

This is a repository copy of *Transformation technologies for CO2 utilisation: Current status, challenges and future prospects*.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/169405/

Version: Accepted Version

Article:

Kamkeng, A.D.N., Wang, M. orcid.org/0000-0001-9752-270X, Hu, J. et al. (2 more authors) (2021) Transformation technologies for CO2 utilisation: Current status, challenges and future prospects. Chemical Engineering Journal, 409. 128138. ISSN 1385-8947

https://doi.org/10.1016/j.cej.2020.128138

Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1	Transformation Technologies for CO₂ Utilisation: Current Status, Challenges
2	and Future Prospects

- 3 Ariane D. N. Kamkeng,^a Meihong Wang,^{*a} Jun Hu,^b Wenli Du^c and Feng Qian^c
- 4 ^aDepartment of Chemical and Biological Engineering, University of Sheffield, Mappin Street,
- 5 Sheffield, S1 3JD, United Kingdom.
- ^bSchool of Chemistry and Molecular Engineering, East China University of Science and
 Technology, 130 Meilong Road, Shanghai 200237, China.
- 8 ^cState Key Laboratory of Chemical Engineering, East China University of Science and Technology,
- 9 130 Meilong Road, Shanghai 200237, China.
- 10 *Corresponding Author: Prof Meihong Wang, E-mail address: <u>Meihong.Wang@sheffield.ac.uk</u>

11 Abstract

12 To prevent global warming and climate change caused by CO₂ emissions, the Intergovernmental 13 Panel on Climate Change (IPCC) recommends lowering CO₂ emissions to limit the global temperature to 1.5°C. In addition to carbon capture and storage (CCS) technologies, there is a 14 15 growing interest to explore CO_2 utilisation. Several review papers exist in the literature either focusing on one or two CO₂ transformation technologies or covering only experimental studies. 16 This review paper addresses the gap by classifying CO₂ transformation technologies and looking 17 18 at products from CO₂ conversion. It reviews experiment and modelling/simulation-based studies 19 for CO₂ biological and chemical conversion processes to assess their technical barriers. A detailed 20 analysis of their technology readiness level, cost, market and environmental benefits are also 21 elaborated. Finally, the research trend and projects for CO₂ transformation technologies worldwide 22 as well as the key challenges hindering their commercial deployments are carefully outlined. The 23 analysis of the research trend shows a significant increase in research for CO₂ utilisation with hydrogenation and electrochemical reduction being the most studied technologies since 2016. 53% 24 25 of the projects are laboratory projects whereas, only 14% account for commercial projects. There

is currently no commercial project for plasma catalysis, photochemical, electrochemical and nonphotosynthetic technologies. The USA holds the highest number of 45 projects including 8, 6, 10
and 21 commercial, demonstration, pilot and laboratory projects, respectively. The development of
improved catalysts and process intensification techniques are highly needed for successful scaleup of CO₂ transformation technologies.

6 Keywords

7 CO₂ utilisation; Chemical conversion; Biological conversion; Catalyst; Modelling and simulation;
8 Process intensification

9 **1. Introduction**

10 1.1. Background

Various anthropogenic activities (e.g. burning fossil fuels and transportation) result in CO₂ 11 emissions into the atmosphere. Global CO₂ emissions have increased from roughly 16 GT in 1970 12 to 37.5 GT in 2018 [1]. This has led to major concerns about global warming and climate change. 13 14 The importance of reducing CO_2 emissions to prevent global warming consequences such as rising sea levels and melting glaciers has been widely recognised. It is recommended that CO₂ emissions 15 16 should be lowered to net-zero around 2050 to limit the global temperature increase below 1.5°C by 17 2100 [2]. Several approaches have been considered for mitigating CO_2 emissions among which 18 carbon capture and storage (CCS) are viewed as a viable approach for meeting CO₂ emission reduction [3]. 19

As of 2019, 19 large-scale CCS facilities are operating worldwide with 4 more under construction. These facilities have an annual capture and storage capacity of around 40 million tonnes of CO₂ which corresponds to only 0.1% of global CO₂ emissions [4]. Furthermore, the reported facilities are lower than the 60 CCS commercial projects predicted by the International Energy Agency (IEA) in 2011 [5]. This is due to the high costs of CCS technologies which have made their commercial deployment quite difficult [6]. As a result, the term CCS has become CCUS (Carbon capture, utilisation and storage) wherein the economic value of the captured CO₂ is promoted through
utilisation [7].

3 It is worth emphasizing that CO_2 utilisation technologies alone cannot mitigate enough CO_2 4 emissions. To illustrate, the cumulative total of CO_2 used for the global chemical industry in the 5 period 2010–2050 is estimated to 15.42 GTCO₂ which represents about 2% of CO₂ reduction targets by 2050 [8]. The economic advantage of CO₂ utilisation, together with CCS for permanent 6 7 CO₂ storage has made CCUS a more acceptable and lucrative concept for achieving CO₂ reduction 8 targets. However, CCS technologies are beyond the scope of this review paper and several good 9 discussions can be found somewhere else [6,9]. Only CO₂ utilisation technologies are addressed in this paper. CO₂ utilisation is classified into direct and indirect uses. Direct use involves using CO₂ 10 at its pure state or suspended in a solution. For instance, in enhanced oil recovery (EOR), 11 12 carbonated drinks, food preservation and fire extinguishers [10]. Whereas, indirect CO₂ utilisation converts CO₂ into chemicals, materials and fuels through different chemical and biological 13 processes [11]. 14

15 1.2. CO₂ molecule and its challenges for transformation

CO₂ is a linear molecule constituted by an atom of carbon which gives up all its four electrons to 16 17 covalently double bond to two atoms of oxygen (O=C=O). Thermodynamically, the oxygen bonds 18 with carbon are very strong making CO₂ molecule highly stable. Moreover, CO₂ Gibbs free energy 19 $(\Delta G^{\circ} = -394 \text{ kJ/mol})$ is much lower than that of the products from CO₂ conversion (Figure 1) [12]. 20 Therefore, CO_2 stability must be overcome for the synthesis of value-added products. This leads to 21 three main scientific challenges namely (1) the *need for substantial energy input* which must come 22 from carbon-neutral sources to avoid further CO₂ emissions [11], (2) the need for active catalysts to lower the activation energy of CO₂ conversion processes and (3) high temperatures and/or 23 *pressures* to weaken the CO₂ stability [13]. 24

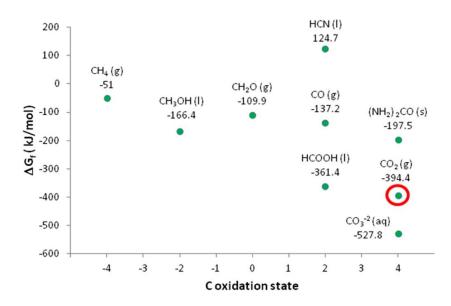


Figure 1: Gibbs free energy of formation for some products from CO₂ conversion [12].

3 1.3. Motivation for CO₂ utilisation via transformation

The motivations behind CO₂ utilisation seem obvious in the context of global warming and climate 4 5 change. Table 1 presents the current estimates of CO₂ utilisation through direct and indirect routes. 6 These estimations are based on data for CO_2 used in 2016 [14] and estimated data for the next ten 7 years [15]. The total current amount of CO_2 for direct uses worldwide is 42.4 MT/yr which 8 represents nearly 18% of CO₂ consumed for indirect uses. Furthermore, CO₂ demand for direct 9 uses is predicted to remain constant since its application in the industry is quite stable [15,16]. On 10 the other hand, the efficient use of CO₂ as feedstock is forecasted to be above 332 MT/yr by 2030 11 [14]. Though CO_2 utilisation via transformation presents some challenges, its potential of 12 contributing to climate change mitigations while at the same time turning waste CO₂ emission into 13 a wide range of value-added products is a powerful driving force. Therefore, it is paramount to summarize the recent advances in CO₂ transformation technologies and discuss their challenges 14 and future research needs. 15

16

Table 1: Current estimates of CO₂ utilisation [14,15].

Utilisation	Application/Product	CO ₂ used	Production
mode		(MT/yr)	(MT _{product} /yr)
	Enhanced oil & gas recovery	25.0	25.0

	Food preservation	8.2	8.2
Direct uses	Industrial gases	6.3	6.3
	Carbonated drinks	2.9	2.9
	Total	42.4	-
	Urea	132.0	180.0
	Inorganic carbonates	70.0	250.0
	Methanol	10.0	60.0
	Formaldehyde	5.0	25.0
	Dimethyl ether (DME)	5.0	20.0
Indirect uses	Tertiary butyl methyl ether	3.0	40.0
	Algae	2.0	1.0
	Polymers	1.5	15.0
	Acrylates	1.5	3.0
	Carbamates	1.0	6.0
	Formic acid	0.9	1.0
	Organic carbonates	0.5	5.0
	Total	232.4	-

1 1.4. The aim and novelty of this review paper

This paper aims to critically review the current status of CO₂ utilisation via transformation. Several
good review papers on CO₂ utilisation can be found in the literature. An analysis of some recent
reviews is presented as follows:

Alper and Yuksel Orhan [13] reviewed CO₂ conversion to C1-building chemicals via
 hydrogenation, dry reforming, carboxylation, electrochemical and photochemical reduction.

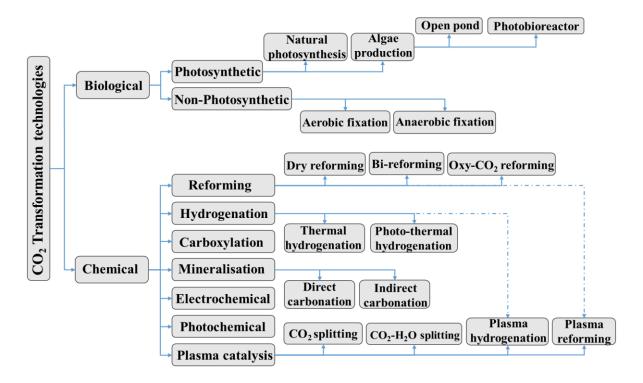
7 \rightarrow Zheng et al. [17] reviewed the mechanisms and energy involved in thermochemical,

8 electrochemical and photochemical CO₂ conversion processes.

- Jarvis and Samsatli [10] compared the cost, CO₂ consumption and TRL of CO₂ conversion
 technologies such as electrochemical reduction to formic acid, Fischer-Tropsch synthesis, urea
 production, hydrogenation to methane, formic acid and methanol.
- Ye et al. [18] discussed the mechanisms and heterogeneous catalysts of CO₂ hydrogenation to
 hydrocarbons and oxygenated compounds.
- 6 > Centi et al. [19] reviewed CO₂ conversion to syngas, methane, methanol, formic acid and C₂7 C₃ olefins using renewable energy.
- 8 > Hepburn et al. [20] analysed the scale and economics for the conventional (chemicals, fuels,
 9 microalgae, building materials and EOR) and non-conventional (BECCS, enhanced
 10 weathering, forestry, land management and biochar) uses of CO₂.
- 11 > de Vasconcelos and Lavoie [21] assessed the recent advances in chemicals and fuels from CO₂
 12 via hydrogenation and electrochemical reduction.
- Grim et al. [22] focused on the technical barriers of CO₂ conversion to C₁-C₃ compounds via
 hydrogenation, electrochemical, bioelectrochemical and plasma techniques.
- 15 \succ Zhang et al. [23] discussed the key challenges of CO₂ utilisation via direct and indirect routes.
- They also analysed the trend of CO₂ utilisation projects in USA, China, UK, Australia, Norway
 and Germany.
- Salehizadeh et al. [24] reviewed the microbial CO₂ fixation and conversion into chemicals and
 fuels.
- Mustafa et al. [25] looked into the catalysts and operating conditions of CO₂ electrochemical,
 plasma, biochemical, photochemical and solar thermochemical conversion into high-value
 products.
- Some of the review papers aforementioned only focus on one or two specific CO_2 conversion methods [18,19,21,24]. Others looked into CO_2 conversion to specific products [10,13,19,20,22,25]. Furthermore, none of these papers reviewed the recent modelling and simulation-based studies for CO_2 transformation technologies. Modelling and simulation

approaches can help for process design and optimisation at a lower cost. Therefore, it is important
to analyse the current advancement in the proposed modelling and simulation studies to assess the
role they can play in improving the performance of CO₂ transformation technologies.

4 For beginners, this manuscript offers a clear definition of CO₂ transformation technologies 5 according to first principles and recapitulates the different products from CO₂ conversion. For 6 experienced researchers, this paper reviews the recent progress in both experimental and 7 modelling/simulation studies of CO₂ transformation technologies and proposes future research 8 directions. The present article is different from most of the previous review papers in the following ways: (1) it classifies and defines CO₂ transformation technologies according to first principles 9 10 then links the products from CO_2 conversion and CO_2 transformation technologies; (2) it critically 11 reviews the current advancement in modelling/simulation studies and draws the readers' attention 12 on process optimisation and process intensification for CO_2 transformation technologies; (3) it presents a detailed analysis of the different laboratory, pilot, demonstration and commercial 13 projects for CO₂ utilisation via transformation worldwide and (4) finally, it tries to identify the key 14 15 challenges hindering their commercial implementation and predict possible prospects.


16 2. CO₂ transformation technologies

17 CO₂ transformation technologies are classified into biological and chemical transformations which
18 are then respectively subdivided into two and seven CO₂ conversion processes (Figure 2).

19 2.1. Biological transformation

20 **2.1.1.** Photosynthetic CO₂ fixation

Photosynthetic CO_2 fixation is divided into two methods: (1) *natural photosynthesis* wherein green plants absorb sunlight energy to convert CO_2 and water into energy-rich components such as glucose [26]; (2) *algae production* (e.g. cyanobacteria and eukaryotic microalgae) using CO_2 as carbon source, light energy, inorganic nutrients and water [27]. The natural photosynthesis is not taken into consideration in this review since it is a natural process that helps to maintain life on Earth. Therefore, the photosynthetic method will refer to as algae production. There are two most
significant systems for algae production including open or raceway pond (RP) systems which are
open to the air (Figure 3a) and photobioreactors (PBRs) wherein algae cultivation is enclosed in a
transparent array of tubes (Figure 3b) [27,28].

5

Figure 2: Chemical and biological CO₂ transformation technologies.

8

Figure 3: Algae production in (a) open ponds and (b) photobioreactors [28].

9 2.1.2. Non-photosynthetic CO₂ fixation

10 The non-photosynthetic method uses microorganisms (such as methanogens and acetogens) and a 11 source of high-energy electrons for CO₂ reduction into useful bio-products. The process is 12 performed either under aerobic or anaerobic conditions. In *aerobic fixation*, microorganisms access oxygen directly from the surrounding environment while during *anaerobic fixation*, oxygen is
 prevented from entering the system [29,30].

3 2.2. Chemical transformation

4 2.2.1. Reforming

5 Reforming is a strongly endothermic process wherein a hydrocarbon-containing gas (e.g. natural 6 gas) is heated in the presence of a metal-based catalyst to produce a gas, commonly called syngas 7 (CO+H₂). Because methane (CH₄) is the main component of natural gas, the process is often 8 referred to as methane reforming. In the CO_2 utilisation context, there are three types of methane 9 reforming processes including dry reforming (DRM), bi-reforming (BRM) and Oxy-CO₂ reforming 10 (ORM) [31]. Table 2 details the chemical reaction and enthalpy of formation at 298K (ΔH_{298K}) of 11 each reforming process. The main issue with the reforming is the coke or carbon deposition (Table 12 2) on the catalyst surface leading to catalyst deactivation due to blockage of active sites [31,32].

13

 Table 2: Different types of reforming processes and coke formation reactions [31,32].

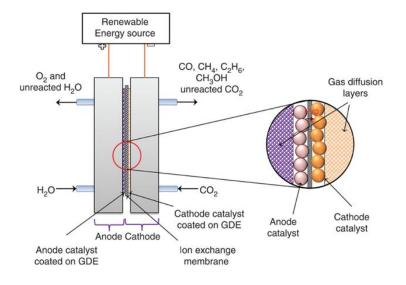
Reforming type	Chemical reaction	ΔH _{298K} (kJ/mol)		
Dry reforming of CH ₄	$CH_4 + CO_2 \rightarrow 2CO + 2H_2$	247.3		
Bi-reforming of CH ₄	$3CH_4 + 2H_2O + CO_2 \rightarrow 4CO + 8H_2$	220		
Oxy-CO ₂ reforming of CH ₄	$3CH_4 + CO_2 + O_2 \rightarrow 4CO + 6H_2$	175.1		
Formation of coke (side reactions)				
CH ₄ decomposition	$CH_4 \rightarrow C + 2H_2$	75		
CO ₂ hydrogenation	$CO_2 + 2H_2 \rightarrow C + 2H_2O$	-90		
CO reduction	$H_2 + CO \rightleftharpoons C + H_2O$	-131		
Boudouard reaction	$2CO \rightleftharpoons C + CO_2$	-172.4		

14 2.2.2. Hydrogenation

15 CO₂ hydrogenation is simply defined as the addition of H₂ to CO₂. Because H₂ has a higher Gibbs 16 free energy ($\Delta G^\circ = 0$) than CO₂, CO₂ activation via hydrogenation is, therefore, more favourable. However, the H₂ source is among the key challenges for CO₂ hydrogenation as it must come from
renewable sources [33] to prevent further CO₂ emissions. Addition of H₂ to CO₂ is performed using
heat (*thermal hydrogenation*), a combination of light and heat (*photothermal hydrogenation*) and
plasma (*plasma hydrogenation*). Combining light and heat or using plasma has the advantage of
reducing the intensive heat required for thermal CO₂ hydrogenation [34,35].

6 Looking at the products, CO₂ hydrogenation is usually divided into *direct* and *indirect* 7 *hydrogenation*. Direct CO_2 hydrogenation mostly synthesizes C_1 products including CO, methane, 8 methanol and formic acid [18,35]. Since direct CO₂ hydrogenation to C₂₊ hydrocarbons (HCs) and 9 oxygenates (e.g. dimethyl ether, olefins, liquid fuels and higher alcohols) is more kinetically challenging due to the high C–C coupling barrier, CO₂ hydrogenation to C₂₊ compounds is mainly 10 performed through modified Fischer-Tropsch synthesis (FTS) or methanol-mediated process 11 [18,33]. The modified CO₂-FTS combines CO₂ reduction to CO/syngas through the reverse water 12 gas shift (RWGS) reaction and CO hydrogenation to C₂₊ products via FTS. The methanol-mediated 13 route consists of CO₂ hydrogenation to methanol followed by methanol dehydration or coupling to 14 C₂₊ compounds [18]. 15

16 2.2.3. Carboxylation


The carboxylation process consists of attaching functional CO₂ molecule to another reactant for the production of organic carbonates (ROC(O)OR), ureas (RRNCONRR), carbamates ($R_1R_2NCOOR_3$) and polymers (the latter also called polymerization). Another form of carboxylation is the insertion of CO₂ into C–H bond of olefins, aromatics or alkanes for the synthesis of carboxylic acids such as acetic acid and toluic acid [13,36].

22 2.2.4. Mineralisation

CO₂ mineralisation or carbonation refers to as CO₂ reaction with chemical components containing alkaline earth oxides (e.g. CaO and MgO) to produce corresponding inorganic carbonates (calcium and magnesium carbonates). The process is called *indirect carbonation* when there is first extraction of Mg or Ca from minerals then carbonate precipitation in different reactors [37]. Thermodynamically, inorganic carbonates have a lower Gibbs free energy than CO₂. Therefore, in
 theory, the mineralisation process can release energy as shown in Reaction 1 wherein Me stands
 for alkali and alkaline-earth metals for example, Na, Mg and Ca [13,38].

$$CO_2 + MeO \rightarrow MeCO_3 + Heat$$
 (1)

5 2.2.5. Electrochemical reduction

7

4

Figure 4: Schematic of a typical electrochemical reduction of CO₂ [39].

CO₂ electrochemical reduction is defined as CO₂ conversion to chemicals and fuels in an 8 9 electrolytic cell using electrical energy. The electrolytic cell consists of three fundamental 10 elements: the cathode or negative electrode, electrolyte and anode or positive electrode. During 11 CO_2 electrochemical reduction (Figure 4), there is H_2O oxidation at the anode to produce O_2 and 12 electrons/protons (e⁻/H⁺) whereas, at the cathode, there is CO₂ reduction into value-added products [39]. However, in high-temperature electrolyser such as solid oxide electrolysis cells (SOEC), there 13 is CO₂ electrolysis or CO₂/H₂O co-electrolysis at the cathode for CO or syngas synthesis and 14 oxygen ions (O^{2-}). O^{2-} ions are transported to the anode through the electrolyte, where they combine 15 and generate O_2 [40]. 16

17 2.2.6. Photochemical reduction

Photochemical reduction aims to mimic natural photosynthesis. Hence, CO₂ photochemical
 reduction is an artificial photosynthesis process wherein photocatalysts absorbs light for CO₂
 Page | 11

reduction into high-energy products [41]. It is important not to confuse with the photosynthetic
method which uses microorganisms for CO₂ fixation [26]. Figure 5 depicts the five steps of a typical
CO₂ photochemical reduction process: (1) Light/Photons absorption to produce electrons (e-) and
holes (h+), (2) separation of the generated holes and electrons, (3) adsorption of CO₂ on the
photocatalyst surface, (4) CO₂ and e- photoreduction and H₂O oxidation, and (5) desorption of the
formed products from the photocatalyst [42].

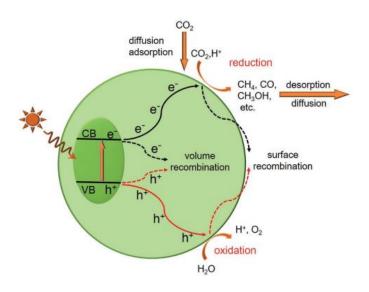


Figure 5: Steps of CO₂ photochemical reduction [42].

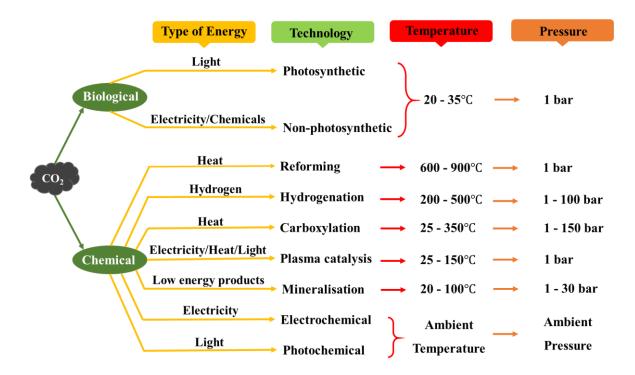
9 2.2.7. Plasma catalysis

Various forms of energy - Electrical discharges (such as plasma jet and microwave discharge), heat 10 (e.g. electrically heated furnaces) and light (from laser or UV light) - can be used to sufficiently 11 heat a gaseous substance until its electrons are stripped from their respective atoms to create a set 12 of free electrons and ions called ionized gas. The ionized gas is in the 4th state of matter known as 13 14 plasma. Since there is an equal amount of opposite charges, substances in plasma state are neutral 15 overall. In non-thermal plasma (NTP) technology, the ionized gas is activated to create highly 16 energetic electrons (energy between 1-10 eV) which can activate highly stable molecules such as 17 CO₂ [43].

However, the use of NTP alone showed low selectivity towards desired products. Lately, anincreasing interest has been devoted to combining heterogeneous catalysis with NTP, known as

plasma catalysis, which has demonstrated better process efficiency, higher adsorption on the catalyst surface, lower activation barriers and reduction in catalyst's operating temperatures [43,44]. CO₂ plasma catalysis is usually performed either with pure CO₂ (*CO₂ splitting*) or in reaction with hydrogen-containing gas such as CH₄ (*plasma reforming*), H₂ (*plasma hydrogenation*) and H₂O (*CO₂-H₂O splitting*) [43].

6 2.3. Energy required and typical operating conditions

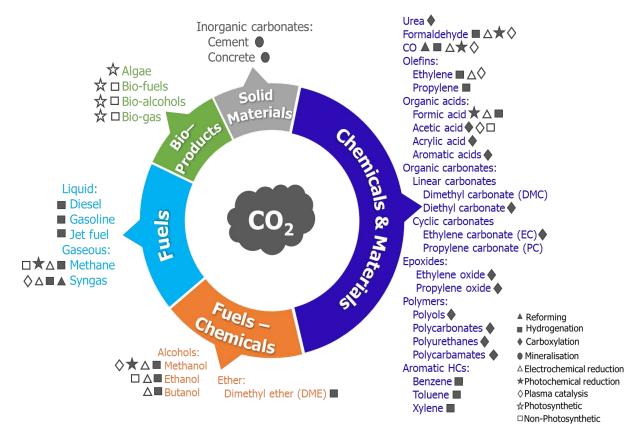

7 2.3.1. Biological transformation

8 The photosynthetic method requires light as energy whilst the non-photosynthetic CO₂ fixation 9 uses electrons as an energy source. Electrons are provided either directly from an electrode by 10 applying electricity or indirectly using chemicals such as formate (HCOO⁻) and H₂ [27,29,30]. Both 11 methods are commonly carried out at atmospheric pressure and temperatures ranging from 20 to 12 35° C (Figure 6) [45,46].

13 2.3.2. Chemical transformation

14 Photochemical and electrochemical processes are commonly performed at ambient conditions [42]. 15 Although the electrochemical process is performed at ambient temperature, SOECs used for CO₂/H₂O co-electrolysis operate at high temperatures (above 700°C) which lower the process needs 16 in electricity [47]. Plasma catalysis is usually performed at atmospheric pressure with temperatures 17 ranging from 25 to 150°C [43,48]. The reforming and hydrogenation processes are typically carried 18 19 out at 600–900°C and 200–500°C, respectively. While the reforming operates at ambient pressure, 20 the hydrogenation has a broad operating pressure range of 1-100 bar [31,33,49]. The carboxylation 21 process also has a wide pressure range of 1–150 bar with operating temperatures between 25–350°C 22 [41,50].

