4100 confocal laser scanning microscope. The maximum pit depth was recorded. Meanwhile, the Gumbel distribution was used to model the behavior of maximum pitting depth. The cumulative probability F(Y) of the maximum pitting depth can be given by Equation (2) [47, 60].

272
$$F(Y) = \exp\{-\exp\left[-\left(\frac{D_{max}-\mu}{\lambda}\right)\right]\}$$
 (2)

where D_{max} represents the maximum pitting depth, μ refers to the central parameter (the most frequent value) and λ denotes the scale parameter. The two parameters μ and λ are calculated from the relationship of reduced variant (*Y*) and D_{max} , where *Y* can be calculated using the correlation: $Y = -\ln\{-\ln[F(Y)]\}$.

277

278 **2.6 Field data measurement**

The corroded tubing over the past six-years was collected in Tarim. Along the well profile, the maximum pit depth of HP-13Cr SS was monitored using a micrometer pit depth gauge attached to a bridging bar. The tubing was cut into small pieces (50 mm × 50 mm). The specimens were ultrasonically cleaned in acetone for 5 min, and pitting depth was measured using the OLS4100 confocal laser scanning microscope.

284

285 **3. Results and discussion**

286 **3.1 Pit initiation time**

According to a previously proposed pit initiation model [47], the schematic of the pitting corrosion is shown in Fig. 6. The t_{init} was related to the applied potential (E_{app}), open circuit potential (E_{ocp}) and the E_{rp} , whereas it was equal to the intersection point of the E_{app} - E_{rp} and E_{ocp} - E_{rp} .

291

292 **3.1.1 Determination of** $E_{\rm rp}$

As reported in Zhang's group previous work and Sridhar's model, E_{rp} can be regarded as the critical potential to predict the pitting corrosion. The relationship between pitting potential (E_{pit}) [43, 47, 61], E_{rp} and square root of the potential sweep rate ($v^{1/2}$) was obtained through the cyclic potentiodynamic polarization tests. The potential sweep rate was nearly zero throughout the service-life of HP-13Cr SS. Therefore, at zero potential sweep rate, the E_{rp} and E_{pit} of HP-13Cr SS need to be corrected under different temperatures and CO₂ pressures.

300

301 Fig. 7 displays the cyclic potentiodynamic polarization curves for HP-13Cr SS under various temperatures and CO₂ pressures. The curves were drawn under different scan 302 rates and the values of E_{pit} and E_{rp} are summarized in Table 5. Both the E_{pit} and E_{rp} 303 decreased with the increase of scan rate. Meanwhile, E_{pit} and E_{rp} shifted towards the 304 cathodic direction with the increase in temperature and pressure. The minimum values 305 of 152.66 ± 3.13 mV_{SHE} and -212.38 ± 0.78 mV_{SHE} were obtained at 180 °C/3.8 MPa. 306 It can be noted that E_{pit} and E_{rp} linearly increased with the square root of sweep rate 307 $(v^{1/2})$ under various temperatures and CO₂ pressures, as shown in Fig. 8. Meanwhile, 308

the value of E_{pit} and E_{rp} at the sweep rate of 0 mV/s could be predicted [62], as presented in Table 4.

311

312 **3.2 Evolution of the OCP**

The monitored OCP for various immersion times can be used to predict the occurrence of pitting [43]. The OCP evolution with time can be described using Equation (3) [43, 63].

316
$$E = E_{\rm oc} - \frac{1}{\gamma} \ln \left[\frac{-B\gamma}{A} t + \exp[-\gamma (E_{\rm corr} - E_{\rm oc})] \right]$$
(3)

317 where γ represents the Tafel constant for the cathodic electrode reaction, E_{oc} refers to 318 the cathodic electrode reaction equilibrium potential, and *A* and *B* are the constants 319 and their values are related to the naturally formed passive film.

The equation proposed by Burstein et al. (Equations (4)-(5)) [64-65] indicates that the proposed OCP evolution (as given by Equation (3)) considers the nature of passive film formed on stainless steel. Therefore, the Equation (3) allows for extrapolation of passive film formed on HP-13Cr SS under various temperatures and CO₂ pressures.

$$E = A_1 \ln t + B_1 \tag{4}$$

325
$$E = E_{\rm oc} - A_2 - \frac{1}{\gamma} \ln t$$
 (5)

where A_1 and B_1 refer to the fitting parameters, which depend on the pH value, and A_2 is a constant. In order to predict the OCP evolution at various temperatures and CO₂ pressures, some critical parameters are listed in Table 6. The γ and i_0 can be calculated from the cathodic polarization curves based on the Butler-Volmer equation. Additionally, the values of the electric field strength (ε_L), E_{oc} and the Point Defect Model (PDM) parameters were taken from our previous work [14, 47]. Therefore, OCP changes with immersion time under various temperatures and CO₂ pressures, as

334
$$E (mV_{SHE}) = -182.7 + 89.36 \times \ln(0.028 \times t + 0.354)$$
 (95 °C/ 2.8MPa) (6)

335
$$E (mV_{SHE}) = -155.1 + 92.67 \times \ln(0.018 \times t + 0.253)$$
 (120 °C/ 3.2MPa) (7)

336
$$E (mV_{SHE}) = -117.0 + 97.37 \times \ln(0.01 \times t + 0.135)$$
 (150 °C/ 3.6 MPa) (8)

337
$$E (\text{mV}_{\text{SHE}}) = -72.8 + 91.07 \times \ln(0.072 \times t + 0.051)$$
 (180 °C/ 3.8 MPa) (9)

The calculated OCP values are displayed in Fig. 9. The values increase continuously over time, which is consistent with the measured data [66]. The results show that the OCP values exceeded E_{rp} after 38.4 days, 22.2 days, 21.7 days, and 18.1 days under the temperature/pressure of 95 °C/2.8 MPa, 120 °C/3.2MPa, 150 °C/3.6 MPa and 180 °C/3.8 MPa, respectively.

343

347

344 **3.3 Pit induction time** (t_{ind}) above E_{rp}

The relationship between the pit induction time (t_{ind}) and the applied potential (E_{app}) can be given by Equation (10) [47].

(10)

 $t_{\text{ind}} = a \exp(-b \cdot \Delta E) + c$

where *a*, *b*, and *c* are constants, and ΔE represents the difference between E_{app} and $E_{rp(v=0)}$. Fig. 10 shows the time dependence of current density on a logarithmic scale for HP-13Cr SS immersed in the formation solution at various applied potentials. The turning point in Fig. 10 between the passive stage and the pit growth changed, suggesting that t_{ind} was highly influenced by temperatures and pressures. As shown in Fig. 10, t_{ind} decreased with the increase in the value of ΔE . Fig. 11 indicates that the values of a, b, and c decreased with the increase in temperature and CO₂ pressure.

