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Abstract: 17 

Rainfall and land use/land cover changes are significant factors that impact the soil 18 

erosion processes. Therefore, the present study aims to investigate the impact of rainfall and 19 

land use/land cover changes in the current and future scenarios to deduce the soil erosion 20 

losses using the state-of-the-art Revised Universal Soil Loss Equation (RUSLE). In this 21 

study, we evaluated the long-term changes (period 1981-2040) in the land use/land cover and 22 

rainfall through the statistical measures and used subsequently in the soil erosion loss 23 
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prediction. The future land use/land cover changes are produced using the Cellular Automata 24 

Markov Chain model (CA-Markov) simulation using multi-temporal Landsat datasets, while 25 

long term rainfall data was obtained from the Coupled Model Intercomparison Project v5 26 

(CMIP5) and Indian Meteorological Department. In total seven CMIP5 model projections 27 

viz Ensemble mean, MRI-CGCM3, INMCM4, canESM2, MPI-ESM-LR, GFDL-ESM2M 28 

and GFDL-CM3 of rainfall were used. The future projections (2011-2040) of soil erosion 29 

losses were then made after calibrating the soil erosion model on the historic datasets. The 30 

applicability of the proposed method has been tested over the Mahi River Basin (MRB), a 31 

region of key environmental significance in India. The finding represents that rainfall-runoff 32 

erosivity gradually decreases from 475.18 MJ mm/h/y (1981-1990) to 425.72 MJ mm/h/y 33 

(1991-2000). A value of 428.53 MJ mm/h/y was obtained in 2001-2010, while a significantly 34 

high values 661.47 MJ mm/h/y is reported for the 2011-2040 in the ensemble model mean 35 

output of CMIP5. The combined results of rainfall and land use/land cover changes reveal 36 

that the soil erosion loss occurred during 1981-1990 was 55.23 t/ha/y (1981-1990), which is 37 

gradually increased to 56.78 t/ha/y in 1991-2000 and 57.35 t/ha/y in 2000-2010. The 38 

projected results showed that it would increase to 71.46 t/h/y in 2011-2040. The outcome of 39 

this study can be used to provide reasonable assistance in identifying suitable conservation 40 

practices in the MRB. 41 

Keywords: Soil erosion; CMIP5 model; CA-Markov; Mahi River Basin; GIS; remote 42 

sensing 43 
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1. Introduction 46 

Climate and land use changes are inter-related with each other. Direct effect of climate 47 

change in terms of rainfall intensity, duration, magnitude (Renschler et al., 1999; Pandey et 48 

al., 2007; Jain and Kumar, 2012; Rajeevan and Nayak, 2017) and indirect effect of land use 49 

change in term of urban sprawl, deforestation and other human activity caused an increases in 50 

the soil erosion losses. Therefore, the consequences of these climate and land use changes are 51 

essential to quantify the soil erosion rate for sustainable agricultural and environmental 52 

development. In India, almost 167 Mha of the area is found vulnerable to water and wind 53 

erosion (Das, 2014). Food and Agriculture Organization (FAO) reported that 25 to 40 billion 54 

tons of topsoil are degraded every year and it eventually impact the crop yield and soil 55 

properties(Montanarella et al., 2015). In general, soil erosion is a natural geological process 56 

that results in the removal of soil particles by water or wind and it is transported with the 57 

stream (Ganasri and Ramesh, 2016). Soil erosion is a major issue worldwide, which causes 58 

losses of soil nutrients, increasing sedimentation in rivers, degradation of agricultural land, 59 

high runoff and so forth. Therefore, it is imperative that natural resources should be managed 60 

on a sustainable basis to ensure long-term productivity and food security (Renschler et al., 61 

1999; Pandey et al., 2007; Gajbhiye et al., 2014). Earth Observation (EO) provides detailed 62 

information about land, topography, watersheds characteristics, including soil types, land use 63 

and land cover and geomorphology. This information can also be easily integrated with 64 

Geographical Information Systems (GIS) to provide a quantitative measure of soil erosion. 65 

  66 



Various models developed in the past for soil losses assessment such as Water Erosion 67 

Prediction Project (WEPP), Soil and Water Assessment Tool (SWAT), Universal Soil Loss 68 

Equation (USLE), Revised Universal Soil Loss Equation (RUSLE) and others. Among all 69 

updated version of USLE i.e. RUSLE model is widely used and worldwide accepted due to 70 

its ability to provide an accurate estimation of soil erosion both quantitatively and spatially 71 

(Renard et al., 1991; Kouli et al., 2009; Bonilla et al., 2010; Nagaraju et al., 2011a; 72 

Prasannakumar et al., 2012; Tirkey et al., 2013; Karamesouti et al., 2016). A lot of studies  73 

conducted over the Indian region such as Thomas et al.(2018) reported a severe rate of soil 74 

loss in the tropical mountain river basin of Western Ghats, India using RUSLE with the 75 

transport limited sediment delivery (TLSD) function (Thomas et al., 2018). Kumar et 76 

al.(2014) suggested that soil erosion in the Himalayan watershed is a very sensitive factor 77 

as high slope and depleting forest covers are major causes of erosion (Kumar et al., 2014). 78 