An explanation of these large pressure ranges could be the wide range of products from CO₂ hydrogenation and carboxylation as elaborated in Section 3. Regarding the mineralisation, operating temperatures and pressures are around 20–100°C and 1–30 bar [37]. However, CO₂ mineralisation using silicate rocks such as serpentine and olivine operates at temperatures and
pressures up to 500°C and 150 bar [37,38]. The type of energy required for each CO₂ chemical
transformation is shown in Figure 6. It is estimated that 5,630 TWh of electricity will be required
to produce 2,680 TWh (roughly 491 GT) of gaseous and liquid fuels from CO₂ in 2060 [51]. The
development of carbon-neutral energies is therefore critical to provide climate benefits for CO₂
conversion technologies.



8 Figure 6: Type of energy required and typical operating conditions for CO₂ transformation technologies.

9 **3. Products from CO₂ conversion**

10 Because CO₂ utilisation is a vast domain, not every possible product can be mentioned. Only the 11 most common products are highlighted in this section. Products from CO₂ conversion are divided 12 into five groups (Figure 7): bio-products, solid materials, fuels, chemicals & materials and fuelschemicals (i.e. components used either as fuels or chemicals). The wide range of fuels, chemicals 13 and materials from CO₂ conversion are already available in today's market and have an application 14 15 in the current industry (Table 3) including transportation (e.g. diesel, jet fuel and methanol), 16 agriculture (e.g. urea), cosmetics (e.g. algae and formic acid), construction (e.g. cement) and aviation (e.g. polycarbonates and polyurethanes). Given the predicted growth of CO₂ utilisation via 17

- 1 transformation, it is therefore sensitive to believe that CO₂-derived products could have a large
- 2 impact not only on climate change mitigation but also on many aspects of daily life and industry.

3

4

Figure 7: Products from CO₂ conversion.

-	
5	
_	
_	

 Table 3: Application and chemical reaction of products from CO₂ conversion.

Product	Technology	Chemical reaction	Application	Source
	Reforming	See Table 2	Intermediate for the synthesis of	
	Hydrogenation	$CO_2 + H_2 \rightleftharpoons CO + H_2O$	several chemicals and fuels via	
Syngas	(RWGS)		FTS.	[31,43,47]
	Plasma catalysis	$CH_4 + CO_2 \rightarrow 2CO + 2H_2$		
	Electrochemical	$\rm CO_2 \rightarrow \rm CO + 0.5O_2$		
	(SOEC)	$\mathrm{H_2O} \rightarrow \mathrm{H_2} + 0.5\mathrm{O_2}$		
			N ₂ source for fertilizers, H ₂	
Urea	Carboxylation	$CO_2 + 2NH_3 \rightarrow NH_2CONH_2 + H_2O$	source, feedstock for adhesives,	[52]
			plastics and resins.	

	Hydrogenation		Alternative transportation fuel,	
	Plasma catalysis	$CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$	additive, H2 storage, feedstock	
Methanol	Electrochemical		for DME, formaldehyde, acetic	[13,43,53]
	Photochemical	$\mathrm{CO}_2 + 6\mathrm{H}^+ + 6\mathrm{e}^- \rightarrow \mathrm{CH}_3\mathrm{OH} + \mathrm{H}_2\mathrm{O}$	acid and DMC.	
			Synthesis of bio-diesel, bio-gas,	
Algae	Photosynthetic	_	bio-fuel, bio-alcohols, bio-H ₂ ,	[27,45]
			cosmetics.	
			Fuel alternative for power plants	
DME	Hydrogenation	$CO_2 + 6H_2 \rightarrow CH_3OCH_3 + 3H_2O$	and diesel engines, intermediate	[54]
			for the synthesis of olefins,	
			gasoline and aromatics.	
	Hydrogenation	$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$	Production of compressed	
Methane	Non-	$CO_2 + 4n_2 \rightarrow Cn_4 + 2n_2O$	natural gas and syngas, feed gas	
	photosynthetic		purification in ammonia	[13,33,46]
	Electrochemical	$\mathrm{CO}_2 + 8\mathrm{H}^+ + 8\mathrm{e}^- \rightarrow \mathrm{CH}_4 + 2\mathrm{H}_2\mathrm{O}$	production.	
	Photochemical		1	
Higher HCs	Hydrogenation	$nCO + (2n+1)H_2 \rightarrow C_nH_{2n+2} + nH_2O$	Fuels for transport and	
Tinghet Ties	(FTS process)	$nCO + 2nH_2 \rightarrow C_nH_{2n} + nH_2O$	combustible engines, heating,	[55]
	(110 process)	$nCO + (2n-1) H_2 \rightarrow C_nH_{2n+1}OH +$	additives, manufacturing of	
		$(n-1)H_2O$	plastics etc.	
	Hydrogenation	$CO_2 + H_2 \rightarrow HCOOH$	Disinfection and cleaning	
Formic acid	Electrochemical		solution, raw material for	[13,18]
	Photochemical	$\rm CO_2 + 2H^+ + 2e^- \rightarrow \rm HCOOH$	perfumes and chemicals such as	
			amides, ketones and aldehydes.	
	Carboxylation		Antiseptics, dyeing, food	
Acetic acid	Plasma catalysis	$CH_4 + CO_2 \rightarrow CH_3COOH$	processing (e.g. vinegar)	[56,57]

			synthesis of ester and acetic	
			anhydride.	
Cyclic			Monomers for polycarbonates,	
carbonates		$CO_2 + \overset{O}{\triangleright} - R \xrightarrow{O} \overset{O}{\circ} \overset{O}{\circ} - R$	diluents for resins, electrolytes	
carbonates	Carboxylation		in secondary batteries.	[13,14]
Linear			Medicines, additive to gasoline,	[13,14]
carbonates		$CO_2 + 2ROH \rightarrow (RO)_2CO + H_2O$	cosmetics, solvent, pesticides,	
carbonates			polymers.	
		$CaO + CO_2 \rightarrow CaCO_3$	Dusting powder, drying agent,	
Inorganic	Mineralisation	$CaSiO_3 + CO_2 \rightarrow CaCO_3 + SiO_2$	dyeing, manufacturing of bricks	
carbonates		$MgO + CO_2 \rightarrow MgCO_3$	and construction materials, fire	[37,38]
		$Mg_2SiO_4 + 2CO_2 \rightarrow 2MgCO_3 + SiO_2$	extinguishers, detergents.	
			Plastics, medicines, automotive	
Polycarbonates		$\operatorname{CO}_2 + \overset{\circ}{\triangleright}_{R} \to \overset{R}{\longleftarrow} \overset{\circ}{\circ}_{O} \overset{\circ}{\rightarrow}_{n} + \overset{\circ}{\leftarrow} \overset{\circ}{\rightarrow} \overset{a}{\rightarrow} $	and aircrafts components,	
	Carbonulation		electronic devices such as	[58]
	Carboxylation		phones, batteries and DVDs.	
Polyurethane		$nCO_2 + mn \xrightarrow{O}_{Me} \rightarrow \xrightarrow{Ho}_{m} \xrightarrow{O}_{m} \xrightarrow{OH}_{m}$	Coatings, sealants, adhesives,	
		$nCO_2 + mn \longrightarrow [LMe] J_m J_0Me$	foams and elastomers.	

1 4. Experiment-based studies

2 **4.1. Biological transformation**

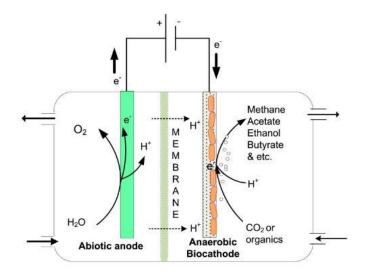
3 4.1.1. Algae production

Algae cultivation has the advantages of operating at mild conditions and using free sunlight as an energy source. However, using free light might limit its application in zones with high solar radiation or its production rate might be affected by seasonal changes, weather conditions and/or day/night cycles. Indeed, a microalgae productivity of 39 g/m².day was reported during June–July using PBR of 7.5L at 22 °C under natural light in a greenhouse whereas, only 10 g/m².day productivity was achieved in December [59]. Artificial lighting (such as light-emitting diodes and
 fluorescent tubes) showed continuous algae production but at higher costs due to additional energy
 requirement [60,61]. In addition to the light source, algae production requires rigorous control of
 several parameters including light intensity, pH and nutrients [62].

5 Overall, microalgae growth increases with the light intensity till a certain intensity threshold above 6 which the productivity decreases due to photoinhibition [63-65]. The technical challenge is to 7 evaluate the effect of light intensity on microalgae growth and lipid content (source of biofuel 8 synthesis from algae) on a specie-by-specie basis. For instance, Chlorella sp. reached its maximum 9 growth at 8,000 lux while *Nannochloropsis* sp. keeps growing at a light intensity of 10,000 lux [63]. The lipid contents of some species such as Chlorella sp. and Nannochloropsis sp. decrease 10 with a rise in light intensity [63] whereas, higher or no effect on lipid contents was observed for 11 12 other species including *Ettlia* sp., *Scenedesmus* sp. and *Desmodesmus* sp. [64,66,67].

In many studies, pH was kept between 6.5–10.5 by regulating CO₂ concentration or using acidic 13 14 solutions [64,66–70]. The effect of pH on microalgae growth also depends on the microalgae strain. 15 *N. salina* optimum growth rates were observed at pH around 8 [68] while high *Ettlia* sp. 16 productivities were achieved at pH of 6.5 [64]. Deficiency in nutrients (N₂ or P) can lower algae 17 productivity by up to 32% [71]. Although effective nutrients supply can increase algae growth by 18 up to 150% [71], the cost for nutrients raises additional concerns. Simultaneous nutrient-rich 19 wastewater treatment and microalgae cultivation was recently investigated to provide a more 20 sustainable option [72,73]. Nevertheless, CO₂ loss and/or microalgae adaptation to higher N₂ 21 loading is still an open challenge.

22 4.1.2. Non-photosynthetic CO₂ fixation


Non-photosynthetic CO₂ fixation has the advantages of operating at mild conditions and securing
a large range of bio-products. So far, seven biological pathways have been proposed for CO₂
fixation including the reductive pentose phosphate (Calvin-Benson-Bassham), citric or
tricarboxylic acid (Arnon-Buchanan), Acetyl-CoA (Wood–Ljungdahl), 3-hydroxypropionate

1 (Fuchs-Holo), 3-hydroxypropionate/4-hydroxybutyrate, dicarboxylate/4-hydroxybutyrate and glycine pathways [24,74]. Highest product yields and energy efficiency are commonly observed 2 for CO_2 fixation pathways which need low ATP for occurring bio-reactions [24]. This may explain 3 4 why most studies focused on CO₂ fixation via the Wood–Ljungdahl (WL) pathway (consumes less 5 than 1 ATP molecule per pyruvate) using acetogenic and methanogenic microorganisms under anaerobic conditions [46,75-80]. The main products for methanogens and acetogens are 6 7 respectively methane and acetate. Other chemicals such as ethanol, formate, butyrate, butanol and 8 2,3-butanediol were also reported [46,75–77,81].

Using H₂ as an electron donor for anaerobic CO₂ fixation, the key controlling parameters are 9 10 temperature, pH, H_2 partial pressure and hydraulic retention time [75,82]. Increasing the retention time increased both CO₂ conversion and product yield [46,76,77] while high H₂ pressure lowered 11 methane production [46]. Leu et al. [75] observed that CH₄ production increased till up to 21 12 13 µmol/ml when pH and temperature increased until a certain value (respectively 8 and 40°C) above 14 which CH₄ production starts decreasing due to inhibition of methanogen activity. Some studies 15 investigated inorganic compounds (Na₂S, Na₂S₂O₃ and NaNO₂) as electron donors under aerobic [83] and anaerobic [84] conditions. Under both conditions, Na₂S and Na₂S₂O₃ showed higher CO₂ 16 fixation efficiency than NaNO₂ as they released a higher amount of energy during oxidation. 17

The use of electricity has been commonly studied via abiotic anode configuration under anaerobic 18 19 conditions (Figure 8) [78-80]. The mechanism through which electrons are provided from the 20 electrode by applying electricity is yet to be clarified. Some studies suggested that microorganisms can directly accept electrons from electrode [85,86] whilst others argued that there is first H₂ 21 22 formation which acts as intermediary electron carrier since operating potentials are more negative 23 than H_2 evolution potential [78,87]. Different cathode materials have been investigated to enhance the current density thus CO_2 reduction rate including Ni-nanoparticle coated graphite (-1.7 A/m²) 24 [88], carbon-felt (-5 A/m²) [87,89], Ni-nanowire coated graphite (-8.9 A/m²) [88], gas diffusion 25 electrode (-11 A/m²) [90] and multiwalled carbon nanotube (-200 A/m²) [91]. These studies 26 Page | 19

- 1 reported a Faraday efficiency (FE) between 70-99% for acetate and methane whereas, other
- 2 products such as formate, ethanol and isopropanol only achieved FE between 4-22% [87,89–91].

3

Figure 8: Abiotic anode configuration for microbial CO₂ reduction [78].

5 **4.2.** Chemical transformation

6 4.2.1. Reforming

7 The reforming process has the advantage of turning two greenhouse gases (CO₂ and CH₄) into 8 valuable compounds. However, coke formation leading to rapid catalyst deactivation is still of great 9 concerns for its commercial application. A comparison of noble metals (Rh, Ru, Pd, Pt and Ir), Ni 10 and Co-based catalysts over Al₂O₃ support for DRM at 800°C showed that Ni and Co achieved 11 maximum CO₂ conversions of 77.1% and 66.0%, respectively with a coke deposition between 24.0-12 49.4 mg/g_{catalyst}. On the other hand, noble metals showed almost no coke formation due to their efficient dispersion on Al₂O₃ support with up to 64.4% CO₂ conversion [92]. Nevertheless, noble 13 metals are limited in use due to their low availability and high costs [93]. The morphology and 14 nature of supports also have an impact on Ni catalyst stability. An analysis of different supports at 15 °C 400 revealed following classification 16 the of activity performance: 17 Ni/SiO₂ < Ni/Al₂O₃ < Ni/MgO < Ni/TiO₂ < Ni/Siral10 < Ni/PuralMG30 < Ni/ZrO₂ < Ni/La₂O₃ - ZrO₂ [94]. Ni/La₂O₃-ZrO₂ achieved 180 hours of stability due to stronger Ni interaction with mesoporous 18

La₂O₃-ZrO₂ [94]. Ni-Mo/MgO nanocatalyst recently achieved the highest stability of 850 hours
 with no coke formation at 800°C due to its very low particle size of 2.9 nm [95].

A comparison between BRM and DRM using Co-Pt/Al₂O₃ catalyst at temperatures between 300-800 °C indicated that due to H₂O presence, BRM has lower operating temperatures and coke deposition than DRM. Furthermore, BRM achieved H₂/CO of 1.3 while H₂/CO of 0.84 was observed for DRM [96]. Li et al. [97] compared Ni/ZrO₂ and LA-NiO/ZrO₂ catalysts for BRM at 850 °C. LA-NiO/ZrO₂ exhibited higher stability and activity (92% CO₂ conversion and 84-95% selectivity towards CO and H₂) than Ni/ZrO₂ due to enlarged oxygen vacancies and intensified Nisupport interaction.

10 4.2.2. Hydrogenation

11 CO_2 hydrogenation has the advantage of converting CO_2 to a wide range of fuels and chemicals. 12 Another challenge for the hydrogenation process is to identify the catalysts which promote product 13 selectivity and how their performance can be enhanced to achieve the desired product selectivity 14 and CO_2 conversion. An analysis of the recent progress for the most common products is presented 15 below.

16

CO via RWGS reaction

The thermodynamic analysis shows that RWGS is favoured in excess H₂ and at high temperatures 17 18 (around 500-700°C) due to its endothermic nature [98,99]. Hence, improving catalyst activity and 19 CO selectivity at low temperatures is a key challenge for RWGS. At temperatures below 400°C, 20 RWGS competes with exothermic reactions (methane synthesis and WGS reactions) since they are 21 more prominent under these conditions [98–101]. Therefore, appropriate catalysts should also 22 promote RWGS activity with little to no CH₄ selectivity. Fe and Cu-based have been widely studied for RWGS due to their good absorption of intermediates and sintering tolerance. However, Cu 23 catalysts were found more adequate for low operating temperature [99]. Formate dissociation 24 mechanism was reported as the key route for CO formation mechanism over Cu/Al₂O₃ [102]. A 25 recent study achieved 100% CO selectivity with 20% CO₂ conversion using Cu nanoparticles over 26

CeO₂ support at 300°C and 1 bar [103]. Noble metals (e.g. Pt/La-ZrO₂ [98] and Au/TiO₂ [104]), metal alloys (e.g. Fe-Cu/Al₂O₃ [99] and Pd-In/SiO₂ [105]) and metal-oxides (e.g. Ni-FeO_x/ZrO₂ [106] and Fe-oxide nanoparticles [107]) were also investigated. The noble metals were reported at temperatures between 150 – 250°C while the other catalysts operated at 400-750°C. All catalysts achieved 90-100% CO selectivity with 15-60% CO₂ conversion. Nevertheless, the catalyst stability is reported for less than 25 hours which might mask the unstable nature of catalysts.

8 Methane synthesis is favoured at temperatures below 350°C (exothermic reaction) and can achieve 9 99% CH₄ selectivity using adequate catalysts [33]. Some studies have explored methane synthesis 10 at temperatures as low as 100-200°C to reduce heat requirement of the process. However, active 11 catalysts that can achieve acceptable CH_4 selectivity is still an open challenge [108]. Au, Mo, Pt and Pd-based catalysts were reported as less reactive since methanation reaction competes with CO 12 13 and CH₃OH synthesis while Ru, Rh and Ni-based catalysts produce nearly only CH₄ [33,109]. 14 Although Ni catalysts have lower activity than Ru and Rh catalysts and are easily deactivated due 15 to sintering, Ni-subcarbonyl formation, interaction with CO intermediates and coke deposition, 16 they are preferred due to their easy availability and low cost [109,110]. Various supports have been investigated to overcome these limitations including Ni/Al₂O₃ [110,111], Ni/ZrO₂-Al₂O₃ [112], 17 Ni/Al₂O₃-HT [113] and Ni/γ-Al₂O₃-ZrO₂-TiO₂-CeO₂ [114] with 80-82.5% CO₂ conversion and 84– 18 19 99.5% CH₄ selectivity at 220-350°C.

20 > Methanol

Considerable progress has been made for methanol synthesis using Cu catalysts. Current industrial processes reach 70% methanol selectivity using H₂/CO₂=3 and Cu/ZnO/Al₂O₃, CuO/ZnO/Ga₂O₃ and CuO/ZnO/ZrO₂ at 200-300°C and 70-100 bar [33,115]. In addition to low CO₂ conversion, high operating pressures are still a barrier for its application in industry. Some recent studies were reported at 30–50 bar with 5-20% CO₂ conversion. Cu/ZnO_x nanoparticles in MOFs showed strong structural interaction resulting in 100% methanol selectivity with high catalyst stability for more

than 100 hours at 250 °C and 40 bar [116]. Cu-ZnO-Al₂O₃ was mixed with hydrotalcite
(60wt.%CZA-40wt.%HT) and achieved 73.4% methanol selectivity with 6% CO₂ conversion at
250°C and 30 bar [117]. Other promising catalysts include In₂O₃/ZrO₂ and Pd/In₂O₃ [118,119].
In₂O₃/ZrO₂ reached 100% methanol selectivity and 5.2% CO₂ conversion with catalyst stability of
1000 hours [118] whereas, Pd/In₂O₃ exhibited enhanced CO₂ adsorption due to easy creation of
oxygen vacancies leading to 20% CO₂ conversion and 70% methanol selectivity at 300°C and 50
bar [119].

8

Dimethyl ether (DME)

9 For DME synthesis, adequate catalysts must simultaneously promote CH₃OH synthesis and 10 dehydration of CH₃OH to DME. The process mostly suffers from excessive water production via RWGS which lowers methanol synthesis rate hence DME yield [18,120]. DME selectivity varies 11 12 between 19-52% with up to 20% CO₂ conversion using $H_2/CO_2=3-5$ and Cu-hybrid catalysts at 250-300°C and 30-50 bar [54,120]. Due to their acid sites and acid strength, using zeolites (HZSM-13 14 5) as promoter improved DME selectivity (up to 77%) [120]. A drastic increase in pressure to 360 15 bar and H₂/CO₂=10 achieved 89% DME selectivity with 97% CO₂ conversion using CZA/HZSM-5 hybrid catalyst at 300°C [121]. 16

17

Olefins and liquid HCs

The methanol-medicated route has been mostly studied using Cu-Zn catalysts. Although significant advances have been made in catalysts development, the process usually synthesizes light alkanes which are subsequently converted into olefins [122]. By creating surface oxygen vacancies and acid sites, bifunctional catalysts composed of metal oxide and zeolites (e.g. ZnGa₂O₄/SAPO-34 [123], ZnZrO/SAPO-34 [124] and In₂O₃/HZSM-5 [125]) achieved 80-90% and 78% selectivity towards C₂-C₄ olefins and gasoline, respectively at 330-380°C and 20-30 bar.

Co and Fe-based catalysts are the most used catalysts for FTS. The FTS process is changed into methane synthesis when using Co-based catalysts and feed gas with high CO_2 content whilst Fe catalysts promote WGS activity thus the synthesis of light olefins and C_{5+} HCs with no excessive CH₄ [126–129]. Some studies explored metal alloys such as Fe-Mn [130] and Mn-Zr-Co [131] at 360°C and 240°C, respectively. Fe-Mn achieved 59.2% and 20.5% selectivity towards C₂-C₄ olefins and C₅₊ HCs respectively whereas, Mn-Zr-Co reached 80% selectivity to liquid fuels. The importance of surface oxygen vacancies and acid sites through bifunctional catalysts was also demonstrated by Wei et al. [132]. The authors reported 78% gasoline selectivity using Na-Fe₃O₄/HZSM-5 nanocatalyst and H₂/CO₂ ratio of 1/1 at 320°C and 30 bar.

7 4.2.3. Carboxylation

8 Carboxylation technology also offers a wide range of accessible products. The most common
9 products include urea, carboxylic acids, polymers and inorganic carbonates. Their recent progress
10 and challenges are discussed below.

11 > Urea

12 Urea represents the largest use of CO_2 (Table 1) and is commercially produced at roughly 150– 210 °C and 150–250 bar with up to 90% CO₂ conversion [10,133,134]. Electron-attaching 13 14 techniques have been recently investigated for urea synthesis at mild conditions. Xiang et al. [133] found that under negative corona discharge, NH₃ radicals and anions reduce CO₂ to urea at 1 bar 15 and 20 °C with 82% CO₂ conversion and 51% urea selectivity. Chen et al. [134] studied 16 electrochemical urea synthesis by coupling CO₂ and N₂ in H₂O using PdCu/TiO electrocatalyst in 17 an H-cell at ambient conditions. The authors reported 8.92% FE at -0.4V. Although these studies 18 19 might overcome the harsh operating conditions of the conventional urea synthesis process, the 20 energy efficiency associated with electron-coupling methods is yet to be clarified.

21

> Carboxylic acids

Various transition-metal complexes (such as (Triphos)MoH₄PPh₃ and Ru(CO)₄PPh₃) and metal alloys (e.g. Pd-Rh/TiO₂, V₂O₅–PdCl₂/Al₂O₃ and Co–Cu) have been studied for the synthesis of acetic acid and acrylic acid [57,135]. However, no satisfactory results have been made for industrial practices. Aromatic carboxylic acids have been successfully produced using Lewis acids as catalysts [136,137]. 88% benzoic acid yield was reported for the first time by Olah et al. [136] at

70°C and 50 bar using AlCl₃/Al. Two reaction mechanisms were suggested via formation of CO₂(AlCl₃)n complexes using AlCl₃/Al [136] and synthesis of CO₂-AlCl₃-R₄Si using Si/Al-based
catalysts [137]. The incubation technique (mixing CO₂ and Lewis acid for 1 hour before adding
toluene) showed that various Lewis acids including AlCl₃, MoCl₅ and TiCl₄ promote toluic acid
with up to 95% yield at 69 bar and 80°C [138].

6 > Polymers

7 Inoue et al. [139] reported the first study for polypropylene carbonate (PPC) synthesis with very low selectivity using ZnEt₂/H₂O catalyst at 25°C. Since then, considerable progress has been made 8 9 using metals complexes for instance, Zn-Co-dmc [140], ZnGA [141], SalenCo(III) complexes 10 [142,143] and dinuclear Zn [144]. Up to 90% PPC and Polycyclohexene carbonate selectivity were achieved at roughly 60-120°C with some amounts of cyclic carbonates as by-products. Due to its 11 high co-polymerisation activity, Zn-Co-dmc is preferred for the synthesis of CO₂-polyols which 12 further react with isocyanate for polyurethane production [58,145,146]. In addition to Zn-Co-dmc, 13 14 using starters as initiation-transfer agents promote a higher catalytic activity with better carbonate 15 unit (CU) content [147]. At 80°C and 40 bar, 1,3,5-benzenetricarboxylic acid [147], oligomeric alcohol [145] and dicarboxylic acid [146] starters achieved 54%, 62.5% and 75% CU content, 16 respectively. 17

18


Linear and cyclic carbonates

19 Due to its equilibrium nature, DMC synthesis mostly suffers from low yield [148]. Greish et al. 20 [149] explored SnO_2/Al_2O_3 catalyst and observed 17.8% DMC yield at 130°C and 16 bar. An increase in pressure to 120 bar achieved 44% DMC yield at 110°C using Fe-Zr catalyst [150]. 21 Depending on whether CO_2 or methanol is first adsorbed on the catalyst, the reaction mechanism 22 is either via the synthesis of carboxyl/carbonyl groups or methoxy compounds [149]. Synthesis of 23 24 cyclic carbonates have been investigated using lanthanide oxychlorides (LnOCl) [151], metal complexes [152,153] and organic bases [154,155] as catalysts reaching 70% propylene carbonate 25 selectivity at 50-140°C and 10-100 bar. Though organic base catalysts are easily accessible, higher 26

activity was observed for metal complex catalysts as they provided higher surface area [150]. Ionic
liquid (IL) were also studied for linear and cyclic carbonate production. Results indicated that
combining ILs with a super base or Lewis basic anion enhanced the catalyst activity hence
improved CO₂ conversion with up to 76% propylene carbonate yield [156,157].