However, the pit initiation time (t_{init}) cannot be regarded as a simple sum of $t_{OCP \rightarrow E_{rp}}$

and t_{ind} . Based upon our previous work [47], t_{init} can be obtained using Equation (11).

357
$$\begin{cases} E = E_{\rm oc} - \frac{1}{\gamma} \ln \left[\frac{-B\gamma}{A} t_{\rm init} + \exp[-\gamma (E_{\rm corr} - E_{\rm oc})] \right] \\ t_{\rm init} = t_{\rm OCP \to E_{\rm rp}} + \alpha \exp[-b \cdot (E - E_{\rm rp(v=0)})] + c \quad (E > E_{\rm rp}) \end{cases}$$
(11)

358

Graphical method is used to calculate the value of t_{init} and the corresponding results 359 under different temperatures and pressures are presented in Fig. 12. With the increase 360 in temperature and pressure from 95 °C/2.8 MPa to 180 °C/3.8 MPa, the t_{init} values 361 were 76.8 days, 39.7 days, 34.6 days, and 28.6 days, respectively. In addition, several 362 researchers concluded that the flow rate and stress played a significant role in 363 accelerating the t_{init} [11-30]. Moreover, the maximum t_{init} was far shorter than the 364 required design service life-time (15 years) for HP-13Cr SS under the current 365 conditions. The critical factor determining the life-time was the pitting growth process. 366 Herein, the correction of t_{init} by the flow rate and stress could be neglected. Based 367 upon Fig. 1, the temperature and CO_2 pressure increased with the depth of the well. 368 Therefore, the relationship between t_{init} and temperature/CO₂ pressure can be 369 transformed into t_{init} and the depth of well. The results are shown in Fig. 13, whereas 370 nonlinear fitting equation is given by Equation (12). 371

$$t_{\text{init}} = 30.20 + 130.61 \times \exp(-1.29 \times Depth(\text{km}))$$
(12)

373

372

374 3.2 Mechanistic model for the single factor

For HP-13Cr SS, t_{init} of 76.8 days was obtained for 95 °C/2.8 MPa, which is too long

to investigate the pit growth. In the present work, the pre-initiated pits on HP-13Cr SS 376 were used to study the pit initiation time. The cumulative probability plot and the 377 378 Gumbel plot of the maximum pit depth were drawn from 20 specimens after pre-initiated pits, as shown in Fig. 14. The fitted Gumbel distribution (red in Fig. 14) 379 was fairly consistent with the experimentally measured maximum pit depth. The 380 location parameter (μ) and the scale parameter (λ) were found to be 8.28 μ m and 0.97, 381 respectively. Moreover, the typical morphologies of the pits after pre-initiation are 382 shown in Fig. 15. The growth of pit after pre-initiated pits on HP-13Cr SS can be 383 384 described using Equation (13) [47].

385
$$D_{\max} = K[t + (t_0 + t_{\min}) - t_{\min}]^{\omega} = K(t + t_0)^{\omega}$$
(13)

where t_0 refers to the pit growth time. Furthermore, the mechanistic model for pit growth under various temperatures, CO₂ pressures, flow rates, and stress levels will be discussed in detail in the following paragraphs. The morphologies of the maximum pit and the Gumbel plots under various condition are shown in Appendix 1.

390

391 3.2.1 Mechanistic model for temperature/CO₂ pressure

Fig. 16 shows the Gumbel plots of the maximum pit depths measured for ten specimens at various temperatures and CO₂ pressures. It is worth noticing that the fitted Gumbel distribution shifted to the right and rotated clockwise with the increase in immersion time, which is in good agreement with the previously reported data [67]. In addition, the local parameter (μ) and scale parameter (λ) are presented in Table 7. Moreover, the time-dependence of the averaged maximum pit depth under various

temperatures and CO₂ pressures is presented in Fig 17. The variation of the averaged 398 maximum pit depth with time can be fitted using Equation (12). With the increase in 399 400 temperatures and CO_2 pressures, the pit proportionality (K) increased from 4.53 to 13.46, whereas the pitting exponent (ω) increased from 0.417 to 0.487 (following Eq. 401 14). Therefore, the results revealed that the growth rate of pit increased with the 402 increase in temperature and CO_2 pressure. Moreover, one should notice that ω was 403 located within the range of 0.417 - 0.487. When the ω was about 0.5, the pit growth 404 was controlled by diffusion [68]. The depth of pits increased with the increase in 405 406 temperature and CO₂ pressure, while the typical pit morphologies are shown in Fig. S1 (Appendix 1). In addition, the relationship between the pit growth parameters and 407 the well depth are provided in Fig. 18. 408

409
$$\begin{cases} K = 4.46 + 0.26 \times \exp(0.44 \times depth) \\ \omega = 0.37 + 0.05 \times \exp(0.12 \times depth) \end{cases}$$
(14)

410 The maximum pit depth can be calculated using Equation (15).

411
$$D_{\max} = [4.46 + 0.26 \times \exp(0.44 \times depth)] \times t^{0.37 + 0.05 \times \exp(0.12 \times depth)}$$
(15)

412

413 **3.2.2** Effect of the flow rate on the mechanistic model

As shown in Fig. S2 (Appendix 1), the Gumbel distribution describes the maximum pit depth under various flow rates. Fig. 19 shows the development of averaged maximum pit depth, which was fitted from the Gumbel plots (as displayed in Table S1 (Appendix 1)). It can be seen that the maximum pit depth gradually decreased with the increase in flow rate within the range of 0.31-1 m/s. Furthermore, the growth kinetics of pits was fitted using Equation (10), and the results show that the value of *K* decreased from 4.86 to 3.70 when the flow rate increased from 0.31 m/s to 1 m/s. The decrease in growth rate of the pit was mainly attributed to the vortex generated inside the pit, where the distribution of H⁺ and metal ion was inhomogeneous [15]. The pit morphologies are displayed in Fig. S3 (Appendix 1), indicating that the presence of vortex accelerated the pit growth in the horizontal direction and formed the shallow-disk shape pit on the surface of HP-13Cr SS.

426 Fig. 20 exhibits the relationship between K and flow rate (V) using Equation (16).

427
$$K = -2.93 \times \exp(0.43 \times V) + 8.15$$
(16)

428 Then, the D_{max} for the flow rate can be described using Equation (17).

429
$$D_{\text{max}} = [-2.93 \times \exp(0.43 \times V) + 8.15] \times t^{0.42}$$
 (17)

430

431 **3.2.3** Effect of stress on the growth of pit

Based upon the results presented in Fig. 1, it can be noted that there was a transition
between the tensile stress and the compressive stress along the well's depth. The stress
distribution can be calculated based on the pipe mechanics using Equation (18).

435

$$\begin{cases} F = -0.088d + 425.93 & (\text{tensile stress}, d \le 5000m) \\ F = -0.088d + 425.93 & (\text{compress stress}, 5000m \le d \le 7500m) \\ F = -0.078d + 624 & (\text{tensile stress}, 7500m \le d \le 8000m) \end{cases}$$
(18)

The tensile stress and the compressive stress accompany a positive and a negativesign, respectively.