In the last few decades, with the advancements in satellite observations and data quality, 79 

there is a substantial increase in the research studies on the impact of land use and rainfall 80 

on soil erosion. (Markose and Jayappa, 2016) used the RUSLE model in a tropical humid 81 

climatic zone that is experiencing a severe loss in soil due to natural factors, whereas, 82 

(Wang et al., 2018) compared the effects of rainfall and land use land cover patterns on soil 83 

erosion for different watersheds which is likely to play a crucial role in modelling and 84 

management of multi-scale watersheds. Another study by (Wei et al., 2007) considered the 85 

influence of different rainfall patterns to estimate the impact of land use on the soil erosion, 86 

and concluded that the concentration as well as high intensity with short duration rainfall 87 

events influences the soil erosion processes. 88 



Additionally, Global Climate Models (GCMs) have been successfully used in the scientific 89 

community for future climate projections. In general, their resolution is not enough to 90 

produce the regional climatic condition. Therefore in this study the NEX-GDDP (NASA 91 

Earth Exchange Global Daily Downscaled Projections) based Coupled Model 92 

Intercomparison Project Phase (CMIP5) data at fine resolution 0.25
0 

x 0.25
0
(Bao and Wen, 93 

2017) is employed. In the purview of the above, the focus of this study is to assess the impact 94 

of both climate and land use/land cover changes on soil erosion using the RUSLE model. In 95 

order to achieve the objectives, we investigated the NEX-GDDP-CMIP5 model performance 96 

over the study area for rainfall and estimated the land use/land cover changes using the 97 

multidate Landsat satellite images. Future projections of landscape changes are also 98 

estimated through CA-Markov and by using the classified multidate satellite images of the 99 

historical time period. Afterwards, soil erosion losses were provided for the baseline and 100 

future scenarios.   101 

 102 

2. Study area 103 

Mahi River is one of the largest rivers in India passing through the three geographically 104 

larger states Madhya Pradesh, Rajasthan and Gujarat and terminated at the Gulf of Khambhat 105 

as shown in Figure 1. The MRB covers an area of 34,842 km
2
. The basin can be divided into 106 

three parts-lower, middle and upper part. The upper part of the basin is having mostly hills 107 

and forests with some plain area in Madhya Pradesh. The middle part is having developed 108 

lands and mostly found in Gujarat. The Gujarat region is also encompassing most of the 109 

lower basin, which is very fertile with alluvial soil. In MRB, the area that can be used for 110 



agriculture is around 2.21 Mha. The other soil types which are found in the basin are red and 111 

black soils. Hydro-geologically the basin is dominated by basaltic rocks with trappean. The 112 

average rainfall in MRB is approx. 785 mm. Apart from agriculture, it is one of the important 113 

sources for irrigation, drinking water and industrial water demand.  114 

 115 

116 

Fig.1. Location map of Mahi River Basin, India. 117 

 118 

3. Materials and Methods  119 

In this study, the NASA-NEX-GDDP-CMIP5 model output, IMD (observed) datasets, Land 120 

use/land cover from Landsat were used. Along with the assessment, the future land cover 121 

expansion and climate change scenarios are also considered for their potential impacts on soil 122 



erosion in MRB. To achieve this objective, an integrated approach of an erosion model, 123 

climate model and land use/land cover datasets has been used.  The methodology of the 124 

present study has been summarized in Figure 2. The detailed description of datasets and 125 

methodology are provided in sub sections.  126 

3.1 Digital Elevation Model (DEM) 127 

 The Shuttle Radar Topography Mission (SRTM) launched in collaboration between 128 

NASA and the National Geospatial Intelligence Agency (NGA). It provides void filled 129 

elevation data globally (http://www.cgiarcsi.org).  In the present study, a 30 m DEM (v.3) is 130 

used for the extraction of slope of the study area using the spatial analyst tool of Arc GIS 10.1 131 

software (in Figure 3(a)). Slope expressed the inclination of landform associated with the 132 

physical feature. Higher slope value leads to rapid runoff with potential soil erosion 133 

(Stefanidis and Stathis, 2018). 134 

 135 

  136 

http://www.cgiarcsi.org/


Fig.2. Workflow of the methodology developed in this study  137 

 138 

3.2 IMD Rainfall datasets 139 

The Indian Meteorological Department (IMD) provided the gridded daily rainfall data at 140 

0.25
0 

X 0.25
0
. The daily rainfall recorded from 6955 rain gauge stations of National Data 141 

Centre, IMD, Pune, India (Pai et al., 2014). IMD uses the Inverse Distance Weighted  142 

interpolation technique along with the radial distance to convert the point-based gauge data 143 

into grid data.  30 years (1981-2010) of annual average rainfall data have been used, 144 

obtained for the meteorological stations Dhariawad, Mataji, Rangeli, Chakaliya, Paderibadi, 145 

Khanpur in the study area (Figure 3(b)) .   146 

 147 

 148 

 149 

            Fig.3. (a) Slope map (b) Annual average rainfall (1981-2010)  150 

 151 

(b) (a) 



3.3 Soil map 152 

 Soil map data is obtained from the FAO, United Nations, at 1:5000,000 scale and 153 

the dataset can be obtained at no cost from 154 

FAO(http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-m155 

ap-of-the-world). It provide information related to soil properties at the depth 0 – 30 cm 156 