5 4.2.4. Mineralisation

The main challenge for CO₂ mineralisation is to enhance reaction kinetics as the process is naturally
very slow [37,38]. Kinetic tests during lignite fly ash production and steel slag carbonation
suggested that carbonation rate increased with temperature [158,159]. Furthermore, the highest Ca
conversion is reached at the highest temperature of 75°C (Figure 9) using 10-30vol.% CO₂ [158].

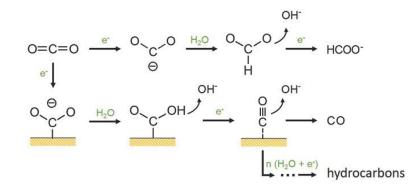
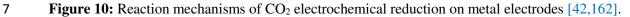


Figure 9: Dependence of CO₂ carbonation on temperature [158].


12 Therefore, energy input is required to speed up the process. Since the reaction is exothermic 13 (Reaction 2), heat integration can be performed to improve the process efficiency [13,38]. Ebrahimi 14 et al. [160] investigated carbonated fly ash production from CO₂ mineralisation at 30-70°C and 15 reported 83.5% carbonation efficiency with CO₂ utilisation of 73 kg_{CO2-eq}/t_{cement} and 42 kg_{CO2}. 16 $_{eq}$ /GWh. Another study performed CO₂ mineralisation using EAFRS (mostly CaO and SiO₂) and 17 achieved 86% carbonation efficiency with CO₂ utilisation of 0.38 t_{CO2-eq}/t_{EAFRS} [161].

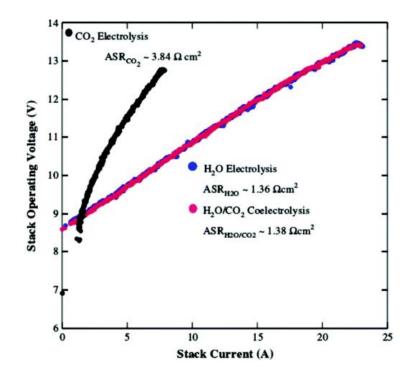
18 4.2.5. Electrochemical reduction

19 Two possible reactions mechanisms were proposed for CO_2 electrochemical reduction on metal 20 electrodes (Figure 10). CO_2^{-} formation is followed by either HCOO^{*} or *COOH via protonation of carbon atom or oxygen atom. HCOO* is then reduced to HCOO⁻ whereas, *COOH is converted to
CO which is why CO₂ electrochemical reduction mostly leads to HCOO⁻/formic acid and CO
[42,162]. CO has been successfully synthesized with FE up to 90% using noble metals such as Pd,
Au and Ag at the moderate potential of -0.6V. However, their high costs impede large-scale
applications [163].

8 > Formic acid

9 Due to its non-toxicity and low cost, Sn is the most interesting metal cathode for formic acid 10 synthesis [164, 165]. However, excess potential is needed to achieve high FE (>70%). Using Sn electrode, different electrolytes (KHSO₄, KCl, KHCO₃, and KOH) were tested at 20°C. It was 11 observed that high Cl⁻ nucleophility in the electrolyte lowered the overpotential hence KCl 12 achieved the highest FE of 69.5% at 1.4V [165]. Gas diffusion electrode (GDE) combined with Sn 13 electrocatalyst was studied by Wang et al. [166] using KHCO₃ electrolyte. The authors reported 14 that the total area of gas-liquid-solid phase interface increased with Nafion and Sn fractions. 15 Although FE of 73% was achieved at -1.8V and 13.45 mA/cm², the process depicted serious liquid 16 flooding issues. To solve this problem, an anion exchange membrane and imidazole nanoparticle 17 Sn catalyst was added at the cathode and for the first time pure formic acid (94% FE) was obtained 18 at 3.5V and 140 mA/cm² [167]. Other metals, such as $Pd_xPt_{(100-x)}/C$ nanoparticles [168] and PbO₂ 19 electrode with ionic liquid catholyte [169] were also studied and achieved FE above 88% at 40.8 20 and 5 mA/cm², respectively. 21

22 ➤ Above 2e⁻/2H⁺ products


1 Limited catalytic materials and/or electrodes have been able to further reduce CO (Figure 10) to above 2e⁻/2H⁺ transfer, such as methanol (6e⁻/6H⁺), methane (8e⁻/8H⁺) and ethylene (12e⁻/12H⁺). 2 Due to their high binding energy towards the CO intermediate, only Cu and Co were successfully 3 4 reported for the synthesis of above $2e^{7}/2H^{+}$ products [170–172]. However, these products usually 5 have low FE or require high cell voltage to achieve adequate current densities or CO₂ conversion [22,162]. For instance, at -1.44V and 5 mA/cm², polycrystalline Cu electrocatalyst achieved FE of 6 7 33.3%, 25.5% and 5.7% for methane, ethylene and ethanol, respectively [162]. At -1.2V, 30-40 mA/cm² and using Co protoporphyrin-coated PG electrode, a methane FE of 2.5% was obtained 8 with evidence of methanol but below the detection limit of gas chromatography measurements 9 10 [172]. Although current accumulative FE to above $2e^{-1}/2H^{+}$ products has achieved up to 80% at 275 mA/cm² using advanced electrode materials and state-of-the-art technology cell configuration [22], 11 12 high FE for single compounds is yet to be achieved. A recent study demonstrated the perspective for CO₂ electrochemical reduction to methanol by reporting for the first time 77.6% methanol FE 13 at 41.5 mA/cm² and -2.1V using $Cu_{2-x}Se(y)$ nanoparticles [173]. 14

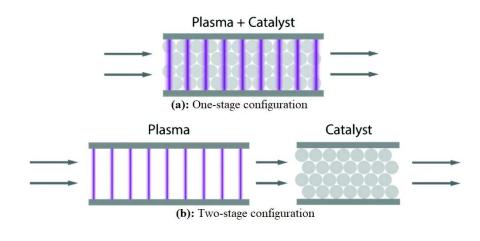
15

Syngas via SOEC

16 The main challenges for SOEC are low CO₂ conversion/activation and stack degradation. Since the 17 process operates at high temperatures, RWGS also occurs making CO₂/H₂O co-electrolysis reaction 18 pathways difficult to elucidate [47]. Ni-YSZ/YSZ/LSM-YSZ materials have been commonly 19 studied as cell configuration (cathode/electrolyte/anode) at 800-850°C and 1 bar [174–177]. As the 20 results indicated similar specific resistances between CO₂/H₂O co-electrolysis and H₂O electrolysis (Figure 11), it is widely believed that the performance for CO₂/H₂O co-electrolysis and H₂O co-21 22 electrolysis are comparable [47]. Furthermore, Stoots et al. [174] concluded that CO₂ is mainly reduced via RWGS but not through electrolysis. Nevertheless, some studies reported that CO was 23 synthesized through both CO₂ electrolysis and RWGS [175,178]. It was also observed that for 0.25 24 25 A/cm² current density, cell degradation mostly occurred at Ni-YSZ electrode whilst above 1.0 A/cm², both LSM-YSZ and Ni-YSZ electrodes contributed to the total cell degradation due to 26

[174–177]. To improve Ni-YSZ/YSZ/LSM-YSZ limitations (such as Ni oxidation to NiO and
 LSM-YSZ delamination), other SOEC material configurations were explored including Ni YSZ/ScSZ/LSM-ScSZ [178], Ni-SDC-YSZ/YSZ/LSM-SDC-YSZ [179], Ni-YSZ/YSZ/LSCF
 [180] and Ni-YSZ/ScSZ/LSCF-GDC [181]. The highest CO₂ conversion of 76% was achieved
 using Ni-YSZ/YSZ/LSCF and 40%CO₂/40%H₂O/20%H₂ feed gas at 1.0 A/cm² and 800°C [180].

6


Figure 11: Polarization characterization of CO₂ electrolysis, H₂O electrolysis and CO₂/ H₂O co electrolysis [174].

9 4.2.6. Photochemical reduction

10 Several photocatalysts can be used for CO₂ photochemical reduction including In₂O₃, ZnS, Ga₂O₃ and TiO₂. TiO₂ is the most commonly used due to its ease to prepare, good stability, low cost and 11 12 low toxicity [41,42,182]. Studies have shown that TiO_2 can be enhanced by modifying its surface or doping with novel metals [183,184]. For instance, Zhang et al. [183] studied a series of Pt loaded 13 TiO₂ at 50°C with CO₂/H₂O ratio of 5 and observed no activity for TiO₂ alone while 0.15Pt/TiO₂ 14 15 led to CH₄ yield of 0.34 µmol/h.g_{cat}. The process still suffers from low selectivity/yield due to low photon absorption and slow reactions. Some studies focused on nanocomposites to enhance CO₂ 16 17 activation and facilitate product synthesis. Different Ag concentrations on TiO₂ nanocomposite were studied by Zhao et al. [185] at 20°C using 97.2%CO₂/2.2%H₂O/0.6%CH₃OH. Results showed
that 2% Ag concentration synthesizes CO and CH₄ with production rates of 87 and 10 µmol/h.g_{cat},
respectively. The CH₄ formation rate of 100.22 ppm/h.cm² was achieved by Li et al. [186] using Pt
loaded on MgO/TiO₂ nanotubes as photocatalyst at 25°C. Cheng et al. [184] achieved a methanol
yield of 454.6 µmol/h.g_{cat}, using porous TiO₂ film in an alkaline environment at 25°C. By
combining reduced graphene oxide with TiO₂ nanoparticles, Olowoyo et al. [187] observed an
upward shift of TiO₂ bands by 0.2eV and achieved the highest methanol rate of 2.33 mmol/h.g.

8 4.2.7. Plasma catalysis

9 Plasma catalysis is typically carried out in two configurations as shown in Figure 12. One-stage 10 (mostly for dielectric barrier discharge (DBD)) and two-stage (using gliding arc (GA) and microwave (MW) discharges) [43]. Combination of plasma and catalyst has shown both physical 11 and chemical advantages on the system formed (Section 2.2.7). The catalyst packing method also 12 affects the chemical and physical interactions between plasma and catalyst. Tu and Whitehead 13 [188] observed that fully packing Ni/γ-Al₂O₃ in DBD significantly reduced the discharge volume 14 which inhibited the formation of filamentary discharge. Whereas, partial catalyst packing showed 15 16 large void fraction in the discharge gap with strong filamentary microdischarge which considerably improved the chemical and physical interactions between plasma and Ni/γ -Al₂O₃. 17

18

Figure 12: Schematic of plasma catalysis configurations [43].

20 Most studies used DBD combined with metal-based catalysts (Ni, Cu, Au and Pt) since DBD is the

21 most mature plasma technology and operates at low temperatures and atmospheric pressure Page | 30

1 [22,35,56,188–192]. The process suffers from low CO₂ conversion, energy efficiency and product 2 selectivity/yield. However, CO and syngas synthesis achieved 40-70% CO₂ conversion and 80-3 90% product selectivity with a low energy efficiency of 0.14-3.7 mmol/kJ using 12% wt Ni/ γ -Al₂O₃ 4 [193] and NiFe₂O₄/SiO₂ [190] catalysts. 40.2% acetic acid, 11% methanol and 7.5% ethanol 5 selectivities were reported during plasma reforming using Cu/γ -Al₂O₃ [56]. Zhang et al [192] 6 obtained 32.1% ethane selectivity with 7.5% CO₂ conversion via plasma reforming with zeolite 7 HY. Another study achieved 53.7% methanol selectivity, 21.2% CO₂ conversion and 0.1 mmol/kJ 8 energy efficiency using Cu/γ -Al₂O₃ for plasma hydrogenation at ambient conditions [35]. On the 9 other hand, GA and MW discharges (sometimes referred to as warm plasma) have shown 40-50% 10 energy efficiency. However, high efficiencies were observed for low CO_2 conversion (below 20%) and in some cases where CO₂ conversion reached 80-83%, the energy efficiency dropped to 5% or 11 12 less [43]. This is mostly due to high power discharges which negatively affect energy efficiency but enhance CO₂ conversion by improving the electric field and electron density [194]. 13

14 5. Modelling and simulation-based studies

The aforementioned experimental studies provide a good understanding of reaction mechanisms, catalyst activity and general process performance. However, to achieve commercial implementation, further insights into the effects of operating conditions, component properties and how different components (reactors, heat exchangers, pumps etc.) interact and influence the process performance are required. In this respect, modelling and simulation are irreplaceable methods for process design and optimisation enabling scale-up from laboratory to commercialisation.

21 5.1. Categories of process modelling

Modelling of any process depends on the aim of the specific study. Therefore, there are several ways to carry out a modelling and simulation study (Figure 13). The basic distinction is between mechanistic and empirical models. Mechanistic models are based on physics laws and first principles. Hence, they require prior knowledge of the process. Mechanistic models are used to explain the physical meaning of reactions and the reason why a process behaves the way it does.
Empirical or data-driven modelling does not require full knowledge of physics behind the process.
However, considerable experimental data are needed for model calibration and it can only describe
the correlation between data. Combination of both types is known as semi-empirical modelling
[195,196].

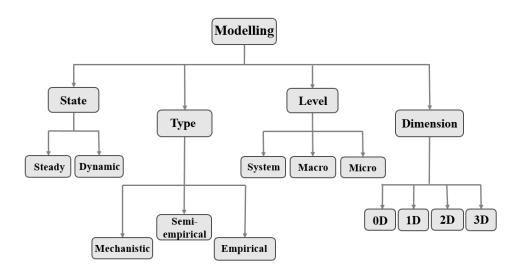


Figure 13: Categories of process models [195].

8 Other ways to differentiate models is by state, level and dimension. Steady-state models are usually 9 developed in early stages of modelling for initial process analysis and performance prediction 10 whereas, dynamic modelling is used to understand the actual operations such as control strategies and safety considerations in transient operations. At the system level, the model is a simple 11 12 thermodynamic system whereas, macro and microscale modelling is used for process optimisation 13 at component and microstructure levels, respectively. Dimensional modelling varies from 0D to 14 3D wherein each number represents the number of space variables considered. In general, the 15 model complexity increases with the number of dimensions [195]. Based on this classification 16 criteria, some recent modelling and simulation studies carried out for CO₂ transformation 17 technologies are elaborated in Table 4. Unless specified in the description, the models are systemlevel and 0D. 18

1 5.2. Current status of modelling CO₂ transformation technologies

2 Except for algae production, most studies have reported mechanistic and steady-state models. 3 Though several modelling/simulation studies on microbial fuel and electrolysis cells are available in the literature [197], the first "model-for-learning" on non-photosynthetic CO₂ fixation in abiotic 4 5 anode cell was recently proposed by Samarakoon et al. [198] in 2019. Regarding transformation technologies that lead to several products such as carboxylation, hydrogenation and 6 7 electrochemical reduction, it was found that studies mostly focused on urea and DMC, methanol and CO/syngas, respectively. For liquid fuel synthesis from CO₂, steady-state models of integrated 8 9 SOEC-FTS and RWGS-FTS systems have been reported based on Anderson-Schulz-Flory (ASF) equation and Langmuir-Hinshelwood-Hougen-Watson (LHHW) adsorption theory for FTS 10 product distribution and reaction kinetics, respectively [55,199–205]. 11

12 The popularity of steady-state models could translate the early development stage of most CO_2 transformation technologies which are still not commercial. This would suggest algae production 13 [206–211], CO₂ hydrogenation to methanol [212] and SOEC [213] are promising CO₂ 14 15 transformation technologies since they are being optimized in dynamic mode and take into consideration operational disturbances. Nevertheless, very few of these models were validated in 16 17 dynamic mode [207,211,212]. On the other hand, very limited studies were found for technologies 18 such as mineralisation and carboxylation to urea which are quite mature processes showing that 19 dynamic modelling does not necessarily illustrate the technology maturity.

20 5.3. Process analysis and process optimisation

During process analysis, one parameter is varied and its effects on process performance are assessed while the other parameters remain unchanged. On the other hand, process optimisation consists of analysing the effect of a set of operating parameters on the process performance [214]. It was observed from Table 4 that very limited studies carried out process optimisation [208,212,213,215]. Most studies performed process analysis at system or component level by varying operating parameters, for example, temperature, pressure, flowrate and feed composition to evaluate their effects on the conversion and production efficiency. Furthermore, In-depth process
analysis of microstructural properties was only reported for reforming [216,217] and SOEC
[218,219] technologies probably due to the complexity of micro-modelling. Although considerable
progress has been reported with individual parameter analysis, the net contribution to improving
the underlying technology is still difficult to assess. Further studies on process optimisation are
required to meaningfully evaluate the interaction among different operating parameters which
cannot be obtained with the "one parameter at a time" approach.

8 5.4. Process intensification

9 Process intensification aims at reducing the equipment size of processing plants without compromising their production rates. This can be realised through improved and targeted mixing, 10 11 heat and mass transfer rates resulting in enhanced product selectivity and better energy efficiency 12 [220]. Some greater levels of intensification can be achieved by combining two or more conversion processes and/or combining the synergies of equipment and processes [221]. Therefore, if 13 successfully implemented, intensified systems present the potential to lower capital costs as well 14 15 as improve process safety, response times and in some cases be more environment-friendly 16 [220,221]. Very limited studies on process intensification of CO₂ transformation technologies were 17 found in the open literature. Some examples include CO₂ hydrogenation to methanol [53,222] and 18 DMC synthesis via carboxylation [223,224] (modelling and simulation details are provided in 19 Table 4).

To illustrate, the traditional CO₂ hydrogenation is a multi-stage process wherein H₂O is actively removed in-between stages to improve CO₂ conversion and product selectivity. A recent modelling study proposed a process intensification for CO₂ hydrogenation to methanol with in-situ water sorption [222]. By adding zeolite-A4 in the methanol reactor, the process operates without a distillation column for methanol recovery. Furthermore, the proposed model overcomes the severe thermodynamic limitations observed with the traditional process (Section 4.2.2) and achieved 99.98% CO₂ conversion and 97.76% methanol yield at 230°C and 50 bar. Al-Kalbani et al. [53] carried out heat integration on 1 CO₂ hydrogenation to methanol. Compared to the conventional method, the cooling and heating 2 utilities of the integrated process are reduced by 59.7% and 67.3%, respectively. These studies 3 demonstrated the potential of process intensification for CO₂ transformation technologies. However, 4 further R&D on stable catalysts, reactor design and configuration that can withstand continuous 5 operation and reaction is highly required.

6

Table 4: Examples of modelling and simulation studies for CO₂ transformation technologies.

Algae production					
Production system	Model description	Software	Simulations performed	Ref.	
Open pond	Mechanistic and steady state model based on mass balance and kinetic of an open algal pond.	gPROMS®	Effect of pond depth, CO_2 mole fraction, gas flowrate and O_2 demand on algae growth.	[225]	
Open pond	Dynamic and mechanistic model based on mass balance for gas-liquid transfer and light intensity to study algae production.	MATLAB®	 Model validation for dissolved O₂, algae biomass, pH, inorganic N₂ and carbon. Effects of O₂ demand, dilution and pond depth on algae growth. 	[206]	
PBR	Semi-empirical and dynamic modelling based on data and mass balance for prediction of algae productivity rate under varying light intensity and nutrients.	MATLAB®	Model validation in terms of algae, lipid, glucose and glycine concentration as a function of time.	[207]	
PBR	Dynamic and mechanistic modelling based on mass transfer between gaseous and liquid phases for algae growth in photo-autotrophic and photo-mixotrophic environment.	Python and IPOPT	 Dynamic model validation for algae concentration and pH. Effects of nutrients, reactor thickness and light intensity on algae growth (Python) 	[208]	

			3) Process optimization (IPOPT):	
			Variation of algae productivity	
			with recycle ratio and dilution rate.	
	A dynamic and semi-empirical model		1) Model validation in term of	
	based on kinetics was developed to	COMSOL	algae growth and ammonium	
PBR	assess microalgae growth and	Multiphysics TM	concentration.	[209]
	describe the effects of		2) Influence of pH, irradiance and	
	photorespiration and photosynthesis.		temperature on algae growth.	
	Dynamic and mechanistic model		1) Dynamic model validation for	
	based on mass balance equations and		O_2 , algae, bacteria, NO_3^- and NH_4^+	
	kinetics was used to evaluate the		concentration.	
	interaction between bacteria and algae		2) Sensitivity analysis of O ₂ mass	[211]
PBR	during culture.	MATLAB®	transfer, NO_3^- and NH_4^+	
			concentration.	
			3) Calibration using Monte Carlo	
			simulation.	
	Dynamic and mechanistic modelling		1) Model validation for NO_3^- and	
	of algae growth based on kinetics of		algae concentration, N_2 quota,	
PBR	nutrient consumption and light	Mathematica®	fluorescence and FAME yield.	[210]
	intensity.		2) Sensitivity analysis of the	
			above-mentioned parameters on	
			the system efficiency	
	Non-J	Photosynthetic		
Cell type	Model description	Software	Simulations performed	Ref.
Abiotic	Dynamic and mechanistic model		Effect of applied voltage on CH ₄	
anode cell	based on material balance equations	AQUASIM 2.1	production, methanogen growth	[198]
			rate and pH of the digester.	

	and growth rate kinetics to assess CO ₂					
	fixation by anaerobic methanogens.					
Reforming						
Reactor	Model description	Software	Simulations performed	Ref.		
Annular reactor	Mechanistic, steady state and micro model for analysis of DRM process based on reaction kinetics on Rh- based catalyst.	Not specified	 Model validation for the outlet composition and conversion rate at different temperatures. Sensitivity analysis of temperature and conversion rate. 	[216]		
Fire-steam reformer	1D, steady-state and mechanistic model for DRM process based on energy conservation and reaction kinetics.	Not specified	Effects of feed gas composition and temperature on the process conversion rate.	[226]		
Contact- bubble reactor	Mechanistic, steady state and micro modelling of DRM process based on reaction kinetics Ni-based catalysts.	GRI-Mech 3.0	 Model validation for CH₄ and CO₂ conversion at various temperature. Effect of inlet flowrate, feed gas ratio, active surface area and residence time on CH₄ and CO₂ conversion. 	[217]		
Fixed-bed reactor	A mechanistic and steady state model based on mass/energy balance and kinetics was built to investigate the	UniSim and MATLAB®	 Model validation for CO/H₂ ratio, CH₄ and CO₂ conversion (UniSim). Effect of temperature, pressure and gas space velocity on CO/H₂ ratio, CH₄ and CO₂ conversion (UniSim). 	[215]		

	non-equilibrium behaviour of DRM using Ni- based catalyst. Semi-empirical and steady state		 3) Process optimization (MATLAB[®]): Evolution of CO rate and CO₂ conversion with temperature, inert fraction and gas space velocity. 1) Model validation for CO and H₂ 	
Not specified	modelling based on experimental data and mass conservation principle of DRM process using solar energy.	Aspen Plus®	outlets and temperature. 2) Process analysis for different irradiations.	[227]
	Hy	drogenation	1	
Reactor	Model description	Software	Simulations performed	Ref.
Plug flow reactor	A mechanistic and steady state model was developed based on kinetics and mass/energy balance principle to study methanol synthesis using H ₂ from chlor-alakali.	Aspen Plus®	 Model validation for CO₂ conversion. Sensitivity analysis of temperature, pressure, CO/H₂ ratio and GSV on CO and methanol yield. 	[228]
Multi- tubular reactor	Mechanistic and steady state model of CO ₂ and CO hydrogenation to methanol based on mass/energy balance and reaction kinetics using Cu catalyst.	Aspen Plus [®]	Influence of feed gas ratio on total CO ₂ conversion and energy efficiency.	[229]
Lurgi-type reactor	 1) 1D and mechanistic modelling of methanol synthesis based on kinetics, heat transfer energy balance and continuity principles. 	Not specified	 Dynamic model validation in term of methanol production. Simultaneous and dynamic optimization of recycled CO₂ and shell temperature. 	[212]

	2) Dynamic and empirical modelling of Lurgi-type reactor using genetic			
Lurgi-type reactor	algorithm (GA). Steady state and mechanistic model based on kinetic equations to investigate methanol synthesis using H ₂ from water electrolysis. A mechanistic and steady state model based on minimization of Gibbs free	Aspen HYSYS®	 Heat integration between cold and hot streams for process intensification. Comparison of energy requirement and climate impact. Influence of H₂/CO₂ ratio, temperature and pressure on CO₂ 	[53]
Not specified	energy was built to evaluate DME synthesis.	Aspen Plus®	conversion and DME selectivity.	[230]
Fixed-bed reactor	Mechanistic and steady state modelling of methanol synthesis based on mass balance and Gibbs free energy minimization	Aspen Plus [®]	 Addition of water sorbent (zeolite-A4) in methanol reactor for process intensification. Effect of temperature, pressure, feed ratio and sorbent volume on methanol yield. Comparison between traditional and sorption-enhanced processes. 	[222]
	Electrochem	ical reduction		
Electrode material	Model description	Software	Simulations performed	Ref.
GDE	Mechanistic and steady state model based on gas transport, material	COMSOL Multiphysics™	 Model validation for voltage versus current density at different feed flowrates. 	[231]

	balance and charge transfer kinetics to		2) Effect of CO ₂ concentration,		
	study CO synthesis.		flowrate, electrode porosity and		
			channel length on cell		
			performance.		
	1) 1D, mechanistic and steady state		1) Effect of current density on		
	modelling of CO synthesis based on		species concentration and		
	mass conservation, charge transfer		polarisation losses.		
Cu and Ag	kinetics to study species transport and	COMSOL	2) Effect of pH, conductivity,	[232]	
	surface reactions.	Multiphysics TM	buffer and boundary layer		
	2) Macro model based on Ohm's law		thickness on polarisation losses.		
	and Butler-Volmer equation to assess				
	polarization losses.				
	1D, macro, mechanistic and steady	COMSOL	1) Model validation for FE of CO		
	state model based on mass balance,	Multiphysics TM	Vs voltage and voltage Vs current		
GDE	charge transfer kinetics, Ohm's law		density.	[233]	
	and charge conservation was built for		2) Analysis of electrode properties		
	CO production		on local CO ₂ concentrations and		
			CO partial current density.		
	1D, macro, mechanistic and steady		1) Effect of current density on CO ₂		
	state model based on mass/charge		conversion and utilisation		
	conservation, charge transfer kinetics,	COMSOL	efficiency.		
GDE	Butler-Volmer equation, energy and	Multiphysics TM	2) Analysis of temperature and	[234]	
	gas transport to assess flooding and		membrane thickness for water		
	dehydration issue in membrane		issue management.		
	electrode assembly cell.				
	Electrochemi	cal Reduction – S	DEC		

Cell	Model description	Software	Simulations performed	Ref.
Assembly				
Ni- YSZ/YSZ/ LSM	A macro, steady state and mechanistic SOEC model was built based on mass/energy balances for chemical equilibrium and Faraday's law for O ²⁻ flow.	UniSim	 Model validation for outlet composition and temperature. Evaluation of syngas production efficiency as a function of current density for various specific resistances. CFD, electrochemical and 	[235]
Ni- YSZ/YSZ/ LSM-YSZ	 n) 22, steady state and meenanisate model based on energy, mass and momentum conservation to study mass transfer and fluid flow between electrodes. 2) macro modelling based on Nernst potential, Ohm's law and Butler- Volmer equation to assess SOEC required voltage. 	FLUENT	 chemical model validation. 2) Influence of temperature, inlet gas composition and operating voltage on the SOEC performance. 	[236]
Ni- YSZ/YSZ/ LSM	Mechanistic and steady state model based on mass, momentum, charge and energy conservation was developed to analyse the surface electrolysis reactions.	COMSOL Multiphysics [™]	 Model validation for voltage versus current density. Effects of temperature, voltage and feed gas composition on gas distribution and adsorbed species within the electrodes. 	[237]
	2D, mechanistic, steady state and micro modelling of SOEC based on		1) Model validation for voltage versus of current density at different CO_2/H_2O ratios and temperatures.	