438

Fig. 21(a) indicates that the maximum pit depth increased significantly with the increase in tensile stress due to the mechanical-electrochemical effect, which is consistent with some previous studies [30-31]. The relationship among K, ω and stress can be expressed using Equations (19) and (20).

443
$$K = \begin{cases} 0.016 \times \exp(-0.012 \times F) + 5.47 \text{ (tensile stress)} \\ 0.00 \times \exp(-0.0056 \times F) + 5.40 \text{ (compression stress)} \end{cases}$$
(19)

$$(-0.09 \times \exp(-0.0056 \times F) + 5.40 \text{ (compression stress)})$$

444
$$\omega = \begin{cases} 0.041 \times \exp(0.0026 \times F) + 0.40 \text{ (tensile stress)} \\ 0.44 \text{ (compression stress)} \end{cases}$$
(20)

445

The pit morphologies are displayed in Fig. S5 (Appendix 1) and suggested that a large 446 pit was formed on the surface under the effect of tensile stress. However, the increase 447 in compressive stress within the range of 0-250 MPa represented a limited effect on 448 the growth rate of a pit, as shown in Fig. 21(b). The values of K and ω with respect 449 450 to the stress are presented in Fig 22. It can be noticed that the turning point appeared at F = 0 MPa (Fig 22(a)). However, the differences between the compressive and 451 tensile stress values in terms of ω values can be neglected. For the compressive 452 453 stress, ω remained around 0.44, whereas ω gradually increased from 0.453 to 0.493 as the tensile stress increased from 175 MPa to 350 MPa. Therefore, the D_{max} value 454 under the impact of stress bounced back following Equation (13), and the relationship 455 456 can be expressed using Equations (21) and (22).

457

458 For tensile stress (0 - 350 MPa):

459
$$D_{\text{max}} = [0.016 \times \exp(-0.012 \times F) + 5.47] \times t^{0.041 \times \exp(0.0026 \times F) + 0.40}$$
 (21)

460 For compressive stress (0 - -250 MPa):

461
$$D_{\text{max}} = [-0.09 \times \exp(-0.0056 \times F) + 5.40] \times t^{0.44}$$
 (22)

462

3.3 Multi-degree of freedom model for predicting pitting damage under complex

464 oilfield environment

The mechanistic-chemometrics model proposed in this work can be divided into two processes: (*i*) the mechanistic-model under different factors, (*ii*) Combining the single factor mechanistic-model using the weight coefficients of each factor and their mutual interactions. A combination of weight coefficients and sub-model to formulate the pit prediction model can be described using Equation (23).

470
$$D_{\max} = \sum_{i} f_i K_i (t - t_{\min})^{\omega_i}$$
(23)

471 where *i* refers the influencing factors, and includes temperature, CO₂ pressure, flow 472 rate, stress and interaction of each factor with others. Moreover, f_i represents the 473 weight coefficient of *i*th factor, and K_I and ω_I represent the pit proportionality and 474 exponent of *i*th factor, respectively.

475

476 **3.3.1 Determination of the weight coefficient using chemometrics method**

Table 2 summarizes the designed experiments and presents the measured maximum
pit depth on the surface of HP-13Cr SS after being immersed in CO₂-saturated
formation water for 30 days. The pit morphologies are displayed in Fig. S8 (Appendix
1). The relationship between the maximum pit depth and the influencing factors using
the statistical regression analysis can be given by Equation (24).

482
$$D_{max} = 13.09 + 6.52x_1 - 0.80x_2 + 3.50x_3$$

483
$$-0.54x_1x_2 + 2.39x_1x_3 - 0.18x_2x_3$$

484 $-0.076x_1x_2x_3$

485

(24)

where x_1, x_2 , and x_3 represent the influencing factors (temperature/pressure, flow rate, and stress, respectively), and $x_i x_j$ (*i* and j = 1, 2, 3) represents the interaction terms. Moreover, the influence of various factors and the interactions on the maximum pit depth were further justified using the ANOVA analysis.

As shown in Fig. 23, temperature/CO₂ pressure is the most significant factor, followed by the stress and the combined influence of temperature/CO₂ pressure and stress. The effect of a given factor became significant if its *F*-value was higher than the critical value of 11.26. The flow rate and interactions among factors were not significant for the pitting corrosion in the complex oil field environment. The regression model can be simplified as Equation (25).

496
$$D_{max} = 13.09 + 6.52x_1 + 3.50x_3 + 2.39x_1x_3$$
(25)

The Pareto analysis is proposed as a quantitative method to determine the weightcoefficients of the maximum pit depth, as given by Equation (26) [50].

499
$$P_i = \left(\frac{a_i^2}{\sum_{i \neq 0} a_i^2}\right) \times 100\%$$
 (26)

where P_i refers to the percentage effect of each variable on pit depth and a_i represents the coefficient of each variable. The results of Pareto analysis are shown in Fig. 23. It can be noted that the temperature/pressure are the most significant factors, followed by stress, and stress interaction, with the corresponding weight coefficients of 52.54%, 28.20%, and 19.26%, respectively.

505

506 **3.3.2 Validation of the model with field data**

507 Based on Equation (22), the mechanistic-chemometrics model can be described as

508 Equation (27).

509

510
$$\begin{cases} t_{\text{ind}} = 52.54\% \times t_{T/P} - 28.20\% \times t_F - 19.26\% \times (t_{T/P} \times t_F) \\ K = 52.54\% \times K_{T/P} + 28.20\% \times K_F + 19.26\% \times (K_{T/P} \times K_F) \\ \omega = 52.54\% \times \omega_{T/P} + 28.20\% \times \omega_F + 19.26\% \times (\omega_{T/P} \times \omega_F) \end{cases}$$
(27)

511

The maximum pit depths are summarized in Table 2. Valor et al. [65], Provan et al. [69], and Cavanaugh et al. [70] reported that the growth kinetics of pits can be simplified as $D_{\text{max}} = Kt^{\omega}$, when the t_{init} is small compared to the immersion time, and suggested that the t_{init} can be neglected in predicting the long-term pit damage for HP-13Cr SS under complex oilfield environment.