(topsoil) and 30 – 100 cm (subsoil) with various parameters as Organic Carbon, pH(H2O), 157 

Calcium carbonate, Sand fraction, Silt fraction, Clay fraction, Bulk Density and so on. The 158 

data showed that the study region is mainly covered by eight soil classes as shown inFigure 159 

4).  160 

                     161 

 162 

Fig. 4. Soil map of the area 163 

 164 

 165 
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3.4 Land use/land cover estimation and prediction 167 

Landsat satellite data is used for land use/land cover estimation. Landsat is a collaborative 168 

effort of the US Geological Survey and the National Aeronautics and Space Administration 169 

(NASA). In this study, Landsat 1-5 having MSS (Multispectral scanner) and TM (Thematic 170 

Mapper) sensors data are used to prepare land use/land cover maps for the years 1981, 1991, 171 

2001, 2011. Before the classification of the images, they are geo-referenced and projected to 172 

WGS 1984 UTM Zone 43N coordinate system. In ENVI software, Support Vector Machine 173 

(SVM) algorithm based supervised classification system is applied to classify the images. 174 

SVM is found to be the best algorithm for land use/land cover classification by many 175 

researchers (Srivastava et al., 2012; Singh et al., 2014; Nandi et al., 2017; Fragou et al., 176 

2020). The study area is classified into five classes namely, Waterbody, Cropland, Grassland, 177 

Barren, Urban and Forest land respectively.  Table 1 is showing the overall classification 178 

accuracy and the Kappa performance statistics, which is 78.3%, 82.7%, 80.8%, 88.4% and 179 

0.76, 0.79, 0.77, 0.85 respectively for the classified images of the year 1981, 1991, 2001 and 180 

2011. Further, the state of the arts CA-Markov has been used for the prediction of land 181 

use/land cover classes of 2040 as shown in Figure 5. CA-Markov model is one of the most 182 

commonly used and consistent model for simulating land use/land cover changes, it 183 

combines cellular automata and Markov chain to predict the changes through space and time 184 

(Weng, 2002). CA-Markov is widely used in several studies such as    in ecological 185 

modelling (Ghosh et al., 2017), watershed management (Yulianto et al., 2018), urban growth 186 

(Aburas et al., 2017) and land use policy designing (Liu et al., 2017). Mathematical 187 

expression for the CA-Markov model can be understood through Eq. 1 and 2 188 



                                      (1)                           189 

                                                                                                             (2) 190 

Where S(t) is the image at time t, S(t+1) is the image at time t+1 and Pij is the transition 191 

probability matrix in which i is the current state and j is the future state. The value of Pij 192 

varies from 0 to 1 in which the low transition probability will be near to 0 and high transition 193 

probability will be near to 1. 194 

Table. 1 Accuracy assessment of land use/land cover classification   195 

 196 

Land 

Use/Land 

Cover Classes 

     1981       1991       2001       2011 

 PA(%) UA(%) PA(%) UA(%) PA(%) UA(%) PA(%) UA(%) 

Waterbody 100 98.8 96.6 100 100 96.2 100 98.5 

Forest 82.4 78.6  92.0 88.2 87.5 93.6 94.2 91.7 

Grassland 84.5 78.3 88.0 84.5 76.2 72.5 87.2 88.5 

Cropland 70.3 78.5 83.3 80.0 77.2 81.0 82.5 84.1 

Barren 88.0 84.5 78.2 75.5 85.6 88.2 79.6 75.5 

Urban 67.2 69.2 75.5 79.4 68.4 71.2 84.2 87.1 

Overall 

Accuracy 

     78.3       82.7       80.8       88.4 



Kappa Accuracy       0.76       0.79       0.77       0.85 

*
Producer Accuracy (PA), User Accuracy (UA) 197 

 198 

 199 

Fig.5 Spatial distribution of land use/land cover (a) 1981, (b) 1991, (c) 2001, 200 

(d) 2011, and (e) 2040. 201 

(a) (b) 

(c) (d) 

(e) 



 202 

3.5 Global Climate Model data  203 

 204 

The NEX-GDDP datasets are downscaled climate scenarios derived from the General 205 

Circulation Model (GCM) simulations of the Coupled Model Intercomparison Project Phase 206 

5 (CMIP5). The four major greenhouse gas emissions scenarios are considered as 207 

Representative Concentration Pathways (RCPs) based on IPCC AR5 (Intergovernmental 208 

Panel on Climate Change–Fifth report).The NEX-GDDP dataset uses statistical downscaling 209 

approach namely-Bias-Corrected Spatial Disaggregation (BCSD) method to downscale the 210 

projections for RCP 4.5 and RCP 8.5 from the 21 CMIP5 models (Wood et al., 2004; Maurer 211 

and Hidalgo, 2008). Detail document is available at https://cds.nccs.nasa.gov. Daily scale 212 

data for maximum temperature, minimum temperature and precipitation at fine resolution 213 