Ni-	energy/mass balance, fluid flow,	COMSOL	2) Sensitivity analysis of	[218]
YSZ/ScSZ/	charge and momentum conservation	Multiphysics TM	temperature, CO ₂ /H ₂ O ratio and	
LSM-ScSZ	principles.		gas flow velocity on polarisation	
			distribution.	
			3) Effect of operating voltage on	
			conversion ratio.	
			1) Model validation for voltage	
			versus current density using	
	A quasi 2D, mechanistic, steady state		different feed compositions	
Ni-	and micro model was built based on		2) Influence of temperature, inlet	
YSZ/YSZ/	Butler-Volmer equation, charge	DETCHEM	gas velocity and micro-structural	[219]
LSM	conservation and mass transfer		properties on species distribution	
			and electrochemical performance.	
			3) Flow analysis of surface	
			reaction mechanism.	
			1) Model validation of voltage and	
			outlet composition as a function of	
	Dynamic, mechanistic and 3D model		current density for different	
Ni-	based on energy conservation, charge	DETCHEM	temperature and inlet feed	
GDC/YSZ/	transport and kinetics to investigate		composition.	[213]
LSM-YSZ	SOEC scale up from lab to		2) Process optimisation: Variation	
	commercial scale.		of syngas efficiency with unit	
			length and inlet gas velocity for	
			different temperatures.	
	Photoch	emical reduction		
Photo-	Model description	Software	Simulations performed	Ref.
Reactor				

Optical fiber monolith reactor	2D, steady-state and mechanistic model based on mass transfer, reaction kinetics and species transport to study CH ₃ OH synthesis using TiO ₂ with 1% NiO/InTaO ₄ .	COMSOL Multiphysics [™]	 Model validation for outlet CH₃OH concentration. Effect of H₂O content, gas inlet velocity and UV intensity on CH₃OH concentration. Impact of optical fiber installation on light intensity distribution. 	[238]
Double- skin sheet reactor	3D, steady-state and mechanistic model based on mass transfer, reaction kinetics and species transport to study CH ₃ OH synthesis using TiO ₂ with 1% NiO/InTaO ₄ .	COMSOL Multiphysics [™]	 Model validation for outlet CH₃OH concentration. Analysis of CH₃OH concentration on X-Y and X-Z sections. Effect of H₂O content, gas inlet velocity, reactor surface area and width/height ratio on CH₃OH concentration. 	[239]
Bubbling twin reactor	3D, dynamic and mechanistic model based on mass transfer, reaction kinetics and species transport to assess CH ₃ OH synthesis using Pt/CuAlGaO ₄ and Pt/SrTiO ₂ : Rh.	FLUENT and COMSOL Multiphysics TM	 Effect of inlet gas velocity, inlet gas number, diameter and pitch on CH₃OH concentration. Performance comparison between tradition and bubbling twin reactors. 	[240]
Optical fiber monolith	3D, steady-state and mechanistic model based on mass transfer, reaction kinetics and species transport	COMSOL Multiphysics TM	 Model validation for outlet CH₃OH concentration. 	[241]

reactor with	to study CH ₃ OH synthesis using TiO ₂		2) Effect of ball location and			
glass balls	with 1% NiO/InTaO ₄ .		numbers, layer and circle number			
			on CH ₃ OH concentration.			
	Carboxylation					
Reactor	Model description	Software	Simulations performed	Ref.		
type						
	Steady-state and mechanistic model		Integration of heat and steam			
Plug-flow	based on mass balance and thermal	Aspen Plus®	recovery systems to improve	[52]		
reactor	transfer principles was developed to		process thermal balance.			
	study urea synthesis process.					
	Dynamic and mechanistic model		1) In-situ hydration of ethylene			
	based on material and heat balance,		oxide and integrated gas-phase			
Fixed-bed	mole fraction normalisation and		side distillation reactor for process			
reactor	kinetics was built to investigate	gPROMS®	intensification.	[223]		
	process intensification of DMC		2) Effect of feed composition,			
	synthesis.		pressure, column number of stages			
			and temperature on process			
			conversion and DMC selectivity.			
			1) Heat integration and addition of			
	Steady-state and mechanistic		butylene oxide as dehydrating			
Continuous	modelling of DMC synthesis based on	Aspen Plus®	agent for process intensification.	[224]		
Stirred-tank	mass/energy balance and reaction		2) Economic and net CO ₂ emission			
	kinetics.		analysis.			
	Mi	neralisation				
Reactor	Model description	Software	Simulations performed	Ref.		
type						

Autoclave reactor	Mechanistic and steady state model based on reaction kinetics of indirect carbonation of red gypsum to calcium carbonate.	PHREEQC	 Model validation in term of reaction rate and constant for different temperature, liquid-solid ratio, stirring rate and Ca dissolution. Effect of temperature, stirring rate, Ca dissolution and liquid- solid ratio on the carbonation process. Kinetic analysis of Ca dissolution. 	[242]
	Plas	sma catalysis	·	
Plasma	Model description	Software	Simulations performed	Ref.
reactor				
DBD reactor	Empirical and steady state model based on hybrid artificial neural network and genetic algorithms was built to investigate plasma reforming on CaO-MnO/CeO ₂ catalyst.	MATLAB®	 Model validation for H₂/CO ratio, CH₄ conversion, H₂ and C₂₊ selectivities. Influence of flowrate, temperature, discharge voltage and CH₄/CO₂ ratio on the reactor performance. 	[243]
			1) Analysis of spatial distribution	
Packed bed DBD reactor	A 2D, steady state and mechanistic model was developed based on continuity equations of electron energy and density to assess micro-	COMSOL Multiphysics [™]	of electron ionization rate, electric field, plasma density and electron temperature for different voltages and pore sizes.	[244, 245]

discharge	formation	inside	the	2) Effect of required voltage and	
catalyst por	ces.			pore size on the microdischarge	
				behaviour.	

1 6. Comparison of CO₂ transformation technologies

Each CO₂ transformation technology has distinctive characteristics that make it more appropriate
for a specific utilisation and help to identify the most suitable technology in any given
circumstance. This section compares CO₂ transformation technologies in terms of maturity, cost,
market and net CO₂ usage.

6 6.1. Technological maturity

7 The technology readiness level (TRL) tool is used to assess each CO₂ technological maturity as 8 illustrated in Figure 14. TRL is a common tool used in EU and USA for measuring the maturity of 9 any technology. Further explanation on TRL can be found here [246]. Plasma catalysis and photochemical reduction methods have been attributed TRL of 1-3 and 2-4, respectively as they 10 11 are still being validated in a laboratory environment [22,247]. TRL of 3-5 has been allocated to electrochemical reduction and non-photosynthetic processes since they are tested at pilot scale in 12 projects such as CELBICON and BioPower2Gas, respectively [248,249]. Details on these projects 13 14 are given in Table 7. Reforming, photosynthetic and mineralisation technologies have higher TRLs of 4-6, 4-7 and 7-9, respectively [10,247,250]. 15

Hydrogenation and carboxylation technologies have a broad-ranged TRL of 2-9 because they lead to a wide range of products with different TRLs (Table 5). For example, methanol and methane synthesis have achieved high TRL of 7-9 whilst CO₂ hydrogenation to formic acid and DME is still at an early stage with TRL of 3-5 and 2-3, respectively [250,251]. The FTS process operates at commercial scale in some plants, for instance, Pearl GTL plant in Qatar with a production of 140,000 GTL/day [252]. However, it has a TRL of 5-8 since sustainable FTS is usually integrated with lower maturity processes such as reforming and SOEC for syngas production [250]. Urea

- 1 synthesis has achieved high TRL of 7-9 whilst production of polymers, cyclic carbonates and
- 2 carboxylic acids through carboxylation have TRLs of 6-7, 5-7 and 2-4, respectively [250,253].

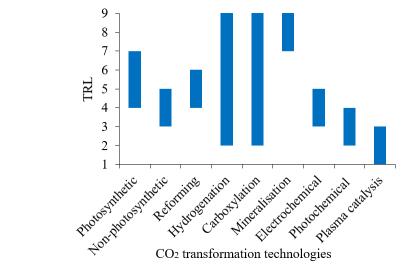


Figure 14: TRL of CO₂ transformation technologies.

Table 5: TRL of hydrogenation and carboxylation based on their products [10,250,253].

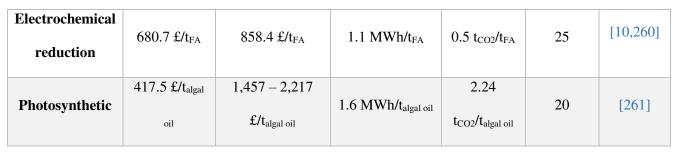
Technology	Product	TRL
	Methanol	7-9
Hydrogenation	Methane	7-9
	Liquid fuels via FTS	5-8
	Formic acid	3-5
	DME	2-3
	Formaldehyde	2-3
	Urea	7-9
Carboxylation	Polymers	6-7
	Cyclic carbonates	5-7
	Carboxylic acids	2-4

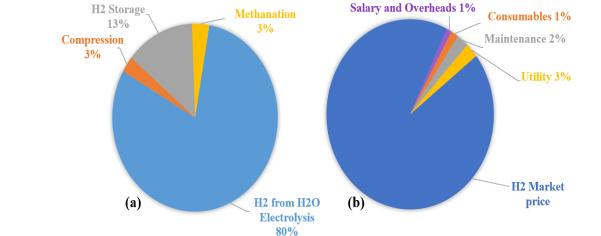
6 **6.2.** Cost considerations

3

4

7 One of the most important factors for commercial deployment is the cost. Assessment of total cost


8 for a given CO₂ conversion technology should include both capital and operational expenditures


1 (CAPEX and OPEX). CAPEX corresponds to costs for designing, purchasing equipment and 2 building the plant. OPEX includes fixed costs (for plant operation and maintenance) and variable 3 costs (for raw materials, catalysts, utilities and disposal of by-products) [254]. Table 6 presents the 4 normalized values of CAPEX and OPEX, together with the utility consumption for some CO₂ 5 transformation technologies. The utility can be electricity, heating and/or cooling consumption. It 6 should be noted that plasma catalysis, photochemical reduction and non-photosynthetic 7 technologies are not included as no economic studies were found in the open literature.

8

Table 6: Key performance indicators of some CO₂ transformation technologies

CO ₂ conversion			Utility	Net CO ₂	Net CO2Plant life	
technology	CAPEX	OPEX	consumption	used	(Year)	Source
Reforming	23.9 £/t _{methanol}	100.6 £/t _{methanol}	0.7 MWh/t _{methanol}	1.86 $t_{CO2}/t_{methanol}$	20	[10,255]
	853 - 924£/t _{methane}	6,854 - 10,281 £/t _{methane}			20	[10,256]
Hydrogenation	93.2 - 206.3 £/t _{liquid fuel}	1304.3 - 2173.9 £/t _{liquid fuel}	11.93 MWh/t _{liquid fuel}	2.6 t _{CO2} /t liquid fuel	20	[199,257]
	22.0 £/t _{methanol}	586.1 £/t _{methanol}	1.5 MWh/t _{methanol}	1.23 $t_{CO2}/t_{methanol}$	20	[254]
	59.1 £/t _{FA}	1,335 £/t _{FA}	9.8 MWh/t _{FA}	0.67 t _{CO2} /t _{FA}	20	[251]
Carboxylation	9.5 £/t _{urea}	144.2 £/t _{urea}	0.02 – 0.16 MWh/t _{urea}	0.74 t _{CO2} /t _{urea}	20	[10]
	3.1 £/t _{polyol}	$1,026.4 \text{ ft/t}_{polyol}$	0.01 MWh/t _{polyol}	0.23 t _{CO2} /t _{polyol}	25	[258]
Mineralisation	7.5 − 11 £/t _{CO2 seq.}	56.3 - 75.7 £/t _{CO2 seq.}	0.001 - 0.17 MWh/t _{CO2 seq.}	0.36 - 0.42 t _{C02} /t _{CaC03}	10	[259]

2

Figure 15: Cost breakdown for CO₂ hydrogenation to (a) methane and (b) methanol [254,256].

3 In terms of operating cost per ton of product, mineralisation technology depicts the lowest range with the least utility consumption. Likewise, the hydrogenation process presents the highest ranges 4 for both OPEX and utility consumption. Götz et al. [256] evaluated the costs of CO₂ hydrogenation 5 6 to methane at 35.8 €M for a production rate of 591 m³/hr. Cost breakdown (Figure 15a) shows that 7 80% of costs account for H₂ production via water electrolysis. Hence, high OPEX of hydrogenation is directly related to its high electricity demand for H₂ synthesis. The utility demands for methanol 8 9 synthesis via hydrogenation seems lower but still have a high OPEX. Cost breakdown analysis 10 revealed that H₂ was purchased and represented 93% of OPEX (Figure 15b) [254]. On the other hand, raw materials for the reforming technology are fairly inexpensive with CO₂ sometimes 11 12 negatively priced [10], this could explain its low OPEX. In addition to utility, high OPEX for algae 13 production is also due to cost for nutrients, water and CO₂ supply [261]. Mature technologies such as mineralisation and carboxylation for urea synthesis which have undergone considerable 14 15 development over the decades are in the low range for both operating costs and utility consumption.

Similarly, high OPEX of electrochemical reduction and hydrogenation to formic acid could be due
 to their low TRLs.

3 6.3. Market analysis

4 Another main difference among CO₂ transformation technologies is the value of products since 5 they have different market values. CO2-derived fuels (such as diesel, gasoline, methanol and methane) are already in use in today's market and mainly produced from fossil fuels. The market 6 7 price for CO₂-derived fuels via hydrogenation are currently estimated 2-7 times higher than fossil fuel-routes mostly owing to intensive energy/electricity and cost for H₂ production [51]. Similarly, 8 9 methane, ethylene and methanol synthesis via electrochemical reduction were respectively estimated 20, 7 and 3 times higher than the current market price [262]. In addition to electricity, 10 11 high costs of electrochemical reduction could also be due to its low TRL (3-5). Therefore, CO₂derived fuels may be competitive if low-cost feedstock and carbon-neutral energies are available. 12 On the other hand, the market for CO_2 -derived polymers is competitive as they require relatively 13

14 low energy. It was demonstrated that some polymers could be synthesized at 15-30% lower cost 15 than the conventional methods if CO₂ used were cheaper than the conventional method-based 16 feedstock [263]. Similar results were observed for CO_2 -derived concrete and aggregates [51]. By 17 volume, CO₂-derived fuels (hence hydrogenation, electrochemical reduction and biological 18 technologies) have the greatest potential for CO₂ utilisation as their market demand is estimated 19 above 5 GT/yr whereas, market demand for CO₂-derived concrete, aggregates, chemicals and 20 polymers is between 1-5 GT/yr [51]. However, regarding the cost and TRL, the greatest potential 21 would be CO₂-derived concrete and aggregates (mineralisation) followed by CO₂-derived polymers 22 and chemicals (via carboxylation and hydrogenation). Market analysis for plasma catalysis and photochemical reduction is yet to be provided due to their very low TRL range (1-4). 23

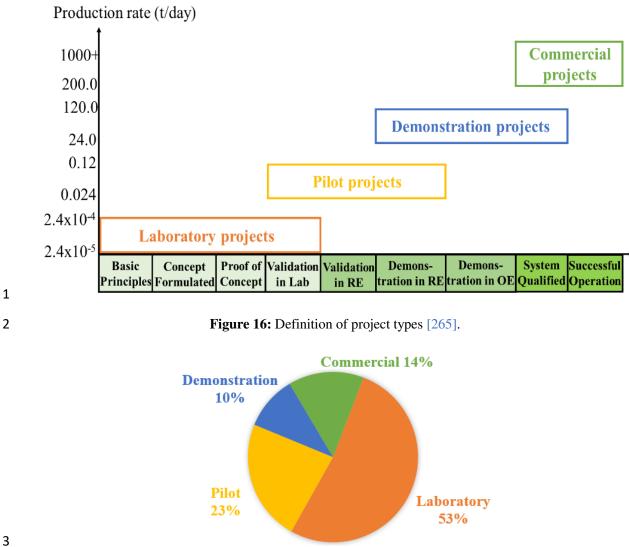

24 6.4. Amount of CO₂ used

Table 6 also provides the net CO₂ used for some CO₂ transformation technologies. Algae production and hydrogenation to liquid fuels via FTS have the highest net CO₂ used of $2.24 \text{ t}_{\text{CO2}}/\text{t}_{\text{algal}}$ Page | 50

1 oil and 2.6 t_{CO2}/t_{liquid fuel}, respectively. The reforming, hydrogenation to methane and methanol 2 consume a range of 1.0–0.86 t_{CO2}/t_{product}. By incorporating high amounts of CO₂ into products, these 3 transformation technologies offer great potential for effectively contributing to CO₂ reduction 4 targets. The remaining conversion processes present a net CO₂ utilisation rate between 0.23–0.74 5 t_{CO2}/t_{product} with the lowest value for polyol synthesis via carboxylation. In comparison to the 6 conventional methods, these conversion processes still have the advantage of consuming more CO_2 7 than they release. It is worth specifying that a full lifecycle analysis (including, for example, CO₂ 8 emitted during transport and combustion of derived-products that were not taken into consideration in this paper) will be needed to provide a more accurate indication of each technology's 9 environmental benefits. 10

11 7. Example of projects for CO₂ utilisation via transformation

In this section, the projects are divided into 4 groups according to their scale: laboratory, pilot, 12 demonstration and commercial. Figure 16 illustrates the definition and capacity of each scale. 13 14 Laboratory projects refer to as academic research programme whereas, pilot, demonstration and commercial projects are conducted in testing facilities at their corresponding scales [264]. Table 7 15 16 gives examples of laboratory, pilot, demonstration and commercial projects carried out worldwide 17 for CO₂ utilisation via transformation. The Smart CO₂ Transformation (SCO₂T) database was launched in 2016 as part of the EU Seventh Framework Programme to gather research & innovation 18 information on CO₂ biological and chemical transformations [264]. As of 2019, the SCO₂T 19 database shows a total of 189 projects for CO₂ utilisation via transformation. A detailed analysis of 20 21 the SCO₂T database reveals that 53% of projects are laboratory projects whilst pilot, demonstration and commercial projects account for 23%, 10% and 14%, respectively (Figure 17). 22

Figure 17: Repartition of projects for CO₂ transformation technologies according to their scales.

5 In terms of project scales, mineralisation technology accounts for 43% of commercial projects 6 (Figure 18a). Hence, mineralisation seems to be the most favourable option among the 7 technologies. The analysis shows that there is currently no commercial project for plasma catalysis, 8 photochemical, electrochemical and non-photosynthetic technologies which is in good agreement 9 with their low TRLs. Indeed, plasma catalysis and photochemical reduction are only laboratory 10 projects (4 and 12, respectively) as shown in Figure 19. These technologies are still emerging and 11 will likely have a better efficiency due to their lower operating conditions and diversity of accessible chemical and fuels. 12

Technology	Project name	Location	Start year	Duration (year)	Products	Scale	Status	Source
	ALGAENET	Madrid – Spain	2012	4	Microalgae, biogas	Laboratory	Completed	[266]
Photosynthetic	PhotoFuel	Wolfsburg – Germany	2015	5	Algae, biofuels	Pilot	Ongoing	[267]
	Algenol IBR	Florida – US	2010	5	Algae, bioethanol	Demonstration	Operating	[268]
Non-photosynthetic	BioPower2Gas	Allendorf – Germany	2013	3	Methane	Pilot	Operating	[249]
	Shell-Sari-Lu'An joint	Shanxi Province - China	2011	n/s	Syngas	Demonstration	Ongoing	[269]
Reforming	Sunexus CO ₂ reforming	California – USA	2010	1	Syngas, diesel	Laboratory	Completed	[270]
	MefCO ₂	Niederaussem – Germany	2014	7	Methanol	Pilot	Ongoing	[271]
	Methanol+	Alberta – Canada	2014	2	Methanol	Pilot	Completed	[264]
Hydrogenation	Audi e-diesel	Dresden – Germany	2014	n/s	Diesel	Demonstration	Ongoing	[272]
	Chemical CO ₂ immobilisation	Osaka – Japan	2008	n/s	Methanol, olefins	Pilot	n/s	[264]
	CyclicCO ₂ R	The Hague – Netherlands	2013	3	Cyclic carbonates	Pilot	Operating	[264]
Carboxylation	E ³ Tec	Michigan – USA	2013	4	DMC	Pilot	Completed	[273]
	Carbon4PUR	Germany	2017	3	Polyols, polyurethane	Demonstration	Ongoing	[274]
	Carbon8 Aggregates	Brandon – UK	2012	n/s	Concrete	Commercial	Operating	[275]

Table 7: Examples of projects for CO₂ utilisation via transformation

	MCi	Newcastle – Australia	2013	5	Inorganic carbonates	Pilot	Completed	[276]
Mineralisation	SkyMine®	Texas – USA	2010	5	Sodium bicarbonate	Commercial	Completed	[264]
	SOLID Life	Weimar – Germany	2016	3	Cement, concrete	Demonstration	Ongoing	[277]
	CELBICON	Turin – Italy	2016	3.5	Syngas, formic acid	Pilot	Completed	[248]
Electrochemical	LOTER.CO2M	Cologne – Germany	2018	3	Methanol	Pilot	Ongoing	[278]
	Rheticus	Marl – Germany	2018	2	Butanol, hexanol	Laboratory	Ongoing	[279]
Photochemical	PROPHECY	Karlsruhe – Germany	2016	3	C ₁ chemicals	Laboratory	Completed	[280]
Plasma catalysis	PIONEER	Sorbonne – France	2019	3	n/s	Laboratory	Ongoing	[281]

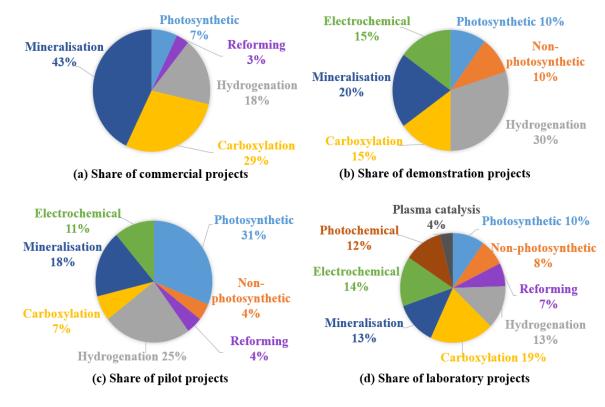
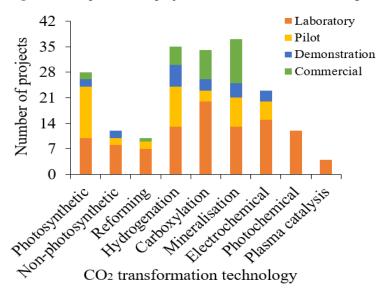
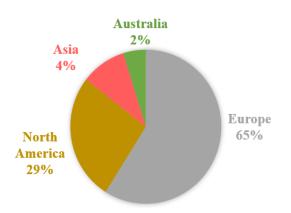



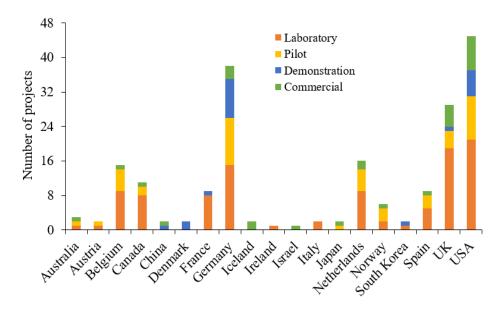
Figure 18: Repartition of project scales for different technologies.