517

518 In order to verify the accuracy of the model for a complex oil environment, the maximum pit depth formed on HP-13Cr SS was measured after 6 years in service. 519 The maximum pit depth along the depth of the well is displayed in Fig. 24. It can be 520 521 seen clearly that the pit depth initially decreased with the increase in the depth of the well, followed by a sharp increase. The results also indicate that the maximum pit 522 depths were found near the top and bottom of the well. As a comparison, the predicted 523 maximum pit depth along the well profile is shown in Fig. 24. The proposed 524 mechanistic-chemometrics model is highly reliable in predicting the pitting damage 525 and can be utilized in current oilfield environments. 526

527

528 4. Conclusions

529	The multi-degree of freedom model has been developed to predict the pit behavior
530	under complex oilfield environment using a combination of weight coefficients and
531	sub-models of temperature/pressure, flow rate and stress. Based upon the results,
532	following conclusions are drawn.
533	
534	(1) The t_{init} value decreased with the increase in temperature/CO ₂ pressure, and the
535	correction of t_{init} by flow rate and stress could be neglected. Finally, the
536	relationship between t_{init} and temperature/CO ₂ pressure can be applied to the
537	whole depth of the well.
538	
539	(2) The growth rate of a pit is accelerated with the increase in temperature/CO ₂
540	pressure, flow rate and tensile stress. Moreover, the compressive stress shows a
541	negligible effect on the growth of pit.
542	
543	(3) For a chemometrics method, two-level factorial design is performed to identify the
544	most significant factors and interactions influencing the pit depth formed on the
545	HP-13Cr SS surface under complex oilfield environments. The temperature/CO ₂
546	pressure, stress and their interactions were identified as the most significant factors
547	in terms of pit depth, and the weight coefficients were determined to be 52.54%,
548	28.20% and 19.26%, respectively.
549	

550 (4) The measured data from Tarim area. in China confirmed the reliability of the

proposed model for predicting the pitting behavior of HP-13Cr SS oil tubes under
complex oilfield environment.

553

554	Data	avail	lability
554	Data	a van	avinty

555 The raw/processed data required to reproduce these findings cannot be shared at this 556 time, as the data form part of another ongoing study.

557

558 Authorship contribution statement

Yang Zhao: Investigation, Writing - original draft. Yong Hua: Investigation,
Visualization, Writing - review and editing. Bin Liu: Investigation, Funding
acquisition. Xuanpeng Li: Conceptualization, Writing - review and editing, Funding
acquisition. Junfeng Xie: Writing - review and editing. Guanxin Zeng: Writing review and editing. Tao Zhang: Conceptualization, Writing - review and editing,
Funding acquisition. Fuhui Wang: Writing - review and editing.

565

566 Acknowledgements

The authors wish to acknowledge the financial support provided by the National Key Research and Development Program of China (Grant No.: 2017YFB0702203), the National Natural Science Foundation of China (Grant No. U1460202), the National program for the Young Top-notch Professionals, the Fundamental Research Funds for the Central Universities (Grant No.: N170205002) and the Key Laboratory of Superlight Material and Surface Technology (Harbin Engineering University, China), 573 Ministry of Education, China and the Chinese Postdoctoral Science Foundation574 (Grant No.: 01270012810066).

575

576	References
577	[1] H. Pang, J.Q. Chen, X.Q. Pang, L.F. Liu, K.Y. Liu, C.F. Xiang, Key factors
578	controlling hydrocarbon accumulations in Ordovician carbonate reservoirs in the
579	Tazhong area, Tarim basin, western China, Mar. Petrol. Geol. 43 (2013) 88 - 101.
580	[2] P. Li, Y Zhao, B. Liu, G.X. Zeng, T. Zhang, D.K. Xu, H. Gu, T.Y Gu, F.H. Wang,
581	Experimental testing and numerical simulation to analyze the corrosion failures of
582	single well pipelines in Tahe oilfield, Eng. Fall. Anal. 80 (2017) 112 - 122.
583	[3] C.I. Ossai, B. Boswell, I.J. Davies, Pipeline failures in corrosive environments - a
584	conceptual analysis of trends and effects, Eng. Fail. Anal. 53 (2015) 36 - 58.
585	[4] Y. Zhao, W.L Qi, J.F. Xie, Y. Chen, T. Zhang, D.K. Xu, F.H. Wang, Investigation
586	of the failure mechanism of the TG-201 inhibitor: Promoting the synergistic effect of
587	HP-13Cr stainless steel during the well completion, Corros. Sci. 166 (2020) 108448.
588	[5] X.T. Yang, X.P. Shen, X.H. Cui, K.L. Wang, G.Y. Shen, Z.B. Wang, T. Qin, Stress
589	and deformation characteristics of completion and testing tubing string with
590	expansion joints for ultra-deep HTHP gas wells, Natural. Gas. Industry. B. 7 (2020)
591	101-108.
592	[6] X. Yue, L. Zhang, Y. Wang, S. Xu, C. Wang, M. Lu, A. Neville, Y. Hua, Evolution
593	and characterization of the film formed on super 13Cr stainless steel in CO ₂ -saturated

formation water at high temperature, Corros. Sci. 163 (2020) 108277.

595	[7] X.W. Lei, Y.R. Feng, A.Q. Fu, J.X. Zhang, Z.Q. Bai, C.X. Xin, C.H. Lu,
596	Investigation of stress corrosion cracking behavior of super 13Cr tubing by full-scale
597	tubular goods corrosion test system, Eng. Fail. Anal. 50 (2015) 62-70.

- 598 [8] Y. Zhao, J. Xie, G. Zeng, T. Zhang, D. Xu, F. Wang, Pourbaix diagram for
- 599 HP-13Cr stainless steel in the aggressive oilfield environment characterized by high
- temperature, high CO₂ partial pressure and high salinity, Electrochim. Acta. 293 (2019)
 116 127.
- 602 [9] R.M. Moreira, C.V. Franco, C.J.B.M. Joia, S. Giordana, O.R. Mattos, The effects
- of temperature and hydrodynamics on the CO₂ corrosion of 13Cr and 13Cr5Ni2Mo
- stainless steels in the presence of free acetic acid, Corros. Sci. 46 (2004) 2987 3003.
- [10] T. Sunaba, T. Ito, Y. Miyata, S. Asakura, T. Shinohara, T. Yakou, Y. Tomoe, H.
- Honda, Influence of chloride ions on corrosion of modified martensitic stainless steels
- at high temperatures under a CO_2 environment, Corrosion. 70 (2014) 988 999.
- 608 [11] S. Nesic, Key issues related to modelling of internal corrosion of oil and gas
- 609 pipelines A review, Corros. Sci. 49 (2007) 4308 4338.
- 610 [12] L.J. Mu, W.Z. Zhao, Investigation on carbon dioxide corrosion behaviour of
- HP13Cr110 stainless steel in simulated stratum water, Corros. Sci. 52 (2010) 82-89.
- 612 [13] H. Zhang, Y. L. Zhao, Z. D. Jiang, Effects of temperature on the corrosion
- behavior of 13Cr martensitic stainless steel during exposure to CO₂ and Cl⁻
 environment, Mater. Lett. 59 (2005) 3370-3374.
- 615 [14] X.P. Li, Y. Zhao, W.L. Qi, J.D. Wang, B. Liu, G.X. Zeng, T. Zhang, F.H. Wang,
- 616 Effect of extremely aggressive environment on the nature of corrosion scales of