0.25°(~25km×25km) are available at https://cds.nccs.nasa.gov/nex-gddp/. In this study, 214 

seven GCMs of CMIP5 were selected, which work well over the Indian region and have been 215 

validated by (Bokhari et al., 2018; Jain et al., 2019; Sahany et al., 2019). The institution, 216 

country and spatial resolution of the seven models are shown in Table 2. The long term 217 

rainfall datasets from (1981-2040) were obtained for all the seven models using the 218 

NEX-GDDP-CMIP5.  219 

3.6 Evaluation of the CMIP5 Model output  220 

The performances of seven models of NEX-GDDP-CMIP5 (six model output and one 221 

ensemble) were assessed by both statistical measures and spatial patterns of mean annual 222 

precipitation. Taylor diagram (Taylor, 2001) is a suitable tool for the assessment of the model 223 

https://cds.nccs.nasa.gov/
https://cds.nccs.nasa.gov/nex-gddp/


performance through the statistical measures in terms of spatial correlation coefficient, 224 

centred pattern Root Mean Square (RMS), and the ratio of spatial standard deviations. Taylor 225 

diagram is user-friendly because of three metrics at a single platform. The circle centred at 226 

the observed point represents the RMS and the circle centred at the origin point represents the 227 

standard deviation and the correlation coefficient. For the best performance in terms of the 228 

spatial correlation and standard deviation, the value should be close to 1 and for RMS the 229 

value should be close to 0.  230 

Table. 2 Features of the six CMIP5 global climate models. 231 

CMIP5 Models  Institution, Country Atmospheric 

Resolution 

 

NEX-GDDP 

resolution 

1-Geophysical Fluid 

Dynamics Laboratory 

Climate Model, version3 

(GFDL-CM3) 

National Oceanic and 

Atmospheric 

Administration, 

Geophysical Fluid 

Dynamics Laboratory, 

U.S.A 

2.5º X 2º 0.25°X 0.25°  

2-Institute of Numerical 

Mathematics Coupled 

Model, version 4.0 

Institute of Numerical 

Mathematics, Russia 

2°X1.5º 0.25°X 0.25°  



(INMCM-4) 

3-Max Plank Institute 

Earth System Model, 

low resolution 

(MPI-ESM-LR) 

Max Plank Institute for 

Meteorology, Germany 

1.875°X1.8653º 0.25°X 0.25°  

4-Meteorological 

Research Institute 

Coupled 

Atmosphere–Ocean 

General Circulation 

Model, version 3 

(MRI-CGCM3) 

Atmosphere and Ocean 

Research Institute (The 

University of Tokyo), 

National Institute for 

Environmental Studies, 

Japan 

1.125°X1.1215º 0.25°X 0.25°  

5-The 

second–generation 

Canadian Earth System 

model (CanESM2) 

Canadian Centre for 

Climate Modelling and 

Analysis, Canada 

2.8125ºX2.7906º 0.25°X 0.25°  

6-Geophysical Fluid 

Dynamics Laboratory 

Earth System Model with 

Modular Ocean Model, 

National Oceanic and 

Atmospheric 

Administration, 

Geophysical Fluid 

2.5°X 2.0225º 0.25°X 0.25°  



 232 

4. Revised Universal Soil Loss Equation (RUSLE) model 233 

 RUSLE was invented by the USDA-Agricultural Research Service for the conservation 234 

planning and management. Originally USLE (Wischmeier and Smith, 1978) was developed 235 

to predict soil loss by unit plot condition in tropics region based on rainfall, soil type, 236 

topography, crop pattern and management practices. The revised version i.e. RUSLE was 237 

later proposed with some modifications in the algorithm of USLE factors (Moore and 238 

Wilson, 1992; Renard et al., 1997). RUSLE is a spatially distributed model and does not 239 

required too much data for the computation as well as it provide valuable results verified by 240 

various research articles. (Fernandez et al., 2003; Yue-Qing et al., 2008; Demirci and 241 

Karaburun, 2012; Naqvi et al., 2013; Pan and Wen, 2014; Pradeep et al., 2015).  It provide 242 

the annual average soil loss in (t/ha/y) by the following equation (Renard, 1997): 243                                                                                                           (3) 244 

 245 

Where A= Average Soil Loss Per Unit Area (t/ha/y); R= Rainfall-Runoff Erosivity Factor 246 

(MJ mm ha
-1

h
-1

year
-1

); K = Soil Erodibility Factor (metric tons ha
-1

MJ
-1

mm
-1

); LS = 247 

Topographic Factor (dimensionless); C = Cover Management Factor (dimensionless); and P 248 

= Conservation Practice Factor (dimensionless). Detailed descriptions of each of the RUSLE 249 

component are covered in the following subsections. 250 

 251 

version 4 

(GFDL-ESM2M) 

Dynamics Laboratory, 

U.S. A 



4.1 Soil Erodibility Factor (K) 252 

 The K factor represents the susceptibility of soil detachment, or transportation of soil 253 

particles due to rainfall. K factor significantly affected by soil structure, texture, organic 254 

content, and hydraulic properties of soil. The K values (tons/ha/MJ) can be calculated by the 255 

following equation (Sharpley and Williams, 1990). 256                                                                                           (4) 257 

where: 258 

A=  100/1(0256.0exp(3.02.0 SILSAN                                 (5) 259 

B=
3.0







 SILCLA

SIL

                                                         