3

4

Figure 19: Number of projects for different CO₂ transformation technologies.

5 The highest number of projects was observed for mineralisation (37) closely followed by 6 hydrogenation (35) and carboxylation (34) technologies (Figure 19). Hydrogenation and 7 carboxylation technologies also represent respectively 18% and 29% of commercial projects with 8 45% cumulative share of demonstration projects (Figures 18a and b). Therefore, when fully mature 9 these technologies will dominate the CO₂ utilisation sector due to high market demand for CO₂- derived fuels, chemicals and materials. 28 projects were found for algae production. Despite its
 TRL of 4-7, algae production accounts for 7% of commercial projects with 10% and 31% share of
 demonstration and pilot projects, respectively (Figures 18a, 18b and 18c) confirming its suitability
 for large-scale deployment.


5 Analysis of projects for CO₂ transformation technologies in different continents (Figure 20) shows 6 the highest share of projects in Europe (65%) followed by North America (29%). Asia and Australia 7 only account for 4% and 2%, respectively. This percentage seems quite small knowing that Asia is 8 responsible for more than 50% of the world's CO_2 emissions [4]. The latest roadmap for CCUS in 9 China reported 23 key projects (divided into 5, 7 and 11 pilot, demonstration and commercial 10 projects, respectively) that have been planned, operated and completed since 2006 [282]. However, 11 these projects mostly focused on direct use of CO₂ via EOR while SCO₂T database gathers projects on CO₂ utilisation via transformation which may justify the low percentage found in Asian 12 countries. USA leads the world in progressing CO₂ utilisation via transformation as it holds the 13 14 highest number of 45 projects divided into 21, 10, 6 and 8 laboratory, pilot, demonstration and 15 commercial projects, respectively (Figure 21). It is sensitive to believe that USA will continue in 16 the first place since the USA Department of Energy has recently announced \$110 million for the 17 deployment of various large-scale CCUS projects [283]. Germany, UK and Netherlands are also strong supporters of CO_2 utilisation with a cumulative of 78 projects divided into 43, 20, 10 and 10 18 19 laboratory, pilot, demonstration and commercial projects, respectively (Figure 21).

21

Figure 20: Repartition of projects for CO₂ transformation technologies in different continents.

2

Figure 21: Number of projects for CO₂ transformation technologies in different countries.

3 8. Research trend, challenges and future prospects

4 8.1. The research trend

The increasing interest in CO_2 transformation into value-added products can be translated into the significant number of published papers in the area. Therefore, research papers found in literature is used as an indicator to investigate the research trend of CO_2 transformation technologies and evaluate where the focus has been devoted the most.

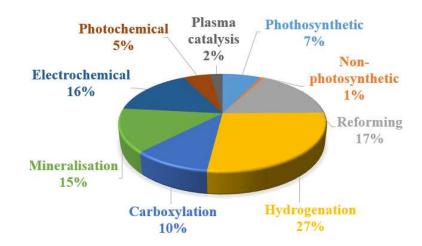
9 8.1.1. Methodology

ScienceDirect database (<u>https://www.sciencedirect.com/search</u>) was used to search for research articles on CO₂ utilisation via transformation. ScienceDirect is the world's leading database for medical and scientific research. It provides over 12 million contents from articles to books. The search for papers was conducted in January 2019 using keywords as indicated in Table 8.

14 **8.1.2.** Limitations

The search for research papers on CO_2 utilisation via transformation only covers a period of 10 years (2008 to 2018). Only the title, abstract and keywords were reviewed to identify articles relevant to CO_2 transformation technologies. Therefore, CO_2 technologies that were not mentioned

- 1 in the title and abstract were not included. Also, research papers that were not in the ScienceDirect
- 2 database were not included.
- 3


Table	8:	Search	technique
-------	----	--------	-----------

Technology	Keywords					
Photosynthetic	"CO ₂ + Photosynthetic biological fixation"					
Non-Photosynthetic	"CO ₂ + Non-Photosynthetic biological fixation"					
Reforming	"CO ₂ + Reforming + syngas"					
Hydrogenation	"CO ₂ + Fischer-Tropsch" AND "CO ₂ + Hydrogenation"					
	"CO ₂ + Carbamate synthesis" AND "Carboxylation with CO ₂ " AND					
Carboxylation	"CO ₂ + Urea synthesis" AND "CO ₂ + Cyclic carbonate synthesis" AND					
	"CO ₂ + Linear carbonate synthesis" AND "CO ₂ + Polymer synthesis"					
Mineralisation	"CO ₂ + Mineral carbonation + carbonates"					
Electrochemical reduction	"CO ₂ + Electrolysis cell + Syngas" AND "CO ₂ + Electrochemical					
Electrochemical reduction	reduction"					
Photochemical reduction	"CO ₂ + Photochemical reduction"					
Plasma catalysis	"CO ₂ + Plasma catalysis"					

4 8.1.3. Analysis of research trend

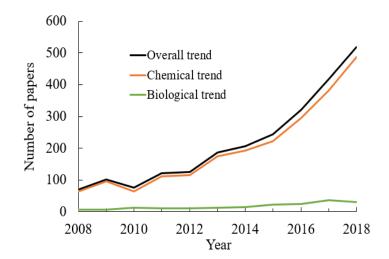
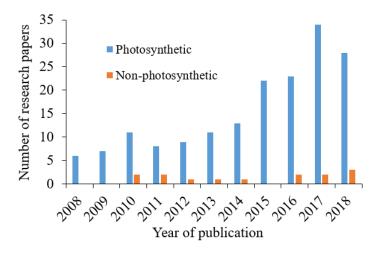
5 A total of 34,329 papers were retrieved from the search. 31,941 papers were excluded as they were 6 either review papers or not related to CO₂ utilisation (most of them discuss CO₂ capture from flue 7 gas, CO₂ geological storage, CO₂ separation from mixtures like CO₂/N₂, electrochemistry for 8 corrosion etc.). After evaluation, 2,389 research papers were relevant to CO₂ transformation 9 technologies. Figure 22 illustrates the repartition of research papers for CO₂ transformation 10 technologies. Hydrogenation is the most studied process with the highest percentage of 27% while non-photosynthetic and plasma catalysis have the lowest percentage of 1% and 2%, respectively. 11 CO₂ reforming, electrochemical, mineralisation, carboxylation, photosynthetic fixation and 12

- 1 photochemical technologies represent 17%, 16%, 15%, 10%, 7% and 5% of research papers,
- 2 respectively.

4

Figure 22: Repartition of research papers for CO₂ transformation technologies.

The overall trend shows a growing interest in CO₂ transformation technologies (Figure 23) with a 5 significant increase in research papers from 70 papers published in 2008 to 548 papers in 2018. 6 7 Furthermore, a previous study on the research trend for CO₂ utilisation via transformation reported 8 855 papers published between 1999–2009 [284]. In comparison, we report 2,389 research papers 9 between 2008–2018. This clearly demonstrates the rapid growth in research and development for 10 CO₂ utilisation via transformation which depicts the rising interest in overcoming climate change 11 and global warming concerns by shifting towards more sustainable and environmentally friendly 12 resources, processes and products.

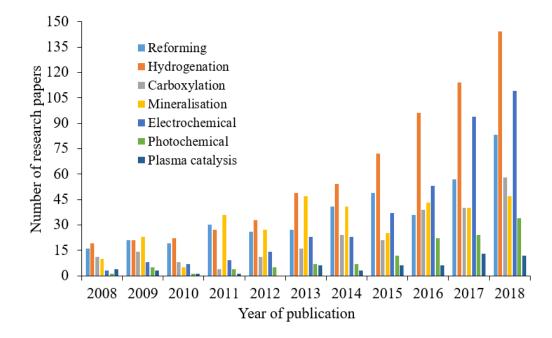


Figure 23: Research trend for CO₂ transformation technologies.

1 2

Figure 24: Research papers for CO₂ biological transformations.

4

Figure 25: Research papers for CO₂ chemical transformations.

The high number of research papers (hence faster trend) observed for CO₂ chemical 5 6 transformations (2,203 papers) compared to CO₂ biological transformations (186 papers) is mostly 7 due to the higher number of available technologies and products via chemical conversion which 8 may also explain why there are more projects for CO_2 chemical transformations (Figure 19). No 9 paper was found for plasma catalysis in 2012 and non-photosynthetic in 2008, 2009 and 2015 10 (Figures 24 and 25). This does not necessarily mean that no research was conducted for these technologies on the specified years. It could be due to the limitations of the search for papers as 11 12 specified in Section 8.1.2. Figure 25 indicates that hydrogenation and electrochemical reduction are the most studied technologies since 2016. Besides their variety of products, a possible
 explanation might be the increased availability of renewable energies which now represent the third
 of the global power capacity [285].

4 8.2. Challenges and future prospects

It is no doubt that CO₂ utilisation via transformation can help to mitigate CO₂ emissions and secure
a wide range of chemicals and fuels. Although considerable progress was achieved in the past
decades, CO₂ transformation technologies are still facing several challenges hindering their
commercial implementation.

9 8.2.1. Technical barriers

10 (1) CO_2 activation/conversion

Achieving high CO₂ conversion is still an open challenge for most CO₂ transformation technologies 11 due to the thermodynamic stability of C=O bonds and rapid catalyst deactivation. Though good 12 13 conversion efficiency was reported ($\geq 60\%$) for reforming, hydrogenation, carboxylation and 14 electrochemical technologies, the processes were operating either under high 15 temperatures/pressures, excess overpotentials or using catalysts with low availability and high costs 16 (e.g. noble metals and ionic liquids). Therefore, further research is required to find novel catalysts with improved stability and activity at lower operating conditions and costs. Clarifying the 17 mechanisms of CO₂ activation and/or electron transfer during CO₂ conversion processes (especially 18 19 for plasma catalysis, photochemical reduction, non-photosynthetic and electrochemical reduction) 20 are also needed to identify and control the different steps in elementary reactions thus overcome CO₂ conversion limitations. 21

22 (2) Product selectivity

Theoretically, a wide range of value-added products can be obtained from CO_2 conversion. However, there is a clear gap between the quality and quantity of reported products. By comparison, plasma catalysis, electrochemical and photochemical methods have poor selectivity to C_{2+} products

1 whereas, the non-photosynthetic CO₂ fixation mostly forms methane and acetate via the W-L 2 pathway. Although selectivity above 75% was achieved via electrochemical reduction, high 3 overpotentials were also required. Synthesis of most organic acids through carboxylation has not 4 yet achieved satisfactory results, DMC still suffers from low yield and acceptable selectivity was 5 only observed for cyclic carbonates and polymers. Except for methanol, CO₂ hydrogenation suffers 6 from low selectivity to oxygenate compounds (mostly formic acid and DME). Exploring novel 7 catalytic materials and microorganisms will play an important role in addressing the 8 aforementioned issues. Research into reactor design with better mass/liquid transfer and cell construction with high active surface areas can help to enhance CO₂ conversion efficiency and 9 10 improve product selectivity.

11 ()

(3) Energy requirement

All CO₂ conversion processes require considerable energy input. Most studies demonstrated that increasing the energy input (light, heat or electricity) leads to better CO₂ conversion and product yield efficiencies. However, the use of energy comes with costs and CO₂ emissions depending on the energy source. Therefore,

- Further research is needed to enhance CO₂ transformation technologies which use a free
 natural energy source (such as photosynthetic and photochemical CO₂ reduction) as they have
 the potential to be less expensive.
- More studies integrating the use of renewable electricity for electrochemical reduction, non photosynthetic CO₂ fixation and H₂ production for CO₂ hydrogenation are highly needed to
 assess their full potential for CO₂ conversion.
- Further studies are also required to achieve high energy efficiency without decreasing the CO₂
 conversion rate during plasma catalysis.
- 24 > Research into heat integration techniques is also highly required for further optimization of
 25 energy efficiency and management.

1 8.2.2. Cost reduction

2 Cost assessment of CO_2 transformation technologies is very difficult as they are affected by varying 3 parameters including type of CO₂ transformation technology, desired product, type of energy and raw material required, product price, plant location etc. Compared to conventional methods, most 4 CO₂ transformation technologies are still quite expensive with some that have not been 5 6 economically evaluated yet. It is paramount to reduce the cost of CO₂ transformation technologies 7 for CO₂-derived products to be competitive in today's market. Cost reduction can be achieved 8 through process intensification and development of better catalysts that can lower the energy 9 requirements. Cost minimization also varies from one technology to another. For instance, 10 hydrogenation cost would significantly reduce if the cost of H₂ production was halved [254]. Cost 11 reduction for algae production would require cheaper nutrients/fertilizers, water recirculation 12 systems and shorter distance to water [27]. More general considerations such as the cost of CO₂ 13 capture should also be assessed. Further research in reducing costs for energy-intensive CO₂ capture processes will greatly promote the deployment of CO₂ transformation technologies. 14

15

8.2.3. Modelling and simulation

16 There are limited modelling and simulation studies on CO₂ conversion processes possibly due to 17 lack of experimental data. Indeed, process modelling and simulation would require detailed 18 information about reaction kinetics and catalysts for accurate process designs. However, reaction 19 mechanisms involved in CO₂ conversion processes are still being verified, not well understood and search for effective catalysts is still ongoing which limit the availability of required data. This is 20 21 particularly true for CO₂ transformation technologies with low TRLs including carboxylation and hydrogenation to some products (Table 5), plasma catalysis, photochemical reduction, non-22 photosynthetic and electrochemical reduction. Future research could use basic knowledge on 23 24 thermodynamics, mass/heat transfer, preliminary assumptions and simplified models for initial 25 modelling and design to evaluate the process performance. Most studies reported steady-state 26 models indicating the early development stage for CO₂ transformation technologies. Further studies on dynamic modelling, steady-state and dynamic model validation are required to gain further
insights into the actual operation and control design of CO₂ conversion processes at transient
conditions. More studies on process intensification and optimisation techniques are also needed to
address the current challenges encountered in CO₂ conversion to value-added products.

5

8.2.4. Suggested research directions

Future research directions should focus on long-term operation and economic feasibility of the
 most promising technologies (such as mineralisation, hydrogenation, carboxylation to
 polymers and organic carbonates and photosynthetic) so that effective commercial scale-up
 can be implemented.

Priority should also be given to the least studied technologies with low TRLs including non photosynthetic, plasma catalysis and photochemical reduction (research percentage ≤ 5%) so
 that early good practices and effective techniques can be achieved. These technologies have
 the main advantage of operating at ambient conditions. Furthermore, the non-photosynthetic
 CO₂ fixation could lead to several biochemicals/fuels using H₂ as an energy source and by pass the high operating conditions of CO₂ hydrogenation which could result in considerable
 cost reduction.

- 17 > Studies on process optimisation and process intensification of CO₂ transformation
 18 technologies are highly needed to assess the interaction among different operating parameters,
 19 enhance process efficiency and lower costs.
- Flue gas temperature at the furnace outlet is quite high (typically around 1200°C) and must be
 cooled down to roughly 40-50°C for CO₂ capture [220]. On the other hand, most CO₂
 conversion processes require heat as energy input which is usually provided by external
 sources. Therefore, future studies should investigate the process integration of CO₂ capture
 and CO₂ utilisation to assess the synergy between the two processes.

Direct use of flue gas for some CO₂ conversion processes (such as reforming, mineralisation,
 algae production and carboxylation for polymer synthesis) should also be explored as it could
 eliminate the cost of energy-intensive CO₂ capture processes.

It is worth specifying that CO₂ transformation technologies do not have to be used alone, the
combination of biological and chemical transformation (for instance, microbially enhanced
mineralisation [286,287]) could provide a highly efficient hybrid system which would possibly
surpass any CO₂ chemical or biological process alone.

8 8.2.5. Policy impact

Although policies were not explicitly examined in this review, it is worth emphasizing that policy
improvements can support the deployment of CO₂ transformation technologies. They can be
applied in the following areas: (1) market regulation for the commercial activity of CO₂ utilisation,
(2) financial support for early development to assist participants who cannot afford costs of earlystage projects and (3) incentives and guidance for commercial deployment when business
propositions have not reached commercial maturity [288].

15 9. Conclusion

In this review paper, CO₂ transformation technologies were defined and grouped into biological 16 17 (photosynthetic and non-photosynthetic) and chemical (reforming, hydrogenation, carboxylation, 18 mineralisation, electrochemical reduction, photochemical reduction and plasma catalysis) 19 processes, the typical operating conditions and the diversity of products from CO₂ conversion were 20 carefully outlined, the recent progress in experimental and modelling/simulation studies were 21 reviewed, the different technologies were compared in terms of maturity, cost, market and amount of CO₂ used, a detailed analysis of CO₂ utilisation projects worldwide and research trends were 22 provided and finally, the challenges and future research directions were discussed. The following 23 24 conclusions were reached: (1) Due to the diversity of products, hydrogenation and carboxylation 25 technologies will have a large share of commercial deployment when fully mature; (2) The

1 development of available and low-cost catalysts is of great importance for large-scale applications 2 of CO₂ transformation technologies; (3) Process optimisation and process intensification can help 3 to decrease costs and improve process efficiency; (4) The non-photosynthetic CO₂ fixation has the 4 great potential to overcome high operating conditions encountered with hydrogenation technology; 5 (5) Large-scale demonstrations are required for emerging technologies such as reforming and algae 6 production to gain confidence and improve technologies to reach commercial-scale; (6) Finally, 7 the research trend analysis demonstrated that more research will be carried out in CO₂ utilisation 8 via transformation in the years to come.

9 Conflicts of interest

10 There are no conflicts to declare.

11 Acknowledgements

12 The first author would like to thank the University of Sheffield for partial PhD scholarship. The 13 authors from ECUST would like to acknowledge the financial support from Shanghai Science and 14 Technology Committee (No. 19160712100). The UK authors also want to thank Dr Mathew Aneke 15 for helpful discussions at the early-stage of the manuscript preparation.

References

- [1] United Nations Environment Programme, Emissions Gap Report 2019, (2019) 82.
 https://www.unenvironment.org/resources/emissions-gap-report-2019 (accessed December 19, 2019).
- Intergovernmental Panel on Climate Change, Special report Global Warming of 1.5 °C,
 (2018) 300. https://www.ipcc.ch/sr15 (accessed November 5, 2019).
- [3] D.Y.C. Leung, G. Caramanna, M.M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies, Renew. Sustain. Energy Rev. 39 (2014) 426–443. https://doi.org/10.1016/j.rser.2014.07.093.
- [4] The Global CCS Institute, Global Status of CCS, SpringerReference. (2019). https://doi.org/10.1007/springerreference_15392.
- [5] International Energy Agency, Technology Roadmap: Carbon capture and storage in industrial applications, Encycl. Prod. Manuf. Manag. (2011) 781–782. https://doi.org/10.1007/1-4020-0612-8_961.
- [6] C.F. Heuberger, I. Staffell, N. Shah, N. Mac Dowell, Quantifying the value of CCS for the future electricity system, Energy Environ. Sci. 9 (2016) 2497–2510.
 https://doi.org/10.1039/c6ee01120a.
- [7] C.F.A. Rodrigues, M.A.P. Dinis, M.J. Lemos de Sousa, Review of European energy policies regarding the recent "carbon capture, utilization and storage" technologies scenario and the role of coal seams, Environ. Earth Sci. 74 (2015) 2553–2561. https://doi.org/10.1007/s12665-015-4275-0.
- [8] N. Mac Dowell, P.S. Fennell, N. Shah, G.C. Maitland, The role of CO₂ capture and utilization in mitigating climate change, Nat. Clim. Chang. 7 (2017) 243–249. https://doi.org/10.1038/nclimate3231.
- [9] L. Lei, L. Bai, A. Lindbråthen, F. Pan, X. Zhang, X. He, Carbon membranes for CO₂ removal: Status and perspectives from materials to processes, Chem. Eng. J. 401 (2020)

126084. https://doi.org/10.1016/j.cej.2020.126084.

- [10] S.M. Jarvis, S. Samsatli, Technologies and infrastructures underpinning future CO2 value chains: A comprehensive review and comparative analysis, Renew. Sustain. Energy Rev. 85 (2018) 46–68. https://doi.org/10.1016/J.RSER.2018.01.007.
- [11] P. Styring, K. Armstrong, Catalytic carbon dioxide conversions to value-added chemicals, Chim. Oggi. 29 (2011) 34–37.
- M. Aresta, A. Dibenedetto, A. Angelini, Catalysis for the valorization of exhaust carbon: From CO2 to chemicals, materials, and fuels. Technological use of CO₂, Chem. Rev. 114 (2014) 1709–1742. https://doi.org/10.1021/cr4002758.
- [13] E. Alper, O. Yuksel Orhan, CO₂ utilization: Developments in conversion processes, Petroleum. 3 (2017) 109–126. https://doi.org/10.1016/J.PETLM.2016.11.003.
- [14] M. Aresta, A. Dibenedetto, E. Quaranta, State of the art and perspectives in catalytic processes for CO₂ conversion into chemicals and fuels: The distinctive contribution of chemical catalysis and biotechnology, J. Catal. 343 (2016) 2–45. https://doi.org/10.1016/J.JCAT.2016.04.003.
- [15] H. Naims, Economics of carbon dioxide capture and utilization—a supply and demand perspective, Environ. Sci. Pollut. Res. 23 (2016) 22226–22241.
 https://doi.org/10.1007/s11356-016-6810-2.
- [16] R.S. Norhasyima, T.M.I. Mahlia, Advances in CO₂ utilization technology: A patent landscape review, J. CO2 Util. 26 (2018) 323–335.
 https://doi.org/10.1016/J.JCOU.2018.05.022.
- Y. Zheng, W. Zhang, Y. Li, J. Chen, B. Yu, J. Wang, L. Zhang, J. Zhang, Energy related CO₂ conversion and utilization: Advanced materials/nanomaterials, reaction mechanisms and technologies, Nano Energy. 40 (2017) 512–539.
 https://doi.org/10.1016/J.NANOEN.2017.08.049.
- [18] R.P. Ye, J. Ding, W. Gong, M.D. Argyle, Q. Zhong, Y. Wang, C.K. Russell, Z. Xu, A.G.

Russell, Q. Li, M. Fan, Y.G. Yao, CO₂ hydrogenation to high-value products via heterogeneous catalysis, Nat. Commun. 10 (2019) 5698. https://doi.org/10.1038/s41467-019-13638-9.

- [19] G. Centi, E.A. Quadrelli, S. Perathoner, Catalysis for CO₂ conversion: A key technology for rapid introduction of renewable energy in the value chain of chemical industries, Energy Environ. Sci. 6 (2013) 1711–1731. https://doi.org/10.1039/c3ee00056g.
- [20] C. Hepburn, E. Adlen, J. Beddington, E.A. Carter, S. Fuss, N. Mac Dowell, J.C. Minx, P. Smith, C.K. Williams, The technological and economic prospects for CO₂ utilization and removal, Nature. 575 (2019) 87–97. https://doi.org/10.1038/s41586-019-1681-6.
- [21] B.R. de Vasconcelos, J.M. Lavoie, Recent advances in power-to-X technology for the production of fuels and chemicals, Front. Chem. 7 (2019) 392.
 https://doi.org/10.3389/fchem.2019.00392.
- [22] R.G. Grim, Z. Huang, M.T. Guarnieri, J.R. Ferrell, L. Tao, J.A. Schaidle, Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO₂ utilization, Energy Environ. Sci. (2020) 472–494. https://doi.org/10.1039/c9ee02410g.
- [23] Z. Zhang, S.-Y. Pan, H. Li, J. Cai, A. Olabi, E.J. Anthony, V. Manovic, Recent advances in carbon dioxide utilization, Renew. Sustain. Energy Rev. 125 (2020) 109799. https://doi.org/https://doi.org/10.1016/j.rser.2020.109799.
- [24] H. Salehizadeh, N. Yan, R. Farnood, Recent advances in microbial CO₂ fixation and conversion to value-added products, Chem. Eng. J. 390 (2020) 124584.
 https://doi.org/10.1016/j.cej.2020.124584.
- [25] A. Mustafa, B.G. Lougou, Y. Shuai, Z. Wang, H. Tan, Current technology development for CO2 utilization into solar fuels and chemicals: A review, J. Energy Chem. 49 (2020) 96–123. https://doi.org/10.1016/j.jechem.2020.01.023.
- [26] P.J.D. Janssen, M.D. Lambreva, N. Plumeré, C. Bartolucci, A. Antonacci, K. Buonasera,

R.N. Frese, V. Scognamiglio, G. Rea, Photosynthesis at the forefront of a sustainable life, Front. Chem. 2 (2014) 1–22. https://doi.org/10.3389/fchem.2014.00036.