- 617 HP-13Cr stainless steel, Appl. Sur. Sci. 469 (2019) 146 -161.
- 618 [15] Y. Zhao, X. Li, C. Zhang, T. Zhang, J. Xie, G. Zeng, D. Xu, F. Wang,
- 619 Investigation of the rotation speed on corrosion behavior of HP-13Cr stainless steel in
- 620 the extremely aggressive oilfield environment by using the rotating cage test, Corros.
- 621 Sci. 145 (2018) 307–319.
- [16] S Nesic, Effects of multiphase flow on internal CO₂ corrosion of mild steel
 pipelines, Energ. Fuel. 26 (2012) 4098-4111.
- 624 [17] G. Schmitt, M. Mueller, Critical Wall Shear Stresses in CO₂ Corrosion of Carbon
- 625 Steel, Corrosion/1999, NACE International, Houston/TX, 1999 paper no. 44.
- 626 [18] L.N. Xu, S.Q. Guo, W. Chang, T.H. Chen, L.H. Hu, M.X. Lu, Corrosion of Cr
- bearing low alloy pipeline steel in CO₂ environment at static and flowing conditions,
- 628 Appl. Surf. Sci. 270 (2013) 395-404.
- [19] J.A. Wharton, R.J.K. Wood, Influence of flow conditions on the corrosion of
- 630 AISI 304L stainless steel, Wear. 256 (2004) 525–536.
- [20] L. Wei, X.L. Pang, K.W. Gao, Effect of flow rate on localized corrosion of X70
- steel in supercritical CO₂ environments, Corros. Sci. 136 (2018) 339–351.
- 633 [21] X.Z. Wang, H. Luo, J.L. Luo, Effects of hydrogen and stress on the
- electrochemical and passivation behaviour of 304 stainless steel in simulated PEMFC
- environment, Corros. Sci. 145 (2018) 307–319.
- [22] D. Chastell, P. Doig, P.E.J. Flewitt, K. Ryan, The influence of stress on the pitting
- 637 susceptibility of a 12%CrMoV martensitic stainless steel, Corros. Sci. 19 (1979)
- 638 335-341.

- [23] S.J. Lennon, F.P.A. Robinson, G.G. Garrett, The influence of applied stress and
- surface finish on the pitting susceptibility of low alloy turbine disk steels in wet steam,
- 641 Corrosion. 40 (1984) 409-413.
- 642 [24] G. Vanboven, W. Chen, R Rogge, The role of residual stress in neutral pH stress
- 643 corrosion cracking of pipeline steels. Part I: Pitting and cracking occurrence, Acta
- 644 Materialia 55 (2007) 29-42.
- [25] A. Turnbull, L.N. McCartney, S. Zhou, A model to predict the evolution of pitting
- 646 corrosion and the pit-to-crack transition incorporating statistically distributed input
- 647 parameters, Corros. Sci. 48 (2006) 2084–2105.
- [26] H. Iwanaga, T. Oki, Effect of applied stress on anodic polarization behavior and
 pitting corrosion of stainless steel, J. Soc. Mater. Sci. Jpn. 30 (1981) 394-400.
- [27] V. Vignal, N. Mary, R. Oltra, J. Peultier, A mechanical-electrochemical approach
- 651 for the determination of precursor sites for pitting corrosion at the microscale, J.
- Electrochem. Soc. 153 (2006) B352-B357.
- [28] X. Feng, Y. Zuo, Y. Tang, X. Zhao, X. Lu, The degradation of passive film oncarbon steel in concrete pore solution under compressive and tensile stresses,
- Electrochim. Acta. 58 (2011) 258-263.
- [29] S. Guo, H.T. Wang, E.H. Han, Computational evaluation of the influence of
 various uniaxial load levels on pit growth of stainless steel under
 mechanoelectrochemical interactions, J. Electrochem. Soc. 165 (2018) C515-C523.
- [30] O. O. Fatoba, R. Leiva-Garcia, S.V. Lishchuk, N.O. Larrosa, R. Akid, Simulation
- 660 of stress-assisted localised corrosion using a cellular automaton finite element

- 661 approach, Corros. Sci. 137 (2018) 83-97.
- [31] E.M. Gutman, Mechanochemistry of solid surface, World Scientific Publishing
- 663 Company, Singapore (1994).
- [32] R. Elgaddafi, R. Ahmed, S. Shah, Corrosion of carbon steel in CO2 saturated
- brine at elevated temperatures, J. Petrol. Sci. Eng. 196 (2021) 107638.
- [33] Y. Hua, S. Xu, Y. Wang, W. Taleb, J. Sun, L. Zhang, R. Barker, A. Nevillea, The
- 667 formation of FeCO₃ and Fe₃O₄ on carbon steel and their protective capabilities against
- 668 CO₂ corrosion at elevated temperature and pressure, Corros. Sci. 157 (2019) 392-405.
- [34] A. Dugstad, L. Lunde, K. Videm, Parametric study of CO2 corrosion of carbon
- steel, Corrosion/94, paper no. 14 (Houston, TX: NACE International, 1994).
- [35] C. de Waard, U. Lotz, A. Dugstad, Influence of liquid flow velocity on CO₂
- 672 corrosion a semi-empirical model, Corrosion/95, paper no. 128 (Houston, TX: NACE
- 673 International, 1995).
- [36] C. de Waard, U. Lotz, Prediction of CO₂ corrosion of carbon steel, Corrosion/93,
- paper no. 69 (Houston, TX: NACE International, 1993).
- [37] A. Ikeda, S. Mukai, M. Ueda, Prevention of CO₂ corrosion of line pipe and oil
- 677 country tubular goods, Corrosion/84, paper no. 289 (Houston, TX: NACE678 International, 1984).
- [38] C. de Waard, L. Smith, B.D. Craig, The influent of crude oil on well tubingcorrosion rates, EUROCORR, 2001.
- [39] S. Nesic, J. Postlethwaite, S. Olsen, An electrochemical model for prediction of
- 682 CO₂ Corrosion, Corrosion/ 95, paper no. 131 (Houston, TX: NACE International,

683 1995).