(6) 260 

C= 








)]95.272.3exp[(

25.0
0.1

C

C

                                              

(7) 261 

D=
)]19.2241.5exp[(1

170.0
0.1

SNSN

SN




                                         

(8) 262 

 263 

Where; SAN, SIL and CLA represents the percentage of sand, silt and clay, respectively;  C 264 

= organic carbon content; SN1 = sand content subtracted from 1, divided by 100. 265 

Soil maps are the basic layer for the estimation of the K factor. Firstly, the vector layer of the 266 

soil map is converted into raster format by ArcGIS 10.1 software. After which, k values are 267 

assigned to the map by using reclassify tool of the ArcGIS 10.1. 268 

 269 

4.2 Rainfall-runoff Erosivity (R) factor 270 

R represents how the rainfall frequency, intensity, duration of rainfall and rate of runoff 271 

affects the soil erosion. Originally, R factor estimated by the long term average of rainfall 272 



kinetic energy and the maximum 30 min intensity during the storm event(Arnoldous, 1980). 273 

Due to the scarcity of the data, here we used the equation based on the annual average rainfall 274 

datasets (Wischmeier and Smith, 1978). 275                                                                                                                  (9) 276 

 Where; R = Rainfall Erosivity Factor (MJ mm ha/ h /year); r = Annual Average Rainfall 277 

(mm). 278 

 279 

 280 

4.3 Conservation Practice Factor (P) 281 

The P factor represent the support practices that are applied in the field to reduce the rate of 282 

runoff, to control the flow and velocity of runoff, to change the pattern of runoff and so forth. 283 

P is the ratio of soil loss with a specific support practice to the corresponding slope tillage 284 

(Wischmeier and Smith, 1978; Renard et al., 1997). P factor values varies from 0 – 1 (Renard 285 

et al., 1997). P of 1 assign to those areas where have poor conservation practices (i.e., scrub 286 

land, wasteland, Urban) while 0 or 0.3  value assigned to those areas where have good 287 

conservation practices .  288 

 289 

4.4 Topographic Factor (LS) 290 

Slope length (L) and slope steepness (S) are jointly expressed as LS. L is defined as the 291 

distance of flow path from the origin of overland flow to the point where deposition begins or 292 

runoff water enters in a flow channel, and S is the steepness of slope (Pradhan et al., 2012). 293 

LS can be evaluated by field measurement or using DEM via the following equation: 294 



                                                                 (10) 295 

Where flow accumulation represents the number of grid cells that shows the flow downward; 296 

cell size is the grid cell size (30m is used in this study); sin Slope is the slope degree in sin.  297 

 298 

4.5 Crop Management Factor (C)  299 

C-factor is the most important factor after the topography. It shows the cropping pattern, 300 

management practices and the erosion control measure of soil loss (Mati et al., 2000). The 301 

C-factor is decided based on land use/land cover classes as shown in Table 3.  302 

 303 

Table.3 C-Factor of the Mahi River Basin taken from the different studies 304 

 305 

 306 

 307 

      308 

6. 309 

Results 310 

and 311 

Discuss312 

ion 313 

6.1 Performance assessment NEX-GDDP-CMIP5 outputs 314 

Taylor diagram presents a comparison of IMD data (i.e., the station observations) with the 315 

NEX-GDDP-CMIP5’s six models output data and ensemble for the period 1981-2010 316 

Land Use/Land Cover          C-factor        References 

Mixed forest                     0.003         (Ganasri and Ramesh, 2016) 

Shrubland                        0.18           (Rao, 1981b) 

Grassland                        0.05           (Rao, 1981b) 

Cropland                         0.28           (Rao, 1981b) 

Urban                            1.0            (Tirkey et al., 2013) 

Barren or Sparsely vegetated     0.33           (Rao, 1981b) 

Water                            0.00          (Ganasri and Ramesh, 2016) 



Figure 6. Taylor diagram shows that all individual model and ensemble mean cluster lies in 317 

between a correlation coefficient of 0.5 to 0.85. However, standard deviation value of 318 

MRI-CGCM3, INMCM4 and Ensemble mean is close to 0.75 mm/day with an RMS value 319 

approx. 0.075 mm/day. The INMCM4 and MRI-CGCM3 showed a slightly higher RMS 320 

(0.18 and 0.13mm/day) than Ensemble model. Moreover, ensemble value reduces the 321 

uncertainty (i.e., parametric, structural and response) of individual model and showed a good 322 

performance (Giorgi and Mearns, 2002; Hagedorn et al., 2005; Palmer et al., 2005; 323 

Chaturvedi et al., 2012). The monthly mean rainfall of the individual models and ensemble 324 

mean climatology over the MRB is shown in Figure 7. These plots illustrate that the 325 

MRI-CGCM3 and INMCM4 along with the ensemble mean are all underestimated but show 326 

similar pattern to the IMD, while the other models (i.e., canESM2, MPI-ESM-LR, 327 