- [27] R. Slade, A. Bauen, Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects, Biomass and Bioenergy. 53 (2013) 29–38. https://doi.org/10.1016/J.BIOMBIOE.2012.12.019.
- P.J.L.B. Williams, L.M.L. Laurens, Microalgae as biodiesel & biomass feedstocks:
 Review & analysis of the biochemistry, energetics & economics, Energy Environ. Sci. 3
 (2010) 554–590. https://doi.org/10.1039/b924978h.
- [29] A.S. Hawkins, P.M. McTernan, H. Lian, R.M. Kelly, M.W. Adams, Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals, Curr. Opin.
 Biotechnol. 24 (2013) 376–384. https://doi.org/10.1016/J.COPBIO.2013.02.017.
- [30] D.R. Lovley, K.P. Nevin, Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity, Curr. Opin. Biotechnol. 24 (2013) 385–390. https://doi.org/10.1016/J.COPBIO.2013.02.012.
- B. Abdullah, N.A. Abd Ghani, D.-V.N. Vo, Recent advances in dry reforming of methane over Ni-based catalysts, J. Clean. Prod. 162 (2017) 170–185.
 https://doi.org/10.1016/J.JCLEPRO.2017.05.176.
- Y. Kathiraser, U. Oemar, E.T. Saw, Z. Li, S. Kawi, Kinetic and mechanistic aspects for CO₂ reforming of methane over Ni based catalysts, Chem. Eng. J. 278 (2015) 62–78. https://doi.org/10.1016/j.cej.2014.11.143.
- [33] W. Li, H. Wang, X. Jiang, J. Zhu, Z. Liu, X. Guo, C. Song, A short review of recent advances in CO₂ hydrogenation to hydrocarbons over heterogeneous catalysts, RSC Adv. 8 (2018) 7651–7669. https://doi.org/10.1039/c7ra13546g.
- [34] S. Jantarang, E.C. Lovell, T.H. Tan, J. Scott, R. Amal, Role of support in photothermal carbon dioxide hydrogenation catalysed by Ni/CexTiyO₂, Prog. Nat. Sci. Mater. Int. 28 (2018) 168–177. https://doi.org/10.1016/j.pnsc.2018.02.004.

- [35] L. Wang, Y. Yi, H. Guo, X. Tu, Atmospheric Pressure and Room Temperature Synthesis of Methanol through Plasma-Catalytic Hydrogenation of CO₂, ACS Catal. 8 (2018) 90–100. https://doi.org/10.1021/acscatal.7b02733.
- [36] R.M. Cuéllar-Franca, A. Azapagic, Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts, J. CO₂ Util. 9 (2015) 82–102. https://doi.org/10.1016/J.JCOU.2014.12.001.
- [37] A.A. Olajire, A review of mineral carbonation technology in sequestration of CO₂, J. Pet.
 Sci. Eng. 109 (2013) 364–392. https://doi.org/10.1016/J.PETROL.2013.03.013.
- [38] A. Azdarpour, M. Asadullah, E. Mohammadian, H. Hamidi, R. Junin, M.A. Karaei, A review on carbon dioxide mineral carbonation through pH-swing process, Chem. Eng. J. 279 (2015) 615–630. https://doi.org/10.1016/J.CEJ.2015.05.064.
- [39] K. Malik, S. Singh, S. Basu, A. Verma, Electrochemical reduction of CO₂ for synthesis of green fuel, Wiley Interdiscip. Rev. Energy Environ. 6 (2017) 1–17.
 https://doi.org/10.1002/wene.244.
- [40] L. Lei, Y. Wang, S. Fang, C. Ren, T. Liu, F. Chen, Efficient syngas generation for electricity storage through carbon gasification assisted solid oxide co-electrolysis, Appl. Energy. 173 (2016) 52–58. https://doi.org/10.1016/j.apenergy.2016.03.116.
- [41] M. Mikkelsen, M. Jørgensen, F.C. Krebs, The teraton challenge. A review of fixation and transformation of carbon dioxide, Energy Environ. Sci. 3 (2010) 43–81. https://doi.org/10.1039/b912904a.
- [42] J. Wu, Y. Huang, W. Ye, Y. Li, CO₂ Reduction: From the Electrochemical to Photochemical Approach, Adv. Sci. 4 (2017) 1–29. https://doi.org/10.1002/advs.201700194.
- [43] R. Snoeckx, A. Bogaerts, Plasma technology-a novel solution for CO₂ conversion?, Chem.
 Soc. Rev. 46 (2017) 5805–5863. https://doi.org/10.1039/c6cs00066e.
- [44] X. Tu, H.J. Gallon, J.C. Whitehead, Plasma-assisted reduction of a NiO/Al2O₃ catalyst in

atmospheric pressure H2/Ar dielectric barrier discharge, Catal. Today. 211 (2013) 120– 125. https://doi.org/10.1016/J.CATTOD.2013.03.024.

- [45] Y. Chisti, Biodiesel from microalgae, Biotechnol. Adv. 25 (2007) 294–306. https://doi.org/10.1016/J.BIOTECHADV.2007.02.001.
- [46] J.C. Lee, J.H. Kim, W.S. Chang, D. Pak, Biological conversion of CO₂ to CH₄ using hydrogenotrophic methanogen in a fixed bed reactor, J. Chem. Technol. Biotechnol. 87 (2012) 844–847. https://doi.org/10.1002/jctb.3787.
- [47] Y. Zheng, J. Wang, B. Yu, W. Zhang, J. Chen, J. Qiao, J. Zhang, A review of high temperature co-electrolysis of H₂O and CO₂ to produce sustainable fuels using solid oxide electrolysis cells (SOECs): Advanced materials and technology, Chem. Soc. Rev. 46 (2017) 1427–1463. https://doi.org/10.1039/c6cs00403b.
- [48] F. Ahmad, E.C. Lovell, H. Masood, P.J. Cullen, K.K. Ostrikov, J.A. Scott, R. Amal, Low-Temperature CO₂ Methanation: Synergistic Effects in Plasma-Ni Hybrid Catalytic System, ACS Sustain. Chem. Eng. 8 (2020) 1888–1898. https://doi.org/10.1021/acssuschemeng.9b06180.
- [49] M.D. Porosoff, B. Yan, J.G. Chen, Catalytic reduction of CO₂ by H₂ for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities, Energy Environ. Sci. 9 (2016)
 62–73. https://doi.org/10.1039/c5ee02657a.
- [50] J. Luo, I. Larrosa, C–H Carboxylation of Aromatic Compounds through CO₂ Fixation, ChemSusChem. 10 (2017) 3317–3332. https://doi.org/10.1002/cssc.201701058.
- [51] International Energy Agency, Putting CO2 to Use: Creating value from emissions, (2019). https://webstore.iea.org/putting-co2-to-use (accessed February 5, 2020).
- [52] A. Edrisi, Z. Mansoori, B. Dabir, Urea synthesis using chemical looping process –
 Techno-economic evaluation of a novel plant configuration for a green production, Int. J.
 Greenh. Gas Control. 44 (2016) 42–51. https://doi.org/10.1016/J.IJGGC.2015.10.020.
- [53] H. Al-kalbani, J. Xuan, S. García, H. Wang, Comparative energetic assessment of

methanol production from CO₂: Chemical versus electrochemical process, Appl. Energy. 165 (2016) 1–13. https://doi.org/10.1016/j.apenergy.2015.12.027.

- [54] R.J. da Silva, A.F. Pimentel, R.S. Monteiro, C.J.A. Mota, Synthesis of methanol and dimethyl ether from the CO₂ hydrogenation over Cu·ZnO supported on Al₂O₃ and Nb₂O₅, J. CO₂ Util. 15 (2016) 83–88. https://doi.org/10.1016/J.JCOU.2016.01.006.
- [55] G. Cinti, A. Baldinelli, A. Di Michele, U. Desideri, Integration of Solid Oxide Electrolyzer and Fischer-Tropsch: A sustainable pathway for synthetic fuel, Appl. Energy. 162 (2016) 308–320. https://doi.org/10.1016/J.APENERGY.2015.10.053.
- [56] L. Wang, Y. Yi, C. Wu, H. Guo, X. Tu, One-Step Reforming of CO₂ and CH₄ into High-Value Liquid Chemicals and Fuels at Room Temperature by Plasma-Driven Catalysis,
 Angew Chem Int Ed Engl. 56 (2017) 13679–13683.
 https://doi.org/10.1002/anie.201707131.
- [57] S. Wang, S. Guo, Y. Luo, Z. Qin, Y. Chen, M. Dong, J. Li, W. Fan, J. Wang, Direct synthesis of acetic acid from carbon dioxide and methane over Cu-modulated BEA, MFI, MOR and TON zeolites: A density functional theory study, Catal. Sci. Technol. 9 (2019) 6613–6626. https://doi.org/10.1039/c9cy01803d.
- [58] S. Liu, X. Wang, Polymers from carbon dioxide: Polycarbonates, polyurethanes, Curr.Opin. Green Sustain. Chem. 3 (2017) 61–66. https://doi.org/10.1016/j.cogsc.2016.08.003.
- [59] M.H. Wilson, J. Groppo, A. Placido, S. Graham, S.A. Morton, E. Santillan-Jimenez, A. Shea, M. Crocker, C. Crofcheck, R. Andrews, CO₂ recycling using microalgae for the production of fuels, Appl. Petrochemical Res. 4 (2014) 41–53. https://doi.org/10.1007/s13203-014-0052-3.
- [60] W. Blanken, M. Cuaresma, R.H. Wijffels, M. Janssen, Cultivation of microalgae on artificial light comes at a cost, Algal Res. 2 (2013) 333–340.
 https://doi.org/10.1016/J.ALGAL.2013.09.004.
- [61] P.S.C. Schulze, R. Guerra, H. Pereira, L.M. Schüler, J.C.S. Varela, Flashing LEDs for

Microalgal Production, Trends Biotechnol. 35 (2017) 1088–1101. https://doi.org/10.1016/J.TIBTECH.2017.07.011.

- P.J. Schnurr, D.G. Allen, Factors affecting algae biofilm growth and lipid production: A review, Renew. Sustain. Energy Rev. 52 (2015) 418–429.
 https://doi.org/10.1016/J.RSER.2015.07.090.
- [63] B. Cheirsilp, S. Torpee, Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fedbatch cultivation, Bioresour. Technol. 110 (2012) 510–516.
 https://doi.org/10.1016/J.BIORTECH.2012.01.125.
- [64] S.H. Seo, J.S. Ha, C. Yoo, A. Srivastava, C.Y. Ahn, D.H. Cho, H.J. La, M.S. Han, H.M.
 Oh, Light intensity as major factor to maximize biomass and lipid productivity of Ettlia sp.
 in CO2-controlled photoautotrophic chemostat, Bioresour. Technol. 244 (2017) 621–628.
 https://doi.org/10.1016/j.biortech.2017.08.020.
- [65] S. Ruangsomboon, J. Dimak, B. Jongput, I. Wiwatanaratanabutr, P. Kanyawongha,
 Outdoor open pond batch production of green microalga Botryococcus braunii for high
 hydrocarbon production: enhanced production with salinity, Nat. Sci. Reports. 10 (2020)
 1–12. https://doi.org/10.1038/s41598-020-59645-5.
- [66] I. Pancha, K. Chokshi, S. Mishra, Enhanced biofuel production potential with nutritional stress amelioration through optimization of carbon source and light intensity in Scenedesmus sp. CCNM 1077, Bioresour. Technol. 179 (2015) 565–572. https://doi.org/10.1016/j.biortech.2014.12.079.
- [67] J.C. Nzayisenga, X. Farge, S.L. Groll, A. Sellstedt, Effects of light intensity on growth and lipid production in microalgae grown in wastewater, Biotechnol. Biofuels. 13 (2020) 1–8. https://doi.org/10.1186/s13068-019-1646-x.
- [68] M.L. Bartley, W.J. Boeing, B.N. Dungan, F.O. Holguin, T. Schaub, pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading

organisms, J. Appl. Phycol. 26 (2014) 1431–1437. https://doi.org/10.1007/s10811-013-0177-2.

- [69] L. Zhu, E. Hiltunen, Q. Shu, W. Zhou, Z. Li, Z. Wang, Biodiesel production from algae cultivated in winter with artificial wastewater through pH regulation by acetic acid, Appl. Energy. 128 (2014) 103–110. https://doi.org/10.1016/J.APENERGY.2014.04.039.
- [70] G. Mujtaba, M. Rizwan, G. Kim, K. Lee, Removal of nutrients and COD through coculturing activated sludge and immobilized Chlorella vulgaris, Chem. Eng. J. 343 (2018) 155–162. https://doi.org/10.1016/j.cej.2018.03.007.
- [71] L. Yang, J. Chen, S. Qin, M. Zeng, Y. Jiang, L. Hu, P. Xiao, W. Hao, Z. Hu, A. Lei, J. Wang, Growth and lipid accumulation by different nutrients in the microalga Chlamydomonas reinhardtii, Biotechnol. Biofuels. 11 (2018) 1–12. https://doi.org/10.1186/s13068-018-1041-z.
- [72] H. Yu, J. Kim, C. Lee, Nutrient removal and microalgal biomass production from different anaerobic digestion effluents with Chlorella species, Sci. Rep. 9 (2019) 1–13. https://doi.org/10.1038/s41598-019-42521-2.
- [73] H. Zhang, W. Gong, L. Bai, R. Chen, W. Zeng, Z. Yan, G. Li, H. Liang, Aeration-induced CO2 stripping, instead of high dissolved oxygen, have a negative impact on algae–bacteria symbiosis (ABS) system stability and wastewater treatment efficiency, Chem. Eng. J. 382 (2020) 122957. https://doi.org/10.1016/j.cej.2019.122957.
- [74] I.A. Figueroa, T.P. Barnum, P.Y. Somasekhar, C.I. Carlström, A.L. Engelbrektson, J.D. Coates, Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway, Proc. Natl. Acad. Sci. U. S. A. 115 (2018) E92–E101. https://doi.org/10.1073/pnas.1715549114.
- [75] J.Y. Leu, Y.H. Lin, F.L. Chang, Conversion of CO₂ into CH₄ by methane-producing bacterium FJ10 under a pressurized condition, Chem. Eng. Res. Des. 89 (2011) 1879–1890. https://doi.org/10.1016/j.cherd.2011.02.033.

- [76] M. Köpke, C. Mihalcea, F.M. Liew, J.H. Tizard, M.S. Ali, J.J. Conolly, B. Al-Sinawi, S.D. Simpson, 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas, Appl. Environ. Microbiol. 77 (2011) 5467–5475. https://doi.org/10.1128/AEM.00355-11.
- S.W. Jones, A.G. Fast, E.D. Carlson, C.A. Wiedel, J. Au, M.R. Antoniewicz, E.T.
 Papoutsakis, B.P. Tracy, CO₂ fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion, Nat. Commun. 7 (2016) 12800.
 https://doi.org/10.1038/ncomms12800.
- S. Bajracharya, S. Srikanth, G. Mohanakrishna, R. Zacharia, D.P. Strik, D. Pant,
 Biotransformation of carbon dioxide in bioelectrochemical systems: State of the art and
 future prospects, J. Power Sources. 356 (2017) 256–273.
 https://doi.org/10.1016/J.JPOWSOUR.2017.04.024.
- [79] T. Zhang, H. Nie, T.S. Bain, H. Lu, M. Cui, O.L. Snoeyenbos-West, A.E. Franks, K.P. Nevin, T.P. Russell, D.R. Lovley, Improved cathode materials for microbial electrosynthesis, Energy Environ. Sci. 6 (2013) 217–224. https://doi.org/10.1039/c2ee23350a.
- [80] S. Venkata Mohan, J.A. Modestra, K. Amulya, S.K. Butti, G. Velvizhi, A Circular Bioeconomy with Biobased Products from CO₂ Sequestration, Trends Biotechnol. 34 (2016) 506–519. https://doi.org/10.1016/J.TIBTECH.2016.02.012.
- [81] J.S.C. Liou, D.L. Balkwill, G.R. Drake, R.S. Tanner, Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov, Int. J. Syst. Evol. Microbiol. 55 (2005) 2085–2091. https://doi.org/10.1099/ijs.0.63482-0.
- [82] B. Demirel, P. Scherer, The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review, Rev. Environ. Sci.

Biotechnol. 7 (2008) 173–190. https://doi.org/10.1007/s11157-008-9131-1.

- [83] J. Hu, L. Wang, S. Zhang, X. Fu, Y. Le, Optimization of electron donors to improve CO₂ fixation efficiency by a non-photosynthetic microbial community under aerobic condition using statistical experimental design, Bioresour. Technol. 101 (2010) 7062–7067. https://doi.org/10.1016/J.BIORTECH.2010.03.138.
- [84] J.-J. Hu, L. Wang, S.-P. Zhang, X.-H. Fu, Y.-Q. Le, H.-R. Li, Enhanced CO₂ fixation by a non-photosynthetic microbial community under anaerobic conditions: Optimization of electron donors, Bioresour. Technol. 102 (2011) 3220–3226. https://doi.org/10.1016/J.BIORTECH.2010.11.014.
- [85] Z. Summers, H. Fogarty, C. Leang, A.E. Franks, N. Malvankar, D.R. Lovley, Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria, Science (80-.). 330 (2010) 1413–1416. https://doi.org/10.1126/science.1196526.
- [86] F. Liu, A.E. Rotaru, P.M. Shrestha, N.S. Malvankar, K.P. Nevin, D.R. Lovley, Promoting direct interspecies electron transfer with activated carbon, Energy Environ. Sci. 5 (2012) 8982–8989. https://doi.org/10.1039/c2ee22459c.
- [87] Y. Jiang, M. Su, Y. Zhang, G. Zhan, Y. Tao, D. Li, Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate, Int. J. Hydrogen Energy. 38 (2013) 3497–3502. https://doi.org/10.1016/J.IJHYDENE.2012.12.107.
- [88] H. Nie, T. Zhang, M. Cui, H. Lu, D.R. Lovley, T.P. Russell, Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells, Phys. Chem. Chem. Phys. 15 (2013) 14290–14294. https://doi.org/10.1039/c3cp52697f.
- [89] J.B.A. Arends, S.A. Patil, H. Roume, K. Rabaey, Continuous long-term electricity-driven bioproduction of carboxylates and isopropanol from CO₂ with a mixed microbial community, J. CO₂ Util. 20 (2017) 141–149. https://doi.org/10.1016/J.JCOU.2017.04.014.
- [90] S. Srikanth, D. Singh, K. Vanbroekhoven, D. Pant, M. Kumar, S.K. Puri, S.S.V.

Ramakumar, Electro-biocatalytic conversion of carbon dioxide to alcohols using gas diffusion electrode, Bioresour. Technol. 265 (2018) 45–51. https://doi.org/10.1016/J.BIORTECH.2018.02.058.

- [91] L. Jourdin, S. Freguia, V. Flexer, J. Keller, Bringing High-Rate, CO₂-Based Microbial Electrosynthesis Closer to Practical Implementation through Improved Electrode Design and Operating Conditions, Environ. Sci. Technol. 50 (2016) 1982–1989. https://doi.org/10.1021/acs.est.5b04431.
- Z. Hou, P. Chen, H. Fang, X. Zheng, T. Yashima, Production of synthesis gas via methane reforming with CO₂ on noble metals and small amount of noble-(Rh-) promoted Ni catalysts, Int. J. Hydrogen Energy. 31 (2006) 555–561.
 https://doi.org/10.1016/J.IJHYDENE.2005.06.010.
- [93] S. De, J. Zhang, R. Luque, N. Yan, Ni-based bimetallic heterogeneous catalysts for energy and environmental applications, Energy Environ. Sci. 9 (2016) 3314–3347. https://doi.org/10.1039/c6ee02002j.
- [94] S. Sokolov, E. V. Kondratenko, M.-M. Pohl, A. Barkschat, U. Rodemerck, Stable low-temperature dry reforming of methane over mesoporous La₂O₃-ZrO₂ supported Ni catalyst, Appl. Catal. B Environ. 113–114 (2012) 19–30. https://doi.org/10.1016/J.APCATB.2011.09.035.
- Y. Song, E. Ozdemir, S. Ramesh, A. Adishev, S. Subramanian, A. Harale, M. Albuali, B. Fadhel, A. Jamal, D. Moon, S. Choi, C. Yavuz, Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO, Science (80-.). 367 (2020) 777–781. https://doi.org/10.1126/science.aav2412.
- [96] S.S. Itkulova, G.D. Zakumbaeva, Y.Y. Nurmakanov, A.A. Mukazhanova, A.K.
 Yermaganbetova, Syngas production by bireforming of methane over Co-based aluminasupported catalysts, Catal. Today. 228 (2014) 194–198.
 https://doi.org/10.1016/J.CATTOD.2014.01.013.

- [97] W. Li, Z. Zhao, F. Ding, X. Guo, G. Wang, Syngas production via steam-CO₂ dual reforming of methane over LA-Ni/ZrO₂ catalyst prepared by L-arginine ligand-assisted strategy: enhanced activity and stability, ACS Sustain. Chem. Eng. 3 (2015) 3461–3476. https://doi.org/10.1021/acssuschemeng.5b01277.
- [98] K. Oshima, T. Shinagawa, Y. Nogami, R. Manabe, S. Ogo, Y. Sekine, Low temperature catalytic reverse water gas shift reaction assisted by an electric field, Catal. Today. 232 (2014) 27–32. https://doi.org/10.1016/j.cattod.2013.11.035.
- [99] L. Pastor-Pérez, F. Baibars, E. Le Sache, H. Arellano-García, S. Gu, T.R. Reina, CO₂ valorisation via Reverse Water-Gas Shift reaction using advanced Cs doped Fe-Cu/Al₂O₃ catalysts, J. CO₂ Util. 21 (2017) 423–428. https://doi.org/10.1016/j.jcou.2017.08.009.
- [100] Y.A. Daza, R.A. Kent, M.M. Yung, J.N. Kuhn, Carbon dioxide conversion by reverse water-gas shift chemical looping on perovskite-type oxides, Ind. Eng. Chem. Res. 53 (2014) 5828–5837. https://doi.org/10.1021/ie5002185.
- B. Dai, S. Cao, H. Xie, G. Zhou, S. Chen, Reduction of CO₂ to CO via reverse water-gas shift reaction over CeO₂ catalyst, Korean J. Chem. Eng. 35 (2018) 421–427. https://doi.org/10.1007/s11814-017-0267-y.
- [102] C.S. Chen, W.H. Cheng, S.S. Lin, Mechanism of CO formation in reverse water-gas shift reaction over Cu/Al₂O₃ catalyst, Catal. Letters. 68 (2000) 45–48. https://doi.org/10.1023/A:1019071117449.
- [103] S.C. Yang, S.H. Pang, T.P. Sulmonetti, W.N. Su, J.F. Lee, B.J. Hwang, C.W. Jones, Synergy between Ceria Oxygen Vacancies and Cu Nanoparticles Facilitates the Catalytic Conversion of CO₂ to CO under Mild Conditions, ACS Catal. 8 (2018) 12056–12066. https://doi.org/10.1021/acscatal.8b04219.
- [104] L.F. Bobadilla, J.L. Santos, S. Ivanova, J.A. Odriozola, A. Urakawa, Unravelling the Role of Oxygen Vacancies in the Mechanism of the Reverse Water-Gas Shift Reaction by Operando DRIFTS and Ultraviolet-Visible Spectroscopy, ACS Catal. 8 (2018) 7455–

7467. https://doi.org/10.1021/acscatal.8b02121.

- [105] J. Ye, Q. Ge, C.J. Liu, Effect of PdIn bimetallic particle formation on CO₂ reduction over the Pd-In/SiO₂ catalyst, Chem. Eng. Sci. 135 (2015) 193–201. https://doi.org/10.1016/j.ces.2015.04.034.
- B. Yan, B. Zhao, S. Kattel, Q. Wu, S. Yao, D. Su, J.G. Chen, Tuning CO₂ hydrogenation selectivity via metal-oxide interfacial sites, J. Catal. 374 (2019) 60–71. https://doi.org/10.1016/j.jcat.2019.04.036.
- [107] D.H. Kim, S.W. Han, H.S. Yoon, Y.D. Kim, Reverse water gas shift reaction catalyzed by Fe nanoparticles with high catalytic activity and stability, J. Ind. Eng. Chem. 23 (2015)
 67–71. https://doi.org/10.1016/j.jiec.2014.07.043.
- [108] W.J. Lee, C. Li, H. Prajitno, J. Yoo, J. Patel, Y. Yang, S. Lim, Recent trend in thermal catalytic low temperature CO₂ methanation: A critical review, Catal. Today. (2020). https://doi.org/10.1016/j.cattod.2020.02.017.
- [109] J. Wambach, A. Baiker, A. Wokaun, CO2 hydrogenation over metal / zirconia catalysts
 CO CO hydrogenation over metal / zirconia catalysts, Phys. Chem. Chem. Phys. 1 (1999)
 5071–5080. https://doi.org/10.1039/A904923A.
- [110] K. Stangeland, D.Y. Kalai, H. Li, Z. Yu, Active and stable Ni based catalysts and processes for biogas upgrading: The effect of temperature and initial methane concentration on CO₂ methanation, Appl. Energy. 227 (2018) 206–212. https://doi.org/10.1016/j.apenergy.2017.08.080.
- [111] J.A.H. Lalinde, J.S. Jiang, G. Jai, J. Kopyscinski, Preparation and characterization of Ni/Al2O3 catalyst coatings on FeCrAl-loy plates used in a catalytic channel reactor with in-situ spatial profiling to study CO₂ methanation, Chem. Eng. J. 357 (2019) 435–446. https://doi.org/10.1016/j.cej.2018.09.161.
- [112] M. Cai, J. Wen, W. Chu, X. Cheng, Z. Li, Methanation of carbon dioxide on Ni/ZrO₂-Al₂O₃ catalysts: Effects of ZrO₂ promoter and preparation method of novel ZrO₂-Al₂O₃

carrier, J. Nat. Gas Chem. 20 (2011) 318–324. https://doi.org/10.1016/S1003-9953(10)60187-9.