- [40] S. Nesic, M. Nordsveen, R. Nyborg, A. Stangeland, A mechanistic model for CO₂
 corrosion of mild steel in the presence of protective iron carbonate scales Part II: A
 numerical experiment, Corrosion. 59 (2003) 489.
- [41] A. Kahyarian, M. Singer, S. Nesic, Modeling of uniform CO₂ corrosion of mild
 steel in gas transportation systems: A review, J. Nat. Gas. Sci. Eng. 29 (2016)
 530-549.
- 690 [42] A. Valor, F. Caleyo, L. Alfonso, D. Rivas, J.M. Hallen, Stochastic modeling of
- pitting corrosion: a new model for initiation and growth of multiple corrosion pits,Corros. Sci. 49 (2007) 559-579.
- [43] A. Anderko, N. Sridhar, D. S. Dunn, A general model for the repassivation
 potential as a function of multiple aqueous solution species, Corros. Sci. 46 (2004)
 1583-1612.
- [44] G. Engelhardt, D. D. Macdonald, Unification of the deterministic and statistical
- approaches for predicting localized corrosion damage. I. Theoretical foundation,
 Corros. Sci. 46 (2004) 2755-2780.
- [45] J.C. Velázquez, F. Caleyo, A. Valor, J.M. Hallen, Predictive model for pitting
 corrosion in buried oil and gas pipelines. Corrosion. 65 (2009) 332-342.
- 701 [46] H. Qin, W. Zhou, S. Zhang, Bayesian inferences of generation and growth of
- corrosion defects on energy pipelines based on imperfect inspection data. Reliab. Eng.
- 703 Syst. Safe. 144 (2015) 334-342.
- 704 [47] X. Li, Y. Zhao, W. Qi, J. Wang, J. Xie, H. Wang, L. Chang, B. Liu, G. Zeng, Q.

705	Gao, H. Sun, T. Zhang, F.H. Wang, Modeling of pitting corrosion damage based on
706	electrochemical and statistical methods, J. Electrochem. Soc.166 (2019) C539-C549.
707	[48] R. Sánchez-Tovar, M.T. Montañés, J. García-Antón, Contribution of the flowing
708	conditions to the galvanic corrosion of the copper/AISI 316L coupling in highly
709	concentrated LiBr solutions, Corros. Sci. 68 (2013) 91-100.

- [49] J. Liu, T. Zhang, W. Zhang, Y.G. Yang, Y.W. Shao, G.Z. Meng, F.H. Wang,
 Quantitative modeling for corrosion behavior in complex coupled environment by
 response surface methodology, Acta. Metal. Sin-Engl. 28 (2015) 994-1001.
- [50] Q.F. Hu, Y.C. Liu, T. Zhang, S.J. Geng, F.H. Wang, Modeling the corrosion
 behavior of Ni-Cr-Mo-V high strength steel in the simulated deep sea environments
 using design of experiment and artificial neural network, J. Mater. Sci. Technol. 35
 (2019) 168–175.
- [51] D. Nakhaie, A. Kosari, J. Mol, E. Asselin, Corrosion resistance of hot-dip
 galvanized steel in simulated soil solution: A factorial design and pit chemistry study,
 Corros. Sci. 164 (2020) 108310.
- [52] W. Li, B.F.M. Pots, X. Zhong, S. Nesic, Inhibition of CO₂ corrosion of mild steel
 Study of mechanical effects of highly turbulent disturbed flow, Corros. Sci. 126
 (2017) 208-226.
- [53] Y. Zhao, S.Y. Cao, T. Zhang, J.F. Xie, D.K. Xu, F.H. Wang, A new
 high-efficiency experimental design for optimizing various flow velocities testing in
 extremely aggressive formation water, Acta. Metall. Sin. Engl. 32 (2019) 944-950.
- 726 [54] L.Y. Xu, Y.F. Cheng, An experimental investigation of corrosion of X100

- pipeline steel under uniaxial elastic stress in a near-neutral pH solution, Corros. Sci.
 59 (2012) 103–109.
- [55] P.J.W. Mark, J. Anderson, RSM Simplified: Optimizing processes using response
- r30 surface methods for design of experiments, second edi, CRC Press, [Place of
- 731 publication not identified], 2017
- 732 [56] D.D. Macdonald, A.C. Scott, P. Wentrcek, External reference electrodes for use
- in high-temperature aqueous systems, J. Electrochem. Soc. 126 (1979) 908-911.
- 734 [57] ASTM G61-86. Standard Test method for conducting cyclic potentiodynamic
- polarization measurements for localized corrosion susceptibility of iron-, nickel-, or
- cobalt-based alloys. 2009.
- 737 [58] Standard ASTM G-48, Pitting and crevice corrosion resistance of stainless steel
- and related alloys by the use of ferric chloride solution, method A, in Annual Book of
- ASTM Standards, vol. 03.02 (West Conshohocken, PA: ASTM, 1992).
- 740 [59] ASTM G46-94 (2013) Standard guide for examination and evaluation of pitting
- corrosion, in Annual Book of ASTM Standards, vol. 03.02 (West Conshohocken, PA:ASTM, 2013).
- 743 [60] T. Zhang, X. L. Liu, Y. W. Shao, G. Z. Meng, F. H. Wang, Corrosion of pure
- magnesium under thin electrolyte layers, Electrochim. Acta. 53 (2008), 7921-7931.
- [61] D. D. Macdonald, D. F. Heaney, Effect of variable intensity ultraviolet radiation
- on passivity breakdown of AISI Type 304 stainless steel, Corros. Sci., 42, 1779(2000).
- [62] A. Anderko, N. Sridhar, M. A. Jakab. A general model for the repassivation

- potential as a function of multiple aqueous species. 2. Effect of oxyanions on
 localized corrosion of Fe–Ni–Cr–Mo–W–N alloys [J]. Corros. Sci. 50 (2008)
 3629-3647.
- [63] K. J. Evans, N. Sridhar, B. C. Rollins, S. Chawla, J. A. Beavers, J. Page,
 Long-term evolution of corrosion potential of carbon steel in alkaline radioactive
 waste environments, Corrosion. 75 (2018) 106-119.
- 755 [64] G. T. Burstein, R. J. Cinderey, Evolution of the corrosion potential of
 756 repassivating aluminium surfaces, Corros. Sci. 33 (1992) 475.
- [65] R. J. Cinderey, G. T. Burstein, The effects of chromate on the transient
 repassivation potential of aluminium in chloride solution, Corros. Sci. 33 (1992) 493498.
- [66] Y. Zhang, M.U. Macdonald, G.R. Engelhardt. Development of localized
 corrosion damage on low pressure turbine disks and blades. III: application of damage
 function analysis to the prediction of damage, Electrochim. Acta. 69 (2012) 19-29.
- [67] A. Valor, F. Caleyo, D. Rivas, J. M. Hallena, Stochastic approach to
 pitting-corrosion-extreme modeling in low-carbon steel, Corros. Sci. 52 (2010)
 910-915.
- [68] F.A. Almuaili, S.A. McDonald, P.J. Withers, A.B. Cook, D.L. Engelberg,
 Strain-induced reactivation of corrosion pits in austenitic stainless steel, Corros. Sci.
 125 (2017) 12-19.
- [69] J.W. Provan, E.S. Rodriguez III, Part I: Development of a Markov description of
 pitting corrosion, Corrosion. 45(1989) 178-192.
- 771 [70] M.K. Cavanaugh, R.G. Buchheit, N. Birbilis. Modeling the environmental
| 772 | dependence of pit growth using neural network approaches, Corros. Sci. 52 (2010) |
|-----|--|
| 773 | 3070-3077. |
| 774 | |
| 775 | |
| 776 | List of figures |
| 777 | Fig.1 Schematic diagram of complex oilfield environment |
| 778 | |
| 779 | Fig. 2 Dimensions of the testing specimens: (a) Electrochemical and immersion |
| 780 | testing specimen, (b) bump-shaped electrode, (c) high throughout tensile stress |
| 781 | specimen, (d) compress stress specimen, (e) T-type specimen |
| 782 | |
| 783 | Fig. 3 Flow rates distribution of the bump-shaped specimen |
| 784 | |
| 785 | Fig. 4 (a) Schematic diagrams of stress corrosion rotating cage, and (b) specimen |
| 786 | assemble |
| 787 | |
| 788 | Fig. 5 (a) and (b) von Mises stress distribution of the flat high throughout tensile |
| 789 | stress specimen and the T-type specimen, (c) flow distribution around the T-type |
| 790 | specimen |
| 791 | |
| 792 | Fig. 6 Schematic of pitting corrosion processes to construct the pitting damage |
| 793 | prediction model |