GFDL-ESM2M and GFDL-CM3) indicated a large inter-model difference. 328 

 329 

 330 



Fig. 6 Performances of NEX-GDDP-CMIP5 model outputs during the monsoon 331 

months (1981-2010) 332 

 333 

 334 

 335 

Fig. 7 Annual mean rainfall of the IMD, NEX-GDDP–CMIP5 models and the 336 

Ensemble mean during the period 1981-2010  337 

 338 

Furthermore, the spatial variabilities of the annual mean rainfall for the IMD and the 339 

NEX-GDDP-CMIP5 models are shown in figure 8 (a-h). IMD has the highest rainfall 340 

gradient occurred in the north-east and the north-west parts, with moderate to low rainfall 341 

that is occurred in the north-west part of the MRB. A similar spatial distribution observed in 342 

the best performing models i.e., MRI-CGCM3, INMCM4 and ensemble mean in comparison 343 

to other models. 344 
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 352 

 353 

Fig. 8 Spatial distribution of the annual mean rainfall during the time period 354 

1981-2010: (a) IMD, (b) Ensemble mean, (c) MRI-CGCM3, (d) INMCM4, (e) 355 

GFDL-CM3, (f) GFDL-ESM, (g) MPI-ESM-LR, (h) CanESM2. 356 

 357 

The box-whisker plots of the annual mean rainfall datasets for the period 1981-2010 and the 358 

2011-2040 are shown in Figure 9 (a-b). In the plot, boxes are having the upper quartile, 359 

median line (center) and the lower quartile. The whiskers are represented as the dotted line at 360 

each end of the box, and outliers are shown incircle. The annual mean rainfall of models has 361 

median in the center which represents a uniform distribution of the rainfall. 362 

(g) (h) 



 363 

 364 

Fig.9 Box-Whisker plot of the annual mean rainfall datasets during the time periods (a) 365 

1981-2010 and (b) 2011-2040. 366 

 367 

6.3 Input parameters of RUSLE 368 

 The five major factors of RUSLE (R, K, LS, P and C) were estimated through the rainfall 369 

data, soil datasets, land use/land cover, DEM and satellite images as discussed in the 370 

following sections:  371 

 372 

6.3.1 Soil Erodibility Factor (K) and Topographic Factor (LS) 373 

  The K factor varies from 0.034-0.052. The smaller value of K factor indicates lower 374 

permeability, low antecedent moisture content of soil and vice versa (Ganasri and Ramesh, 375 

(b) 

(a) 



2016). The results indicated that the north part of the MRB showed the highest erodibility 376 

(0.052), and the central part and the north-east part show moderate to low erodibility 377 

(0.04-0.034) of the MRB as shown in Figure 10(a). 378 

The 0 value of LS is obtained in the south-west region of the MRB with the lowest elevation 379 

(1.79
0 

- 4.42
0
), while a value of 0.324 can be seen in the north-west part having the steepest 380 

slope (15.74
0
-50.59

0
) Figure 10(b). The overall results suggested that the LS factor varies 381 

significantly between the north-west and the central part of the watershed. 382 

  383 

Fig.10 (a) Soil erodibility factor, (b) and Topographic factor of the study area 384 

6.3.2 Crop Management Factor (C)  385 

 The value of C factor is assigned for particular land use class according to the literature 386 

survey (Rao, 1981a; Alexakis et al., 2013). In general, the minimum value of C implies that 387 

the crop management practices are good and vice versa (Benkobi et al., 1994; Biesemans et 388 

al., 2000; Kouli et al., 2009). The C factor of the base period 1981, 1991, 2001, 2011 and 389 

future 2040 land use/land cover are shown in Figure 11, while Table 4 illustrated the 390 

(a) 
(b) 



percentages of the area occupied. On comparison with the baseline time period, finding 391 

indicates that the C-factor of Urban, Barren, Cropland and Grassland area are increasing, 392 

while for Water and Forest areas, a decreasing value is observed in 2040.  393 

 394 

Table 4. Percent land area for each C value calculated using the classified images of 395 

different years. 396 

 397 

Classes 1981 1991 2001 2011 2040 

Waterbody 6.50% 4.80% 4.50% 4.94% 4.06% 

Forest 23.37% 45.00% 40.36% 25.66% 22.43% 

Grassland 19.04% 7.40% 9.67% 6.11% 44.76% 

Cropland 25.72% 28.17% 24.74% 48.00% 17.36% 

Barren 22.34% 11.27% 15.67% 7.33% 11.65% 

Urban 2.40% 3.00% 5.01% 3.19% 5.71% 

 398 

  399 

 400 

 401 

 402 

(a) (b) 



 403 

Fig.11 C-factor of the study area in the year (a) 1981 (b) 1991 (c) 2001 (d) 2011 and (e) 404 

2040 405 

6.3.3 Conservation Practice Factor (P)   406 

(a) (b) 

(c) (d) 

(e) 

(a) 



  In this study due to the absence of the field observation, the value of P factor is assigned 407 

on the basis of earlier studies (Mati et al., 2000; Ganasri and Ramesh, 2016).  The P-factor 408 

of the base period 1981, 1991, 2001, 2011 and future 2040 land use/land cover classes are 409 

shown in Figure (12) and Table 5, which illustrated the P-Factor percentage area occupied 410 

by different classes. On comparison with the base time period, the forest, grassland and 411 

cropland were found increasing while barren and water areas were decreased due to poor 412 

conservation practices.  413 

 414 

Table 5. P-Factor calculated using the classified images of different years. 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