- [113] L. He, Q. Lin, Y. Liu, Y. Huang, Unique catalysis of Ni-Al hydrotalcite derived catalyst in CO₂ methanation: cooperative effect between Ni nanoparticles and a basic support, J. Energy Chem. 23 (2014) 587–592. https://doi.org/10.1016/S2095-4956(14)60144-3.
- [114] S. Abate, C. Mebrahtu, E. Giglio, F. Deorsola, S. Bensaid, S. Perathoner, R. Pirone, G. Centi, Catalytic Performance of γ-Al₂O₃-ZrO₂-TiO₂-CeO₂ Composite Oxide Supported Ni-Based Catalysts for CO2 Methanation, Ind. Eng. Chem. Res. 55 (2016) 4451–4460. https://doi.org/10.1021/acs.iecr.6b00134.
- [115] S.G. Jadhav, P.D. Vaidya, B.M. Bhanage, J.B. Joshi, Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies, Chem. Eng. Res. Des. 92 (2014) 2557–2567. https://doi.org/10.1016/J.CHERD.2014.03.005.
- [116] B. An, J. Zhang, K. Cheng, P. Ji, C. Wang, W. Lin, Confinement of Ultrasmall Cu/ZnOx Nanoparticles in Metal-Organic Frameworks for Selective Methanol Synthesis from Catalytic Hydrogenation of CO₂, J. Am. Chem. Soc. 139 (2017) 3834–3840. https://doi.org/10.1021/jacs.7b00058.
- [117] X. Fang, Y. Men, F. Wu, Q. Zhao, R. Singh, P. Xiao, T. Du, P.A. Webley, Promoting CO₂ hydrogenation to methanol by incorporating adsorbents into catalysts: Effects of hydrotalcite, Chem. Eng. J. 378 (2019) 122052. https://doi.org/10.1016/j.cej.2019.122052.
- [118] O. Martin, A.J. Martín, C. Mondelli, S. Mitchell, T.F. Segawa, R. Hauert, C. Drouilly, D. Curulla-Ferré, J. Pérez-Ramírez, Indium oxide as a superior catalyst for methanol synthesis by CO₂ hydrogenation, Angew. Chemie Int. Ed. 55 (2016) 6261–6265. https://doi.org/10.1002/anie.201600943.
- [119] N. Rui, Z. Wang, K. Sun, J. Ye, Q. Ge, C.-J. Lui, CO₂ hydrogenation to methanol over Pd/In₂O₃: effects of Pd and oxygen vacancy, Appl. Catal. B Environ. 218 (2017) 488–497. https://doi.org/10.1016/j.apcatb.2017.06.069.

- [120] K. Saravanan, H. Ham, N. Tsubaki, J.W. Bae, Recent progress for direct synthesis of dimethyl ether from syngas on the heterogeneous bifunctional hybrid catalysts, Appl. Catal. B Environ. 217 (2017) 494–522. https://doi.org/10.1016/j.apcatb.2017.05.085.
- [121] A. Bansode, A. Urakawa, Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products, J. Catal. 309 (2014) 66–70.
 https://doi.org/10.1016/j.jcat.2013.09.005.
- [122] W. Wang, S. Wang, X. Ma, J. Gong, Recent advances in catalytic hydrogenation of carbon dioxide, Chem. Soc. Rev. 40 (2011) 3703–3727. https://doi.org/10.1039/c1cs15008a.
- [123] X. Liu, M. Wang, C. Zhou, W. Zhou, K. Cheng, J. Kang, Q. Zhang, W. Deng, Y. Wang, Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa₂O₄ and SAPO-34, Chem. Commun. 54 (2018) 140–143. https://doi.org/10.1039/c7cc08642c.
- [124] Z. Li, J. Wang, Y. Qu, H. Liu, C. Tang, S. Miao, Z. Feng, H. An, C. Li, Highly Selective Conversion of Carbon Dioxide to Lower Olefins, ACS Catal. 7 (2017) 8544–8548. https://doi.org/10.1021/acscatal.7b03251.
- P. Gao, S. Li, X. Bu, S. Dang, Z. Liu, H. Wang, L. Zhong, M. Qiu, C. Yang, J. Cai, W. Wei, Y. Sun, Direct conversion of CO₂ into liquid fuels with high selectivity over a bifunctional catalyst, Nat. Chem. 9 (2017) 1019–1024. https://doi.org/10.1038/nchem.2794.
- T. Riedel, M. Claeys, H. Schulz, G. Schaub, S.-S. Nam, K.-W. Jun, M.-J. Choi, G. Kishan, K.-W. Lee, Comparative study of Fischer–Tropsch synthesis with H₂/CO and H₂/CO₂ syngas using Fe- and Co-based catalysts, Appl. Catal. A Gen. 186 (1999) 201–213. https://doi.org/10.1016/S0926-860X(99)00173-8.
- [127] J.A. Díaz, A.R. de la Osa, P. Sánchez, A. Romero, J.L. Valverde, Influence of CO2 cofeeding on Fischer–Tropsch fuels production over carbon nanofibers supported cobalt catalyst, Catal. Commun. 44 (2014) 57–61.

https://doi.org/10.1016/J.CATCOM.2013.07.033.

- [128] Y. Zhang, G. Jacobs, D.E. Sparks, M.E. Dry, B.H. Davis, CO and CO₂ hydrogenation study on supported cobalt Fischer–Tropsch synthesis catalysts, Catal. Today. 71 (2002) 411–418. https://doi.org/10.1016/S0920-5861(01)00468-0.
- [129] J. Scalbert, I. Clémençon, P. Lecour, L. Braconnier, F. Diehl, C. Legens, Simultaneous investigation of the structure and surface of a Co/alumina catalyst during Fischer-Tropsch synthesis: discrimination of various phenomena with beneficial or disadvantageous impact on activity, Catal. Sci. Technol. 5 (2015) 4193–4201. https://doi.org/10.1039/c5cy00556f.
- [130] A.A. Mirzaei, S. Vahid, M. Feyzi, Fischer-tropsch synthesis over iron manganese catalysts: Effect of preparation and operating conditions on catalyst performance, Adv. Phys. Chem. 2009 (2009) 1–12. https://doi.org/10.1155/2009/151489.
- [131] Y. Liu, T. Hanaoka, T. Miyazawa, K. Murata, K. Okabe, K. Sakanishi, Fischer–Tropsch synthesis in slurry-phase reactors over Mn- and Zr-modified Co/SiO₂ catalysts, Fuel Process. Technol. 90 (2009) 901–908. https://doi.org/10.1016/J.FUPROC.2009.04.004.
- [132] J. Wei, Q. Ge, R. Yao, Z. Wen, C. Fang, L. Guo, H. Xu, J. Sun, Directly converting CO₂ into a gasoline fuel, Nat. Commun. 8 (2017) 15174.
 https://doi.org/10.1038/ncomms15174.
- [133] X. Xiang, L. Guo, X. Wu, X. Ma, Y. Xia, Urea formation from carbon dioxide and ammonia at atmospheric pressure, Environ. Chem. Lett. 10 (2012) 295–300. https://doi.org/10.1007/s10311-012-0366-2.
- [134] C. Chen, X. Zhu, X. Wen, Y. Zhou, L. Zhou, H. Li, L. Tao, Q. Li, S. Du, T. Liu, D. Yan,
 C. Xie, Y. Zou, Y. Wang, R. Chen, J. Huo, Y. Li, J. Cheng, H. Su, X. Zhao, W. Cheng, Q.
 Liu, H. Lin, J. Luo, J. Chen, M. Dong, K. Cheng, C. Li, S. Wang, Coupling N₂ and CO₂ in
 H₂O to synthesize urea under ambient conditions, Nat. Chem. 12 (2020) 717–724.
 https://doi.org/10.1038/s41557-020-0481-9.
- [135] X. Wang, H. Wang, Y. Sun, Synthesis of Acrylic Acid Derivatives from CO₂ and

Ethylene, Chem. 3 (2017) 211–228. https://doi.org/10.1016/j.chempr.2017.07.006.

- [136] G.A. Olah, B. Török, J.P. Joschek, I. Bucsi, P.M. Esteves, G. Rasul, G.K.S. Prakash, Efficient chemoselective carboxylation of aromatics to arylcarboxylic acids with a superelectrophilically activated carbon dioxide-Al2Cl6/Al system, J. Am. Chem. Soc. 124 (2002) 11379–11391. https://doi.org/10.1021/ja0207870.
- [137] M. Gu, Z. Cheng, Carboxylation of Aromatics by CO₂ under "Si/Al Based Frustrated Lewis Pairs" Catalytic System, J. Mater. Sci. Chem. Eng. 03 (2015) 103–108. https://doi.org/10.4236/msce.2015.31015.
- P. Munshi, E.J. Beckman, Effect of incubation of CO₂ and lewis acid on the generation of toluic acid from toluene and CO₂, Ind. Eng. Chem. Res. 48 (2009) 1059–1062. https://doi.org/10.1021/ie801524e.
- [139] S. Inoue, H. Koinuma, T. Tsuruta, Copolymerization of carbon dioxide and epoxide, Polym. Lett. 7 (1969) 287–292.
 https://doi.org/https://doi.org/10.1002/macp.1969.021300112.
- [140] Z. Li, Y. Qin, X. Zhao, F. Wang, S. Zhang, X. Wang, Synthesis and stabilization of high-molecular-weight poly(propylene carbonate) from ZnCo-based double metal cyanide catalyst, Eur. Polym. J. 47 (2011) 2152–2157.
 https://doi.org/10.1016/J.EURPOLYMJ.2011.08.004.
- [141] Y.Z. Meng, L.C. Du, S.C. Tiong, Q. Zhu, A.S. Hay, Effects of the structure and morphology of zinc glutarate on the fixation of carbon dioxide into polymer, J. Polym. Sci. Part A Polym. Chem. 40 (2002) 3579–3591. https://doi.org/10.1002/pola.10452.
- [142] G.P. Wu, W.M. Ren, Y. Luo, B. Li, W.Z. Zhang, X.B. Lu, Enhanced asymmetric induction for the copolymerization of CO₂ and cyclohexene oxide with unsymmetric enantiopure SalenCo(III) complexes: Synthesis of crystalline CO₂-based polycarbonate, J. Am. Chem. Soc. 134 (2012) 5682–5688. https://doi.org/10.1021/ja300667y.
- [143] Y.C. Su, C.Y. Tsai, L.S. Huang, C.H. Lin, B.T. Ko, Synthesis and characterization of di-

nuclear bis(benzotriazole iminophenolate) cobalt complexes: Catalysis for the copolymerization of carbon dioxide with epoxides, Dalt. Trans. 48 (2019) 12239–12249. https://doi.org/10.1039/c9dt02174d.

- [144] S. Kissling, M.W. Lehenmeier, P.T. Altenbuchner, A. Kronast, M. Reiter, P. Deglmann, U.B. Seemann, B. Rieger, Dinuclear zinc catalysts with unprecedented activities for the copolymerization of cyclohexene oxide and CO₂, Chem. Commun. 51 (2015) 4579–4582. https://doi.org/10.1039/c5cc00784d.
- [145] Y. Gao, Y. Qin, X. Zhao, F. Wang, X. Wang, Selective synthesis of oligo(carbonate-ether) diols from copolymerization of CO₂ and propylene oxide under zinc-cobalt double metal cyanide complex, J. Polym. Res. 19 (2012) 9878. https://doi.org/10.1007/s10965-012-9878-5.
- [146] Y. Gao, L. Gu, Y. Qin, X. Wang, F. Wang, Dicarboxylic acid promoted immortal copolymerization for controllable synthesis of low-molecular weight oligo(carbonateether) diols with tunable carbonate unit content, J. Polym. Sci. Part A Polym. Chem. 50 (2012) 5177–5184. https://doi.org/10.1002/pola.26366.
- [147] S. Liu, Y. Qin, X. Chen, X. Wang, F. Wang, One-pot controllable synthesis of oligo(carbonate-ether) triol using a Zn-Co-DMC catalyst: The special role of trimesic acid as an initiation-transfer agent, Polym. Chem. 5 (2014) 6171–6179. https://doi.org/10.1039/c4py00578c.
- [148] R. Saada, O. AboElazayem, S. Kellici, T. Heil, D. Morgan, G.I. Lampronti, B. Saha, Greener synthesis of dimethyl carbonate using a novel tin-zirconia/graphene nanocomposite catalyst, Appl. Catal. B Environ. 226 (2018) 451–462. https://doi.org/10.1016/J.APCATB.2017.12.081.
- [149] A.A. Greish, E.D. Finashina, O.P. Tkachenko, E. V. Shuvalova, L.M. Kustov, Synthesis of dimethyl carbonate from methanol and CO₂ on the SnO₂/Al₂O₃-based catalyst, Mendeleev Commun. 26 (2016) 497–499. https://doi.org/10.1016/J.MENCOM.2016.11.012.

- [150] A. Li, Y. Pu, F. Li, J. Luo, N. Zhao, F. Xiao, Synthesis of dimethyl carbonate from methanol and CO₂ over Fe–Zr mixed oxides, J. CO₂ Util. 19 (2017) 33–39. https://doi.org/10.1016/J.JCOU.2017.02.016.
- [151] H. Yasuda, L.-N. He, T. Sakakura, Cyclic Carbonate Synthesis from Supercritical Carbon Dioxide and Epoxide over Lanthanide Oxychloride, J. Catal. 209 (2002) 547–550. https://doi.org/10.1006/JCAT.2002.3662.
- [152] Y.M. Shen, W.L. Duan, M. Shi, Chemical fixation of carbon dioxide catalyzed by binaphthyldiamino Zn, Cu, and Co salen-type complexes, J. Org. Chem. 68 (2003) 1559– 1562. https://doi.org/10.1021/jo020191j.
- [153] X.B. Lu, D.J. Darensbourg, Cobalt catalysts for the coupling of CO₂ and epoxides to provide polycarbonates and cyclic carbonates, Chem. Soc. Rev. 41 (2012) 1462–1484. https://doi.org/10.1039/c1cs15142h.
- [154] K.M. Tomczyk, P.A. Guńka, P.G. Parzuchowski, J. Zachara, G. Rokicki, Intramolecular etherification of five-membered cyclic carbonates bearing hydroxyalkyl groups, Green Chem. 14 (2012) 1749–1758. https://doi.org/10.1039/c2gc35265f.
- [155] J.A. Stewart, R. Drexel, B. Arstad, E. Reubsaet, B.M. Weckhuysen, P.C.A. Bruijnincx, Homogeneous and heterogenised masked N-heterocyclic carbenes for bio-based cyclic carbonate synthesis, Green Chem. 18 (2016) 1605–1618. https://doi.org/10.1039/c5gc02046h.
- [156] A.A. Chaugule, A.H. Tamboli, H. Kim, Ionic liquid as a catalyst for utilization of carbon dioxide to production of linear and cyclic carbonate, Fuel. 200 (2017) 316–332.
 https://doi.org/10.1016/J.FUEL.2017.03.077.
- [157] J. Liu, G. Yang, Y. Liu, D. Wu, X. Hu, Z. Zhang, Metal-free imidazolium hydrogen carbonate ionic liquids as bifunctional catalysts for the one-pot synthesis of cyclic carbonates from olefins and CO₂, Green Chem. 21 (2019) 3834–3838. https://doi.org/10.1039/c9gc01088b.

- [158] M. Back, M. Kuehn, H. Stanjek, S. Peiffer, Reactivity of alkaline lignite fly ashes towards CO₂ in water, Environ. Sci. Technol. 42 (2008) 4520–4526. https://doi.org/10.1021/es702760v.
- [159] M. Tu, H. Zhao, Z. Lei, L. Wang, D. Chen, H. Yu, T. Qi, Aqueous carbonation of steel slag: A kinetics study, ISIJ Int. 55 (2015) 2509–2514.
 https://doi.org/10.2355/isijinternational.ISIJINT-2015-142.
- [160] A. Ebrahimi, M. Saffari, D. Milani, A. Montoya, M. Valix, A. Abbas, Sustainable transformation of fly ash industrial waste into a construction cement blend via CO₂ carbonation, J. Clean. Prod. 156 (2017) 660–669. https://doi.org/10.1016/J.JCLEPRO.2017.04.037.
- [161] S.Y. Pan, T.C. Chung, C.C. Ho, C.J. Hou, Y.H. Chen, P.C. Chiang, CO₂ Mineralization and Utilization using Steel Slag for Establishing a Waste-to-Resource Supply Chain, Nat. Sci. Rep. 7 (2017) 1–11. https://doi.org/10.1038/s41598-017-17648-9.
- [162] Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrocatalytic process of CO selectivity in electrochemical reduction of CO₂ at metal electrodes in aqueous media, Electrochim. Acta. 39 (1994) 1833–1839. https://doi.org/10.1016/0013-4686(94)85172-7.
- T. Zheng, K. Jiang, H. Wang, Recent Advances in Electrochemical CO₂-to-CO Conversion on Heterogeneous Catalysts, Adv. Mater. 30 (2018) 1–15. https://doi.org/10.1002/adma.201802066.
- [164] S. Verma, B. Kim, H.R.M. Jhong, S. Ma, P.J.A. Kenis, A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO₂, ChemSusChem. 9 (2016)
 1972–1979. https://doi.org/10.1002/cssc.201600394.
- [165] H.-Y. Kim, I. Choi, S.H. Ahn, S.J. Hwang, S.J. Yoo, J. Han, J. Kim, H. Park, J.H. Jang, S.-K. Kim, Analysis on the effect of operating conditions on electrochemical conversion of carbon dioxide to formic acid, Int. J. Hydrogen Energy. 39 (2014) 16506–16512.
 https://doi.org/10.1016/J.IJHYDENE.2014.03.145.

- [166] Q. Wang, H. Dong, H. Yu, Fabrication of a novel tin gas diffusion electrode for electrochemical reduction of carbon dioxide to formic acid, RSC Adv. 4 (2014) 59970– 59976. https://doi.org/10.1039/c4ra10775f.
- [167] H. Yang, J.J. Kaczur, S.D. Sajjad, R.I. Masel, Electrochemical conversion of CO₂ to formic acid utilizing Sustainion[™] membranes, J. CO₂ Util. 20 (2017) 208–217. https://doi.org/10.1016/J.JCOU.2017.04.011.
- [168] R. Kortlever, I. Peters, S. Koper, M.T.M. Koper, Electrochemical CO₂ Reduction to Formic Acid at Low Overpotential and with High Faradaic Efficiency on Carbon-Supported Bimetallic Pd-Pt Nanoparticles, ACS Catal. 5 (2015) 3916–3923. https://doi.org/10.1021/acscatal.5b00602.
- [169] H. Wu, J. Song, C. Xie, Y. Hu, B. Han, Highly efficient electrochemical reduction of CO₂ into formic acid over lead dioxide in an ionic liquid-catholyte mixture, Green Chem. 20 (2018) 1765–1769. https://doi.org/10.1039/c8gc00471d.
- [170] K.J.P. Schouten, Y. Kwon, C.J.M. Van Der Ham, Z. Qin, M.T.M. Koper, A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes, Chem. Sci. 2 (2011) 1902–1909. https://doi.org/10.1039/c1sc00277e.
- [171] K.P. Kuhl, T. Hatsukade, E.R. Cave, D.N. Abram, J. Kibsgaard, T.F. Jaramillo, Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces, J. Am. Chem. Soc. 136 (2014) 14107–14113. https://doi.org/10.1021/ja505791r.
- [172] J. Shen, R. Kortlever, R. Kas, Y.Y. Birdja, O. Diaz-Morales, Y. Kwon, I. Ledezma-Yanez, K.J.P. Schouten, G. Mul, M.T.M. Koper, Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin, Nat. Commun. 6 (2015) 8177. https://doi.org/10.1038/ncomms9177.
- [173] D. Yang, Q. Zhu, C. Chen, H. Liu, Z. Liu, Z. Zhao, X. Zhang, S. Liu, B. Han, Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts, Nat.

Commun. 10 (2019) 677. https://doi.org/10.1038/s41467-019-08653-9.

- [174] C.M. Stoots, J.E. O'Brien, J.S. Herring, J.J. Hartvigsen, Syngas production via hightemperature coelectrolysis of steam and carbon dioxide, J. Fuel Cell Sci. Technol. 6 (2009) 0110141–01101412. https://doi.org/10.1115/1.2971061.
- [175] C. Graves, S.D. Ebbesen, M. Mogensen, Co-electrolysis of CO₂ and H₂O in solid oxide cells: Performance and durability, Solid State Ionics. 192 (2011) 398–403. https://doi.org/10.1016/J.SSI.2010.06.014.
- [176] S.D. Ebbesen, C. Graves, M. Mogensen, Production of synthetic fuels by co-electrolysis of steam and carbon dioxide, Int. J. Green Energy. 6 (2009) 646–660. https://doi.org/10.1080/15435070903372577.
- [177] X. Sun, M. Chen, Y.-L. Liu, P. Hjalmarsson, S.D. Ebbesen, S.H. Jensen, M.B. Mogensen,
 P.V. Hendriksen, Durability of Solid Oxide Electrolysis Cells for Syngas Production, J.
 Electrochem. Soc. 160 (2013) F1074–F1080. https://doi.org/10.1149/2.106309jes.
- [178] W. Li, H. Wang, Y. Shi, N. Cai, Performance and methane production characteristics of H₂O–CO₂ co-electrolysis in solid oxide electrolysis cells, Int. J. Hydrogen Energy. 38 (2013) 11104–11109. https://doi.org/10.1016/J.IJHYDENE.2013.01.008.
- [179] C. Yang, J. Li, J. Newkirk, V. Baish, R. Hu, Y. Chen, F. Chen, Co-electrolysis of H₂O and CO₂ in a solid oxide electrolysis cell with hierarchically structured porous electrodes, J. Mater. Chem. A. 3 (2015) 15913–15919. https://doi.org/10.1039/c5ta03264d.
- [180] X. Chen, C. Guan, G. Xiao, X. Du, J.Q. Wang, Syngas production by high temperature steam/CO₂ coelectrolysis using solid oxide electrolysis cells, Faraday Discuss. 182 (2015) 341–351. https://doi.org/10.1039/c5fd00017c.
- [181] M.T. Mehran, S.-B. Yu, D.-Y. Lee, J.-E. Hong, S.-B. Lee, S.-J. Park, R.-H. Song, T.-H. Lim, Production of syngas from H₂O/CO₂ by high-pressure coelectrolysis in tubular solid oxide cells, Appl. Energy. 212 (2018) 759–770. https://doi.org/10.1016/J.APENERGY.2017.12.078.

- [182] S. Zhang, X. Yin, Y. Zheng, Enhanced photocatalytic reduction of CO₂ to methanol by ZnO nanoparticles deposited on ZnSe nanosheet, Chem. Phys. Lett. 693 (2018) 170–175. https://doi.org/10.1016/J.CPLETT.2018.01.018.
- [183] Q.-H. Zhang, W.-D. Han, Y.-J. Hong, J.-G. Yu, Photocatalytic reduction of CO₂ with H₂O on Pt-loaded TiO₂ catalyst, Catal. Today. 148 (2009) 335–340.
 https://doi.org/10.1016/J.CATTOD.2009.07.081.
- [184] X. Cheng, R. Chen, X. Zhu, Q. Liao, L. An, D. Ye, X. He, S. Li, L. Li, An optofluidic planar microreactor for photocatalytic reduction of CO₂ in alkaline environment, Energy. 120 (2017) 276–282. https://doi.org/10.1016/J.ENERGY.2016.11.081.
- [185] C. Zhao, A. Krall, H. Zhao, Q. Zhang, Y. Li, Ultrasonic spray pyrolysis synthesis of Ag/TiO₂ nanocomposite photocatalysts for simultaneous H₂ production and CO₂ reduction, Int. J. Hydrogen Energy. 37 (2012) 9967–9976. https://doi.org/10.1016/J.IJHYDENE.2012.04.003.
- [186] Q. Li, L. Zong, C. Li, J. Yang, Photocatalytic reduction of CO₂ on MgO/TiO₂ nanotube films, Appl. Surf. Sci. 314 (2014) 458–463.
 https://doi.org/10.1016/J.APSUSC.2014.07.019.
- [187] J. Olowoyo, M. Kumar, B. Singh, V. Oninla, J. Babalola, H. Valdes, A. Vorontsov, U. Kumar, Self-assembled reduced graphene oxide-TiO₂ nanocomposite: Synthesis, DFTB+ calculations, and enhanced photocatalytic reduction of CO₂ to methanol, Carbon N. Y. 147 (2019) 385–397. https://doi.org/https://doi.org/10.1016/j.carbon.2019.03.019.
- [188] X. Tu, J.C. Whitehead, Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: Understanding the synergistic effect at low temperature, Appl. Catal. B Environ. 125 (2012) 439–448. https://doi.org/10.1016/J.APCATB.2012.06.006.
- [189] Q. Wang, B.H. Yan, Y. Jin, Y. Cheng, Dry reforming of methane in a dielectric barrier discharge reactor with Ni/Al₂O₃ Catalyst: Interaction of catalyst and plasma, Energy and Fuels. 23 (2009) 4196–4201. https://doi.org/10.1021/ef900286j.