795	Fig. 7 Cyclic potentiodynamic polarization curves of HP-13Cr SS in simulation
796	formation water at different potential scan rates under various temperatures and CO ₂
797	pressures: (a) 95 °C / 2.8 MPa, (b) 120 °C / 3.2 MPa, (c) 150 °C / 3.6 MPa, (d) 180 °C /
798	3.8 MPa
799	
800	Fig. 8 E_{pit} (a) and E_{rp} (b) at different potential scan rates (v) for HP-13Cr SS in
801	formation water at different temperatures and CO ₂ pressures
802	
803	Fig. 9 OCP evolution of HP-13Cr SS in formation water under various temperatures
804	and CO ₂ pressures
805	
806	Fig.10 Variation of current density (i) with stable pit formation time of HP-13Cr SS in
807	formation water under various temperatures and CO $_2$ pressures: (a) 95 $^{\rm o}C$ / 2.8 MPa,
808	(b) 120 °C / 3.2 MPa, (c) 150 °C / 3.6 MPa, (d) 180 °C / 3.8 MPa
809	
810	Fig. 11 Variation of pit induction time with $\Delta E (E_{app} - E_{rp})$ of HP-13Cr SS under
811	various temperatures and CO ₂ pressures: (a) 95 °C / 2.8 MPa, (b) 120 °C / 3.2 MPa, (c)
812	150 °C / 3.6 MPa, (d) 180 °C / 3.8 MPa
813	
814	Fig.12 Pit initiation time of HP-13Cr SS in formation water under various
815	temperatures and CO ₂ pressures: (a) 95 °C / 2.8 MPa, (b) 120 °C / 3.2 MPa, (c) 150 °C

816 / 3.6 MPa, (d) 180 °C / 3.8 MPa

817

Fig.13 Variety of pit initiation time of HP-13Cr SS in formation water with well depth

Fig. 14 Cumulative probability and Gumbel plot of maximum pit depth for HP-13CrSS after pre-initiated pits

822

Fig. 15 Typical morphologies of maximum pits for HP-13Cr SS after pre-initiated.

824

Fig. 16 Gumbel plots of maximum pit depth for HP-13Cr SS under different immersion time after pre-initiated pits at various temperature and CO₂ pressures: (a) 95 °C / 2.8 MPa, (b) 120 °C / 3.2 MPa, (c) 150 °C / 3.6 MPa, (d) 180 °C / 3.8 MPa

828

Fig. 17 Time evolution of the mean maximum pit depth fitted Gumbel distribution at
different temperatures and CO₂ pressures

831

Fig. 18 The function of pitting growth kinetics parameters K and ω with the well depth

834

Fig. 19 Time evolution of the mean maximum pit depth fitted Gumbel distribution atdifferent flow rates

Fig. 20 Variety of pitting growth kinetics parameters K with flow rate

839

- Fig. 21 Time evolution of the mean maximum pit depth fitted Gumbel distribution at
- 841 various (a) tensile stresses, and (b) compressive stresses
- 842
- Fig. 22 The function of pitting growth kinetics parameters K (a) and ω (b) with the stress

845

- Fig. 23 Pareto histogram for weighing the effects of each of the factors on maximum
- 847 pit depth

848

- 849 Fig. 24 Six-year-served field data and mechanistic-chemometrics model prediction
- results for HP-13Cr SS along the well profile

851

551

852

Fig. 2 Dimensions of the testing specimens: (a) Electrochemical and immersion
testing specimen, (b) bump-shaped electrode, (c) high throughout tensile stress
specimen, (d) compress stress specimen, (e) T-type specimen

Fig. 4 (a) Schematic diagrams of stress corrosion rotating cage, and (b) specimen

916	assemble
917	
918	
919	
920	
921	
922	
923	
924	
925	
926	
927	
928	

Fig. 8 E_{pit} (a) and E_{rp} (b) at different potential scan rates (v) for HP-13Cr SS in

- formation water at different temperatures and CO₂ pressures

OCP-E

-39.7 day

1024 Fig.12 Pit initiation time of HP-13Cr SS in formation water under various

1025 temperatures and CO₂ pressures: (a) 95 °C / 2.8 MPa, (b) 120 °C / 3.2 MPa, (c) 150 °C

/ 3.6 MPa, (d) 180 °C / 3.8 MPa

 1036
 Fig. 13 Variety of pit initiation time of HP-13Cr SS in formation water with well depth

 1037
 1038

 1038
 1039

 1039
 1040

 1041
 1041

 1042
 1043

 1043
 1044

 1044
 1045

 1045
 1046

 1046
 1047

 1047
 1048

1067	Fig. 15 Typical morphologies of maximum pits for HP-13Cr SS after pre-initiated.
1068	
1069	
1070	
1071	
1072	
1073	
1074	
1075	
1076	
1077	
1078	
1079	
1080	
1081	
1082	

1156 Fig. 21 Time evolution of the mean maximum pit depth fitted Gumbel distribution at

various (a) tensile stresses, and (b) compressive stresses

1171 Fig. 23 Pareto histogram for weighing the effects of each of the factors on maximum

pit depth

Table 5 The value	ue of E_{pit}	and $E_{\rm rp}$ at	different	potential s	sweep rate	e (v) unde	er variou
temperatures and	l CO ₂ pres	sures					
Table 6 Electroc	chemical p	arameters	to calcula	te the OC	CP evoluti	on of HP	-13Cr S
under various ter	mperature	and CO ₂ pr	ressure				
Table 7 Gumbel	distributio	n fitting pa	arameters	for HP-13	Cr SS at c	lifferent ir	nmersio
time after pre-ini	itiated pits	under vari	ous tempe	erature and	l CO ₂ pres	sure	
	Table 1 (Themical c	ompositio	n of form	ation wate	r	
Composition	Table 1 C	Chemical c	ompositio	n of forma	ation wate	r K+	Na ⁺
Composition Content (mg L ⁻¹)	Table 1 C HCO ₃ 189	Chemical c Cl ⁻ 60000	$\frac{\text{ompositio}}{\text{SO}_4^{2-}}$ 430	n of forma Ca ²⁺ 8310	ation wate Mg ²⁺ 561	r K ⁺ 6620	Na ⁺ 76500

- 1211
- 1212

1243 Table 2 Factor values used for factorial design including uncoded and coded form and

 D_{max} as the response.