Classes 1981 1991 2001 2011 2040 

Water and Barren  29.84% 16.67% 20.20% 16.27% 23.71% 

Cropland, Forest 

and Grassland 

70.15% 80.91% 74.77% 80.78% 80.57% 

Urban 2.40% 3.00% 5.01% 3.19% 5.71% 



425 

Fig. 12 P-factor of the study area in the year (a) 1981, (b)1991, (c) 2001,(d) 2011, (e) and 426 

2040 427 

 428 

6.3.4 Rainfall-Runoff Erosivity Factor (R) 429 

(a) (b) 

(c) (d) 

(e) 



Many studies have suggested that the soil loss of a catchment is primarily affected by rainfall 430 

(Pandey et al., 2007; Nagaraju et al., 2011b; Chatterjee et al., 2014; Samanta and Bhunia, 431 

2016). The mean annual rainfall-runoff erosivity of the base scenario (1981-1990), 432 

(1991-2000), (2001-2010) and future scenario (2011-2040) are shown in Figure (13). From 433 

Figure 13 (a)-(c) the spatial distribution represents the highest erosivity in the north and the 434 

north-west parts 290-450 MJ mm ha/h/y (1981-1990), 300-420 MJ mm ha/h/y (1991-2000), 435 

345.45-426.53 MJ mm ha/h/y (2001-2010), the moderate value has been found in the central 436 

part, and the lowest value observed in the east-south part 160-260 MJ mm ha/h/year 437 

(1981-1990), 170-260 MJ mm ha/h/y (1991-2000), 238.55-318.9 MJ mm ha/h/y (2001-2010) 438 

in the MRB. 439 

However, during 2011-2040, the rainfall-runoff erosivity are estimated to be 675.16, 661.45 440 

and 625.56 MJ mm ha/h/year for the MRI-CGCM3, the ensemble mean and the INMCM4 441 

respectively, as shown in Figure 13(e)-(f). By comparing with the base time period, it can be 442 

seen that the rainfall-runoff erosivity increases gradually in the future scenario (2011-2040) 443 

to approx. 36.88%, 35.57% and 31.88% in the MRI-CGCM3, the ensemble means and the 444 

INMCM4 respectively.  445 

 446 

 447 



(a) (b) 

(c) (d) 

(e) (f) 



Fig.13 Rainfall-runoff erosivity during the time period (a) 1981-1990, (b) 1991-2000, (c) 449 

2001-2010 of IMD, and (d-f) for the Ensemble mean, the MRI-CGCM3 and the 450 

INMCM4 respectively, during the period 2011-2040. 451 

 452 

6.4 The soil erosion assessment of the base scenario and validation 453 

Slope and terrain properties play a major role in shaping rate of soil erosion. Steep slopes are 454 

prone to the more soil erosion as compared to the less steep slope. In the findings, the 455 

north-west, the east and the central region of MRB are highly affected by the soil erosion 456 

problem due to the steep slope and poor conservation practices along with intense rainfall. 457 

However, the annual average soil loss was reported as 55.23 t/ha/y (1981-1990), 56.78 t/ha/y 458 

(1991-2000), 57.35 t/ha/y (2000-2010) and categorized into five zones; very slight, slight, 459 

moderate, moderate severe, and severe (see Figure 14 (a)-(c)). 460 

South west portion of the MRB has coverage of very slight soil loss class zone. With each 461 

passing decade the soil loss has increased by 1.55 t/ha/y and 0.57 t/ha/y. Increase in soil loss 462 

could potentially occur due to the heavy rains and change in land use/land cover pattern. We 463 

further explored the impact of land use and rainfall change impact on the soil erosion rate in 464 

current and future scenarios. The National Bureau of Soil Survey and Land Use Planning 465 

(NBBS & LUP)’s point based soil loss datasets (http://www.bhoomigeoportal-nbsslup.in/. ) 466 

are also in line with the obtained results. The datasets are categorized into very slight (<5 467 

t/ha/y), slight (5-10 t/ha/y), moderate (10-15 t/ha/y), moderate severe (15-20 t/ha/y), severe 468 

(20-40 t/ha/y), very severe classes (40-80 t/ha/y), and extremely severe classes (>80 t/ha/y) 469 

are available from the site http://www.bhoomigeoportal-nbsslup.in/. The datasets showed a 470 



similar soil loss values as obtained from the RUSLE model and the overall accuracy is found 471 

as 85%. The category wise accuracy can be varied from very slight, slight, moderate to 472 

severely eroded. Therefore, the result suggested that the RUSLE is a promising approach for 473 

this type of the study as well as cost-effective in the identification of vulnerable area for soil 474 

erosion risk.  475 

6.5 Soil erosion for the base and future scenarios 476 

Based on rainfall-runoff erosivity and land use change, soil erosion is predicted while other 477 

factors influenced by the soil type and topography are kept constant while performing the 478 

future projection. The changes in C-factor and P-factor along with R-factor increases 479 

significantly in the future time series (2011-2040) in comparison to the present time series 480 