- [190] X. Zheng, S. Tan, L. Dong, S. Li, H. Chen, Plasma-assisted catalytic dry reforming of methane: Highly catalytic performance of nickel ferrite nanoparticles embedded in silica, J. Power Sources. 274 (2015) 286–294. https://doi.org/10.1016/J.JPOWSOUR.2014.10.065.
- [191] S. Mahammadunnisa, E.L. Reddy, D. Ray, C. Subrahmanyam, J.C. Whitehead, CO₂ reduction to syngas and carbon nanofibres by plasma-assisted in situ decomposition of water, Int. J. Greenh. Gas Control. 16 (2013) 361–363. https://doi.org/10.1016/J.IJGGC.2013.04.008.
- [192] K. Zhang, B. Eliasson, U. Kogelschatz, Direct conversion of greenhouse gases to synthesis gas and C4 hydrocarbons over zeolite HY promoted by a dielectric-barrier discharge, Ind. Eng. Chem. Res. 41 (2002) 1462–1468. https://doi.org/10.1021/ie0105021.
- [193] H. Long, S. Shang, X. Tao, Y. Yin, X. Dai, CO₂ reforming of CH₄ by combination of cold plasma jet and Ni/γ-Al₂O₃ catalyst, Int. J. Hydrogen Energy. 33 (2008) 5510–5515. https://doi.org/10.1016/J.IJHYDENE.2008.05.026.
- [194] H.J. Gallon, X. Tu, J.C. Whitehead, Effects of reactor packing materials on H₂ production by CO 2 reforming of CH 4 in a dielectric barrier discharge, Plasma Process. Polym. 9 (2012) 90–97. https://doi.org/10.1002/ppap.201100130.
- [195] J.P. Stempien, Q. Sun, S.H. Chan, Solid Oxide Electrolyzer Cell Modeling: A Review, J.Power Technol. 93 (2013) 216–246.
- [196] B.S. Kim, B.G. Kang, S.H. Choi, T.G. Kim, Data modeling versus simulation modeling in the big data era: Case study of a greenhouse control system, Simulation. 93 (2017) 579– 594. https://doi.org/10.1177/0037549717692866.
- [197] D. Recio-Garrido, M. Perrier, B. Tartakovsky, Modeling, optimization and control of bioelectrochemical systems, Chem. Eng. J. 289 (2016) 180–190. https://doi.org/10.1016/j.cej.2015.11.112.
- [198] G. Samarakoon, C. Dinamarca, A.B.T. Nelabhotla, D. Winkler, R. Bakke, Modelling bio-

electrochemical CO₂ reduction to methane, in: 10th Trondheim Conf. CO2 Capture, Transp. Storage, Trondheim, 2019: pp. 55–61.

- [199] I. Dimitriou, P. García-Gutiérrez, R.H. Elder, R.M. Cuéllar-Franca, A. Azapagic, R.W.K. Allen, Carbon dioxide utilisation for production of transport fuels: Process and economic analysis, Energy Environ. Sci. 8 (2015) 1775–1789. https://doi.org/10.1039/c4ee04117h.
- [200] J.P. Stempien, M. Ni, Q. Sun, S.H. Chan, Thermodynamic analysis of combined Solid Oxide Electrolyzer and Fischer–Tropsch processes, Energy. 81 (2015) 682–690. https://doi.org/10.1016/J.ENERGY.2015.01.013.
- [201] B. Chen, H. Xu, M. Ni, Modelling of SOEC-FT reactor: Pressure effects on methanation process, Appl. Energy. 185 (2017) 814–824.
 https://doi.org/10.1016/J.APENERGY.2016.10.095.
- [202] G. Herz, E. Reichelt, M. Jahn, Techno-economic analysis of a co-electrolysis-based synthesis process for the production of hydrocarbons, Appl. Energy. 215 (2018) 309–320. https://doi.org/10.1016/J.APENERGY.2018.02.007.
- [203] M. Samavati, A. Martin, V. Nemanova, M. Santarelli, Integration of solid oxide electrolyser, entrained gasification, and Fischer-Tropsch process for synthetic diesel production: Thermodynamic analysis, Int. J. Hydrogen Energy. 43 (2018) 4785–4803. https://doi.org/10.1016/J.IJHYDENE.2018.01.138.
- [204] L. Wang, M. Chen, R. Küngas, T.-E. Lin, S. Diethelm, F. Maréchal, J. Van herle, Powerto-fuels via solid-oxide electrolyzer: Operating window and techno-economics, Renew. Sustain. Energy Rev. 110 (2019) 174–187. https://doi.org/10.1016/J.RSER.2019.04.071.
- [205] Y. Luo, X. Wu, Y. Shi, A.F. Ghoniem, N. Cai, Exergy analysis of an integrated solid oxide electrolysis cell-methanation reactor for renewable energy storage, Appl. Energy. 215 (2018) 371–383. https://doi.org/10.1016/J.APENERGY.2018.02.022.
- [206] M. Bello, P. Ranganathan, F. Brennan, Dynamic modelling of microalgae cultivation process in high rate algal wastewater pond, Algal Res. 24 (2017) 457–466.

https://doi.org/10.1016/J.ALGAL.2016.10.016.

- [207] S.J. Yoo, J.H. Kim, J.M. Lee, Dynamic modelling of mixotrophic microalgal photobioreactor systems with time-varying yield coefficient for the lipid consumption, Bioresour. Technol. 162 (2014) 228–235. https://doi.org/10.1016/J.BIORTECH.2014.03.128.
- [208] D. Zhang, E.A.D.R. Chanona, V.S. Vassiliadis, B. Tamburic, Analysis of green algal growth via dynamic model simulation and process optimization, Biotechnol. Bioeng. 112 (2015) 2025–2039. https://doi.org/10.1002/bit.25610.
- [209] A. Solimeno, R. Samsó, E. Uggetti, B. Sialve, J.-P. Steyer, A. Gabarró, J. García, New mechanistic model to simulate microalgae growth, Algal Res. 12 (2015) 350–358. https://doi.org/10.1016/J.ALGAL.2015.09.008.
- [210] E.A. del Rio-Chanona, J. Liu, J.L. Wagner, D. Zhang, Y. Meng, S. Xue, N. Shah, Dynamic modeling of green algae cultivation in a photobioreactor for sustainable biodiesel production, Biotechnol. Bioeng. 115 (2018) 359–370. https://doi.org/10.1002/bit.26483.
- [211] J. Zambrano, I. Krustok, E. Nehrenheim, B. Carlsson, A simple model for algae-bacteria interaction in photo-bioreactors, Algal Res. 19 (2016) 155–161. https://doi.org/10.1016/J.ALGAL.2016.07.022.
- [212] A. Alarifi, Z. Liu, F.S. Erenay, A. Elkamel, E. Croiset, Dynamic Optimization of Lurgi Type Methanol Reactor Using Hybrid GA-GPS Algorithm: The Optimal Shell
 Temperature Trajectory and Carbon Dioxide Utilization, Ind. Eng. Chem. Res. 55 (2016) 1164–1173. https://doi.org/10.1021/acs.iecr.5b02918.
- [213] A. Banerjee, Y. Wang, J. Diercks, O. Deutschmann, Hierarchical modeling of solid oxide cells and stacks producing syngas via H₂O/CO₂ Co-electrolysis for industrial applications, Appl. Energy. 230 (2018) 996–1013. https://doi.org/10.1016/J.APENERGY.2018.08.122.
- [214] C. Varrone, I. V. Skiadas, H.N. Gavala, Effect of hydraulic retention time on the modelling and optimization of joint 1,3 PDO and BuA production from 2G glycerol in a

chemostat process, Chem. Eng. J. 347 (2018) 525–534. https://doi.org/10.1016/j.cej.2018.04.071.

- [215] N. Park, M.-J. Park, S.-C. Baek, K.-S. Ha, Y.-J. Lee, G. Kwak, H.-G. Park, K.-W. Jun, Modeling and optimization of the mixed reforming of methane: Maximizing CO₂ utilization for non-equilibrated reaction, Fuel. 115 (2014) 357–365. https://doi.org/10.1016/J.FUEL.2013.07.035.
- [216] M. Maestri, D.G. Vlachos, A. Beretta, G. Groppi, E. Tronconi, Steam and dry reforming of methane on Rh: Microkinetic analysis and hierarchy of kinetic models, J. Catal. 259 (2008) 211–222. https://doi.org/10.1016/J.JCAT.2008.08.008.
- [217] K. Al-Ali, S. Kodama, H. Sekiguchi, Modeling and simulation of methane dry reforming in direct-contact bubble reactor, Sol. Energy. 102 (2014) 45–55. https://doi.org/10.1016/J.SOLENER.2014.01.010.
- [218] Y. Luo, Y. Shi, W. Li, N. Cai, Comprehensive modeling of tubular solid oxide electrolysis cell for co-electrolysis of steam and carbon dioxide, Energy. 70 (2014) 420–434. https://doi.org/10.1016/J.ENERGY.2014.04.019.
- [219] V. Menon, Q. Fu, V.M. Janardhanan, O. Deutschmann, A model-based understanding of solid-oxide electrolysis cells (SOECs) for syngas production by H₂O/CO₂ co-electrolysis, J. Power Sources. 274 (2015) 768–781. https://doi.org/10.1016/J.JPOWSOUR.2014.09.158.
- [220] M. Wang, A. Lawal, P. Stephenson, J. Sidders, C. Ramshaw, Post-combustion CO₂ capture with chemical absorption: A state-of-the-art review, Chem. Eng. Res. Des. 89 (2011) 1609–1624. https://doi.org/10.1016/j.cherd.2010.11.005.
- [221] A.I. Stankiewicz, P. Yan, 110th Anniversary: The Missing Link Unearthed: Materials and Process Intensification, Ind. Eng. Chem. Res. 58 (2019) 9212–9222. https://doi.org/10.1021/acs.iecr.9b01479.
- [222] A. Zachopoulos, E. Heracleous, Overcoming the equilibrium barriers of CO₂

hydrogenation to methanol via water sorption: A thermodynamic analysis, J. CO₂ Util. 21 (2017) 360–367. https://doi.org/10.1016/J.JCOU.2017.06.007.

- [223] X. Hu, H. Cheng, X. Kang, L. Chen, X. Yuan, Z. Qi, Analysis of direct synthesis of dimethyl carbonate from methanol and CO₂ intensified by in-situ hydration-assisted reactive distillation with side reactor, Chem. Eng. Process. - Process Intensif. 129 (2018) 109–117. https://doi.org/10.1016/J.CEP.2018.05.007.
- [224] B.Y. Yu, M.K. Chen, I.L. Chien, Assessment on CO₂ Utilization through Rigorous
 Simulation: Converting CO₂ to Dimethyl Carbonate, Ind. Eng. Chem. Res. 57 (2018) 639–
 652. https://doi.org/10.1021/acs.iecr.7b02923.
- [225] A. Yang, Modeling and evaluation of CO₂ supply and utilization in algal ponds, Ind. Eng.
 Chem. Res. 50 (2011) 11181–11192. https://doi.org/10.1021/ie200723w.
- [226] S. Kluczka, J. Eckstein, S. Alexopoulos, C. Vaeßen, M. Roeb, Process Simulation for Solar Steam and Dry Reforming, Energy Procedia. 49 (2014) 850–859.
 https://doi.org/10.1016/J.EGYPRO.2014.03.092.
- [227] M.T. Luu, D. Milani, M. Sharma, J. Zeaiter, A. Abbas, Model-based analysis of CO₂ revalorization for di-methyl ether synthesis driven by solar catalytic reforming, Appl. Energy. 177 (2016) 863–878. https://doi.org/10.1016/J.APENERGY.2016.04.119.
- [228] A.A. Kiss, J.J. Pragt, H.J. Vos, G. Bargeman, M.T. de Groot, Novel efficient process for methanol synthesis by CO₂ hydrogenation, Chem. Eng. J. 284 (2016) 260–269. https://doi.org/10.1016/J.CEJ.2015.08.101.
- [229] C. Zhang, K.-W. Jun, G. Kwak, Y.-J. Lee, H.-G. Park, Efficient utilization of carbon dioxide in a gas-to-methanol process composed of CO₂/steam–mixed reforming and methanol synthesis, J. CO₂ Util. 16 (2016) 1–7. https://doi.org/10.1016/J.JCOU.2016.05.005.
- [230] X. He, L. Liu, Thermodynamic analysis on the CO₂ conversion processes of methane dry reforming for hydrogen production and CO₂ hydrogenation to dimethyl ether, Earth

Environ. Sci. 100 (2017) 1-8. https://doi.org/10.1088/1755-1315.

- [231] K. Wu, E. Birgersson, B. Kim, P.J.A. Kenis, I.A. Karimi, Modeling and Experimental Validation of Electrochemical Reduction of CO₂ to CO in a Microfluidic Cell, J. Electrochem. Soc. 162 (2015) F23–F32. https://doi.org/10.1149/2.1021414jes.
- [232] M.R. Singh, E.L. Clark, A.T. Bell, Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide, Phys. Chem. Chem. Phys. 17 (2015) 18924–18936. https://doi.org/10.1039/c5cp03283k.
- [233] L.C. Weng, A.T. Bell, A.Z. Weber, Modeling gas-diffusion electrodes for CO₂ reduction, Phys. Chem. Chem. Phys. 20 (2018) 16973–16984. https://doi.org/10.1039/c8cp01319e.
- [234] L.C. Weng, A.T. Bell, A.Z. Weber, Towards membrane-electrode assembly systems for CO2 reduction: A modeling study, Energy Environ. Sci. 12 (2019) 1950–1968. https://doi.org/10.1039/c9ee00909d.
- [235] J.E. O'Brien, M.G. McKellar, C.M. Stoots, J.S. Herring, G.L. Hawkes, Parametric study of large-scale production of syngas via high-temperature co-electrolysis, Int. J. Hydrogen Energy. 34 (2009) 4216–4226. https://doi.org/10.1016/J.IJHYDENE.2008.12.021.
- [236] M. Ni, 2D thermal modeling of a solid oxide electrolyzer cell (SOEC) for syngas production by H₂O/CO₂ co-electrolysis, Int. J. Hydrogen Energy. 37 (2012) 6389–6399. https://doi.org/10.1016/J.IJHYDENE.2012.01.072.
- [237] Y. Xie, X. Xue, Modeling of solid oxide electrolysis cell for syngas generation with detailed surface chemistry, Solid State Ionics. 224 (2012) 64–73.
 https://doi.org/10.1016/J.SSI.2012.07.015.
- [238] T. Wang, L. Yang, X. Du, Y. Yang, Numerical investigation on CO₂ photocatalytic reduction in optical fiber monolith reactor, Energy Convers. Manag. 65 (2013) 299–307. https://doi.org/10.1016/j.enconman.2012.08.021.
- [239] T. Wang, L. Yang, K. Yuan, X. Du, Y. Yang, Numerical investigation on photocatalytic

CO₂ reduction by solar energy in double-skin sheet reactor, Energy Convers. Manag. 87 (2014) 606–617. https://doi.org/10.1016/j.enconman.2014.07.049.

- [240] F. Chu, S. Li, H. Chen, L. Yang, O. Ola, M. Maroto-Valer, X. Du, Y. Yang, Modeling photocatalytic conversion of carbon dioxide in bubbling twin reactor, Energy Convers. Manag. 149 (2017) 514–525. https://doi.org/10.1016/j.enconman.2017.07.049.
- [241] H. Chen, F. Chu, L. Yang, O. Ola, X. Du, Y. Yang, Enhanced photocatalytic reduction of carbon dioxide in optical fiber monolith reactor with transparent glass balls, Appl. Energy. 230 (2018) 1403–1413. https://doi.org/10.1016/j.apenergy.2018.09.081.
- [242] O. Rahmani, A. Kadkhodaie, J. Highfield, Kinetics analysis of CO₂ mineral carbonation using byproduct red gypsum, Energy and Fuels. 30 (2016) 7460–7464. https://doi.org/10.1021/acs.energyfuels.6b00246.
- [243] I. Istadi, N.A.S. Amin, Modelling and optimization of catalytic–dielectric barrier discharge plasma reactor for methane and carbon dioxide conversion using hybrid artificial neural network—genetic algorithm technique, Chem. Eng. Sci. 62 (2007) 6568–6581. https://doi.org/10.1016/J.CES.2007.07.066.
- [244] Y.-R. Zhang, K. Van Laer, E.C. Neyts, A. Bogaerts, Can plasma be formed in catalyst pores? A modeling investigation, Appl. Catal. B Environ. 185 (2016) 56–67. https://doi.org/10.1016/J.APCATB.2015.12.009.
- [245] A. Bogaerts, Q.-Z. Zhang, Y.-R. Zhang, K. Van Laer, W. Wang, Burning questions of plasma catalysis: Answers by modeling, Catal. Today. 337 (2019) 3–14. https://doi.org/10.1016/J.CATTOD.2019.04.077.
- [246] M. Héder, From NASA to EU: The evolution of the TRL scale in Public Sector Innovation, Innov. J. 22 (2017) 1–23.
- [247] C. Marzano, P. Petrov, S. Bowadt, Transforming CO₂ into value for a rejuvenated, (2015).
 https://op.europa.eu/en/publication-detail/-/publication/a89ae7bf-1bef-407a-9a02 4c76a5b55b49 (accessed January 5, 2020).

- [248] Celbicon, Project Summary, (2018). http://www.celbicon.org/ (accessed December 16, 2019).
- [249] IEA Bioenergy, BioPower2Gas in Germany, (2018). https://www.ieabioenergy.com/wpcontent/uploads/2018/02/2-BioPower2Gas_DE_Final.pdf (accessed December 29, 2019).
- [250] CarbonNext, The next generation of carbon for the process industry, (2017). http://carbonnext.eu/Deliverables (accessed November 19, 2019).
- [251] M. Pérez-Fortes, J.C. Schöneberger, A. Boulamanti, G. Harrison, E. Tzimas, Formic acid synthesis using CO₂ as raw material: Techno-economic and environmental evaluation and market potential, Int. J. Hydrogen Energy. 41 (2016) 16444–16462. https://doi.org/10.1016/J.IJHYDENE.2016.05.199.
- [252] Shell, Pearl GTL Overview, (2019). https://www.shell.com/about-us/majorprojects/pearl-gtl/pearl-gtl-an-overview.html (accessed October 23, 2019).
- [253] SPIRE, Advanced process technologies: Carbon dioxide as a raw material for plastics, (2019). https://www.spire2030.eu/projects/casestudies/advanced-process-technologiescarbon-dioxide-raw-material-plastics (accessed January 6, 2020).
- [254] M. Pérez-Fortes, J.C. Schöneberger, A. Boulamanti, E. Tzimas, Methanol synthesis using captured CO₂ as raw material: Techno-economic and environmental assessment, Appl. Energy. 161 (2016) 718–732. https://doi.org/10.1016/J.APENERGY.2015.07.067.
- [255] K. Mondal, S. Sasmal, S. Badgandi, D.R. Chowdhury, V. Nair, Dry reforming of methane to syngas: a potential alternative process for value added chemicals—a techno-economic perspective, Environ. Sci. Pollut. Res. 23 (2016) 22267–22273. https://doi.org/10.1007/s11356-016-6310-4.
- [256] M. Götz, J. Lefebvre, F. Mörs, A. McDaniel Koch, F. Graf, S. Bajohr, R. Reimert, T. Kolb, Renewable Power-to-Gas: A technological and economic review, Renew. Energy. 85 (2016) 1371–1390. https://doi.org/10.1016/J.RENENE.2015.07.066.
- [257] H. Er-rbib, C. Bouallou, F. Werkoff, Production of Synthetic Gasoline and Diesel Fuel

from Dry Reforming of Methane, Energy Procedia. 29 (2012) 156–165. https://doi.org/10.1016/J.EGYPRO.2012.09.020.

- [258] C. Fernández-Dacosta, M. van der Spek, C.R. Hung, G.D. Oregionni, R. Skagestad, P. Parihar, D.T. Gokak, A.H. Strømman, A. Ramirez, Prospective techno-economic and environmental assessment of carbon capture at a refinery and CO₂ utilisation in polyol synthesis, J. CO2 Util. 21 (2017) 405–422. https://doi.org/10.1016/J.JCOU.2017.08.005.
- [259] W.J.J. Huijgen, R.N.J. Comans, G.-J. Witkamp, Cost evaluation of CO₂ sequestration by aqueous mineral carbonation, Energy Convers. Manag. 48 (2007) 1923–1935.
 https://doi.org/10.1016/J.ENCONMAN.2007.01.035.
- [260] A.S. Agarwal, Y. Zhai, D. Hill, N. Sridhar, The electrochemical reduction of carbon dioxide to formate/formic acid: Engineering and economic feasibility, ChemSusChem. 4 (2011) 1301–1310. https://doi.org/10.1002/cssc.201100220.
- [261] F. Madugu, M. Collu, Parametric analysis for an algal oil production process, Int. J.
 Energy Prod. Manag. 1 (2016) 141–154. https://doi.org/10.2495/EQ-V1-N2-141-154.
- [262] H.R.M. Jhong, S. Ma, P.J. Kenis, Electrochemical conversion of CO₂ to useful chemicals: Current status, remaining challenges, and future opportunities, Curr. Opin. Chem. Eng. 2 (2013) 191–199. https://doi.org/10.1016/j.coche.2013.03.005.
- [263] N. Von Der Assen, J. Jung, A. Bardow, Life-cycle assessment of carbon dioxide capture and utilization: Avoiding the pitfalls, Energy Environ. Sci. 6 (2013) 2721–2734. https://doi.org/10.1039/c3ee41151f.
- [264] Smart CO₂ Transformation, CO₂ utilisation projects, (2019). http://scotproject.org/ (accessed December 27, 2019).
- [265] D. Edwards, Scaling up step by step, Biofuels Int. (2012) 44–46.
- [266] Cordis EU, Renewable energy production through microalgae cultivation: Closing material cycles, (2016). https://cordis.europa.eu/project/id/295165 (accessed December 12, 2019).

- [267] PhotoFuel, PhotoFuel: Biocatalytic solar fuels for sustainable mobility in Europe, (2019).http://www.photofuel.eu/home.php (accessed December 21, 2019).
- [268] E.M. Trentacoste, A.M. Martinez, T. Zenk, The place of algae in agriculture: Policies for algal biomass production, Photosynth. Res. 123 (2015) 305–315. https://doi.org/10.1007/s11120-014-9985-8.
- [269] J. Zhang, A big step achieved in greenhouse gas conversion, (2017).
 http://english.cas.cn/newsroom/research_news/201708/t20170815_181976.shtml (accessed January 28, 2019).
- [270] D. Schuetzle, G. Tamblyn, M. Caldwell, Solar reforming of carbon dioxide to produce diesel fuel, (2010). https://www.osti.gov/servlets/purl/1025142 (accessed November 28, 2019).
- [271] MefCO2, Methanol fuel from CO₂, (2016). http://www.mefco2.eu (accessed December 16, 2019).
- [272] Audi, Audi steps up research into synthetic fuels, (2017). https://www.audimediacenter.com/en/press-releases/audi-steps-up-research-into-synthetic-fuels-9546 (accessed December 12, 2019).
- [273] E3Tec, Process development, (2019). http://www.e3-tec.com/ (accessed December 27, 2019).
- [274] Carbon4Pur, The project, (2018). https://www.carbon4pur.eu/ (accessed December 29, 2019).
- [275] C8Agg, Carbon 8 Aggregates, (2018). https://c8a.co.uk/ (accessed January 23, 2020).
- [276] MCi, Mineral carbonation international, (2019). https://www.mineralcarbonation.com/ (accessed February 8, 2020).
- [277] Solid Life, SOLID Life project A new class of lower-carbon products, (2019). https://www.solidlife.eu/ (accessed December 21, 2019).
- [278] Cordis EU, CRM-free low temperature electrochemical reduction of CO₂ to methanol,

(2017). https://cordis.europa.eu/project/rcn/212347/factsheet/en (accessed February 1, 2020).

- [279] O.G. Sánchez, Y.Y. Birdja, M. Bulut, J. Vaes, T. Breugelmans, D. Pant, Recent advances in industrial CO₂ electroreduction, Curr. Opin. Green Sustain. Chem. 16 (2019) 47–56. https://doi.org/10.1016/J.COGSC.2019.01.005.
- [280] A. Patyk, PROPHECY Process Concepts for Photocatalytic CO₂ Reduction Combined with Life-Cycle-Analysis, (2017).
 https://www.itas.kit.edu/english/projects_paty16_proph.php (accessed February 19, 2020).
- [281] Cordis EU, Plasma catalysis for CO₂ recycling and green chemistry, (2018).https://cordis.europa.eu/project/rcn/218445/factsheet/en (accessed February 7, 2020).
- [282] K. Jiang, P. Ashworth, S. Zhang, X. Liang, Y. Sun, D. Angus, China's carbon capture, utilization and storage (CCUS) policy: A critical review, Renew. Sustain. Energy Rev. 119 (2020) 109601. https://doi.org/10.1016/j.rser.2019.109601.
- [283] Energy.Gov, U.S. Department of Energy Announces \$110M for Carbon Capture, Utilization, and Storage, (2019) 1–4. https://www.energy.gov/articles/us-departmentenergy-announces-110m-carbon-capture-utilization-and-storage (accessed February 21, 2020).
- [284] T.J. Wan, S.M. Shen, A. Bandyopadhyay, C.M. Shu, Bibliometric analysis of carbon dioxide reduction research trends during 1999-2009, Sep. Purif. Technol. 94 (2012) 87–91. https://doi.org/10.1016/j.seppur.2011.07.022.
- [285] International Renewable Energy Agency, Renewable Energy Now Accounts for a Third of Global Power Capacity, (2019).
 https://www.irena.org/newsroom/pressreleases/2019/Apr/Renewable-Energy-Now-Accounts-for-a-Third-of-Global-Power-Capacity (accessed March 6, 2020).
- [286] D. Daval, Carbon dioxide sequestration through silicate degradation and carbon mineralisation: promises and uncertainties, Npj Mater. Degrad. 2 (2018) 1–4.

https://doi.org/10.1038/s41529-018-0035-4.

- [287] F.J. Martínez-Valdez, C. Martínez-Ramírez, L. Martínez-Montiel, E. Favela-Torres, N.O. Soto-Cruz, F. Ramírez-Vives, G. Saucedo-Castañeda, Rapid mineralisation of the Organic Fraction of Municipal Solid Waste, Bioresour. Technol. 180 (2015) 112–118. https://doi.org/10.1016/J.BIORTECH.2014.12.083.
- [288] A. Castillo, A. Angelıs-Dımakıs, Policy analysis and recommendations for EU CO₂ utilisation policies, in: 15th Int. Conf. Environ. Sci. Technol., Rhodes, 2017. https://cest.gnest.org/sites/default/files/presentation_file_list/cest2017_00911_oral_paper. pdf.