			1				
Experiment sequence	Factor A (T / P)	Factor B (V)	Factor B (F)	Resj (D		oonse nax)	
1	°C / MPa	m/s	MPa		μ	m	
1	95/2.8 (-1)	0.3 (-1)	-250 (-1)	5.59	5.84	5.32	5.74
2	95/2.8 (-1)	0.7 (+1)	-250 (-1)	5.25	5.02	5.65	5.27
3	95/2.8 (-1)	0.3 (-1)	350 (+1)	7.25	7.94	8.94	8.06

•	95/2.	8 (-1)	0.7 (+1)	350 (+1)	7.07	7.21	7.66	7.32
5	180/3	.8 (+1)	0.3 (-1)	-250 (-1)	13.26	14.82	15.33	15.74
6	180/3	.8 (+1)	0.7 (+1)	-250 (-1)	12.28	13.06	12.08	13.28
7	180/3	.8 (+1)	0.3 (-1)	350 (+1)	25.03	27.28	28.82	27.22
8	180/3	.8 (+1)	0.7 (+1)	350 (+1)	23.37	24.46	25.36	22.44
represented of	compress s	stress, and	330 MPa re	present tensi	le stress.			
	Table 3 F	low rate	for each s	urface of the	e bump-	shaped	specime	'n
,	Table 3 F	Tow rate	for each s	urface of the	e bump-	shaped	specime	'n

1273											
1274											
1275											
1276											
1277											
1278											
1279											
1280											
1281											
1282											
1283											
1284											
1285											
1286											
1287											
1288											
1289											
1290											
1291											
1292											
1293											
1294											
1295											
1296											
1297											
1298											
1299											
1300											
1301											
1302											
1303	Table	4	The	immersion	condition	of	HP-13Cr	SS	under	extremely	oilfield

1304 environments

Num ber	Temperature (°C)/ Pressure (MPa)	Velocity (m/s)	Stress (MPa)
1	95 °C/2.8 MPa	0	0
2	120 °C/3.2 MPa	0	0
3	150 °C/3.6 MPa	0	0
4	180 °C/3.8 MPa	0	0

5	120 °C/3.2 MPa	0.31	0
6	120 °C/3.2 MPa	0.50	0
7	120 °C/3.2 MPa	0.72	0
8	120 °C/3.2 MPa	1	0
9	120 °C/3.2 MPa	0	175
10	120 °C/3.2 MPa	0	210
11	120 °C/3.2 MPa	0	270
12	120 °C/3.2 MPa	0	350
Table 5 The	e value of E_{pit} and E_{rp} at different p	potential sweep rate	(v) under various

1326

temperatures and CO_2 pressures

	v (mV/s)	95 °C/2.8 MPa	120 °C/3.2 MPa	150 °C/3.6 MPa	180 °C/3.8 MPa
$E_{\rm pit}$	1.000	32.04 ± 10.29	-28.08 ± 8.03	-83.69 ±11.5	-117.39 ±4.42
(mV _{SHE})	0.500	28.08 ± 12.26	-32.03 ± 8.34	-95.2 ±2.48	-133.53 ±13.99

	-								
	0.333	17.98 ± 5.39	-36.94 ±	- 3.89	98.37 ±5.06	-136.57 ± 6.27			
	0.167	10.89 ± 9.58	-39.61 ±	- 8.89	108.63 ±2.32	-152.66 ±3.13			
	0	-2.92	-4	8.60	-126.53	-175.95			
	1.000	-88.67 ± 7.8	3 -150.9	6 ± 2.05	-193.01 ± 4.29	-201.21 ± 3.31			
F	0.500	-107.28 ± 3.2	-160.3	4 ± 1.42	-199.73 ± 4.07	-208.48 ± 3.39			
$E_{\rm rp}$	0.333	-121.07 ± 3.9	-164.0	5 ± 5.52	-204.37 ± 0.81	-209.89 ± 2.62			
(III V SHE)	0.167	-125.07 ± 2.3	34 -183.1	± 4.21	-205.51 ± 3.74	-212.38 ± 0.73			
	0	-150.18	-19	2.60	-218.04	-223.65			
Table 6	Table 6 Electrochemical parameters to calculate the OCP evolution of HP-13Cr SS								
	under various temperature and CO ₂ pressure								
		$\gamma (mV \cdot dec^{-1})$	$i_{\rm o}$ (A·cm ⁻²)	$E_{\rm oc}~({\rm mV})$	$\varepsilon_L(V \cdot cm^{-1})$	$E_{\rm corr} ({ m mV})$			
95 °C / 2	.8 MPa	-89.36	4.93×10 ⁻⁵	-182.7	7.38×10 ³	-275.6			
120 °C	/ 3.2	-92.67	5.99×10 ⁻⁵	-155.1	6.04×10 ³	-282.4			

	MPa								
	150	°C	/ 3	.6	-97.37	4.11×10 ⁻⁵	117.0	4.96×10 ³	212.1
	MPa						-117.0		-312.1
	180	°C	/ 3	.8	-91.07	2.28×10 ⁻⁵	72.8	84	211 5
	MPa						-72.0		-344.3
1346									
1347 1348									
1349									
1350									
1351 1352									
1353									
1354									
1355									
1356									
1357									
1359									
1360									
1361									
1362									
L363									
1364									
366									
1367									
368									
L369									
L370									
1371									
1372									
1373									
1374									
1375									
1376	Table	e 7 Gu	ımbe	el distrib	oution fitting	parameters for	r HP-13Cr S	S at different in	nmersion
1377		tim	e aft	er pre-ir	nitiated pits u	under various t	emperature	and CO ₂ pressu	re

Temperature and	TC (1)		Local parameter (μ) μ m	
CO ₂ pressure	Time (day)	Scale parameter (λ)		
	10	0.67	11.85	
	20	1.66	14.82	
95 °C / 2.8 MPa	30	1.56	19.36	
	45	1.47	23.34	
	60	2.50	27.13	
	10	0.98	15.10	
	20	1.27	20.27	
120 °C / 3.2 MPa	30	1.39	24.47	
	45	2.22	30.22	
	60	2.08	34.46	
	10	1.67	18.13	
	20	2.00	25.92	
150 °C / 3.6 MPa	30	2.33	31.51	
	45	2.50	37.95	
	60	3.13	44.78	
	10	0.25	33.53	
	20	3.57	53.29	
180 °C / 3.8 MPa	30	4.55	71.50	
	45	6.67	91.6	
	60	8.33	100.25	

. . . .