(1981-2010). Similarly, the rate of the annual average soil erosion increases to 71.56, 66.34. 481 

and 60.56 t/h/year in the MRI-CGCM3, the ensemble means and the INMCM4 model 482 

respectively in future time series (2011-2040) Figure 14 (d)-(f). As compared to the base 483 

scenario, the annual average soil erosion increases to 29.56%, 20.11% and 11.21% in the 484 

MRI-CGCM3, the INMCM4 and the ensemble mean model, respectively.  As compared to 485 

the soil erosion based on land use /land cover area, we find significant results, as the highest 486 

soil erosion rate is recorded in forest class which is 217.13 to 327.45 t/ha/y and cropland 487 

239.43 to 312.87 t/ha/y as shown in Table 6. The forest and cropland land cover area decrease 488 

by 42.23% and 33.13% in the future scenario (2040), it may be the result of the expansion in 489 

grassland and urban areas.  Similarly, moderate soil erosion rates were found in the 490 

grassland that is 110.63 to 128.96 t/ha/y along with a significant increase in land area of 491 

approximately 47.34% due to the transition of forest and cropland areas and barren areas has 492 



shown a soil erosion rates of 178.21 to 146.59 t/ha/y with an overall decrease in the land area 493 

of -1.23% due to the expansion of urban areas. While in urban area, the soil erosion rate was 494 

found to be the lowest 21.25 to 58.4 t/ha/y but the land area increased significantly to 72.32% 495 

from base to predicted future scenario. Projected increase in barren land and settlement area 496 

might affect the local rainfall mechanism in the basin but at the same time intense rainfall 497 

could exacerbates the rate and magnitude of land degradation by increased soil loss. With 498 

decrease in crop land and forest area in future scenario pose threat to natural ecosystem and 499 

biodiversity. Projected increase in a water body area is a good sign as far as future water 500 

demand and supply is concern in the MRB.  501 

 These results indicate that the change in soil erosion rate follows the rainfall and land use 502 

changes, which has been validated by various research articles, as Sharma et al., suggested 503 

that mean soil erosion potential of the watershed was increased slightly due to the transition 504 

of LULC categories to cropland (Sharma et al., 2011). Zare et al., results indicate that mean 505 

soil erosion increases by 45% from the base period to future period, because of the most 506 

significant transition observed in the forest area to settlement (Zare et al., 2017). Mondal and 507 

Gupta et al., studies have reported that the increasing trend of precipitation and land use 508 

changes could increase the future rate of soil erosion over the Himalayan and Narmada River 509 

basin (Mondal et al., 2016; Gupta and Kumar, 2017). 510 

Table.6 Average annual soil loss (t/ha/y) of different land use land covers classes. 511 

 512 

   Classes 1981 1991 2001 2011 2040 



      

Forest 217.13 318.89 322.34 315.21 327.45 

Grassland 110.63 117.32 125.25 131.89 128.96 

Cropland 239.43 246.15 320.21 205.38 312.87 

Barren 178.21 162.35 199.90 235.21 146.59 

Urban 21.25 28.54 20.12 42.26 58.4 

 513 

   514 

 515 



 516 

Legend- soil loss (t/ha/y) 517 

  518 

(a) (b) 

(c) (d) 

(e) (f) 



Fig.14. Soil erosion rate during the time period (a) 1981-1990 (b) 1991-2000 (c) 519 

2001-2010 of IMD, and (d-f) for the Ensemble mean, the MRI-CGCM3 and the 520 

INMCM4 respectively, during the time periods (2011-2040). 521 

 522 

7. Conclusion 523 

The study demonstrated the potential impact of long-term rainfall and land use/land cover 524 

changes on soil erosion using the state-of-the-art RUSLE and NEX-GDDP-CMIP5 models. 525 

The results indicate that the RUSLE has potential to capture catchment characteristics 526 

including climatic variables such as rainfall distribution, soil properties (texture, organic 527 

carbon), topography (slope, flow accumulation), land use (crop pattern, management and 528 

practices), and hence can help in the quantification of the soil erosion losses. The 529 

MRI-CGCM3, INMCM4 and ensemble mean are the most suitable models to capture the 530 

spatial variability of the precipitation with high spatial correlation (0.65-0.83) and low error 531 

rate (0.52 mm/day) with respect to the observed (IMD) datasets, during the time period 532 

1981-2010. The finding of land use changes during the time period 2040 reported that urban, 533 

barren, cropland and grassland area with poor crop management practices are increasing 534 

while water and forest area are decreasing. Furthermore, it is concluded that in near future the 535 

rainfall erosivity factor may increase which can lead to high soil erosion rate. The outcome of 536 

this study would be of important help in evaluating the landform and their processes, 537 

agricultural productivity, hazardous mitigation and so forth within the study area and for 538 

deducing the changes in the future. In addition, the results obtained from this study can be 539 

utilized by various government agencies, developers and policymaker for a better soil and 540 



water conservation in the MRB. Furthermore, the implementation of the proposed technique 541 

is robust as it is based on satellite imagery and ancillary datasets provided globally at no cost. 542 

The method is straight-forward, and requires low computational facility and hence can be 543 

easily reapplied in other parts of the world to cover a broad spectrum of catchments.  544 
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