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On the Observability and Observer Design on the

Special Orthogonal Group Based on Partial Inertial

Sensing
Giovanni Pittiglio, Student Member, IEEE, Simone Calò, Student Member, IEEE, and Pietro Valdastri, Senior

Member, IEEE

Abstract—The aim of the present work is to discuss the
observability properties and observer design for the attitude of a
rigid body, in conditions of partial inertial sensing. In particular,
we introduce an observability analysis tool for the attitude
dynamics when only accelerometer and gyroscope measurements
are available, as in several robotics applications. In various
scenarios, in fact, the measurement of the magnetic field via
a magnetometer is unreliable, due to magnetic interferences.
Herein, we first focus on a formal observability analysis, which
reveals that the target dynamics is weakly locally observable, but
not first-order observable. The lack of first-order observability
prevents standard observers from achieving global convergence.
Therefore, we discuss a more suitable approach for observer
design to deal with this problem. The proposed approach is
validated by providing numerical and experimental results. The
former show that the proposed approach is able to achieve con-
vergence (final error 0.004%). Experiments validate our inference
about observability and show the improvements brought by the
proposed approach concerning the error convergence (final error
0.15%).

Index Terms—Algebraic/geometric methods; Kalman Filter-
ing; Nonlinear Systems; Nonlinear Observability; Robotics.

I. INTRODUCTION

Over the last decades, a large amount of research has

focused on the estimation of the attitude of a rigid body [1].

This is crucial in several applications such as human motion

tracking [2], small aerial vehicles [3], underactuated robotic

systems [4], magnetically actuated robots [5] etc. Inertial

Measurement Units (IMUs), composed of an accelerometer

and a gyroscope, are widely employed as a sensing solution

to the problem. In addition to this setup a magnetometer is

also frequently used and the overall system has been shown

to provide enough information for the design of convergent

observers for estimating the attitude [1], [6].

The main drawback of this sensing approach is that the

magnetometer is a very unreliable measurement to be used. In

fact, for indoor scenarios [7], applications for which IMUs are

close enough to electrical motors [3], [4] and problems that

involve strong magnetic fields [5], the magnetometer output is

unpredictable. On-the-other-hand, not using the magnetometer

leads to singularities in the estimation of the rotation. Phys-

ically, the rotation around the gravity direction can not be

The authors are with the STORM Lab, Institute of Robotics, Au-
tonomous Systems and Sensing, School of Electronic and Electrical Engi-
neering, University of Leeds, Leeds, UK. {g.pittiglio, s.calo1,
p.valdastri}@leeds.ac.uk.

estimated. This is due to the fact that, for any rotation around

this axis, the inertial output does not change and estimators

can not distinguish between different rotations. Our aim is

to show that this is an observability singularity condition for

weakly locally observable dynamics. This goal is achieved by

performing a detailed observability analysis of the problem.

Previous methods have inferred that the problem of esti-

mating the attitude is observable if the measurement from

a magnetometer is provided [1]. In line with this statement

we show that, provided of accelerometer and gyroscope only,

the system is not first-order observable. This means that

the state cannot be estimated given only the measurement

of the output for any input [8]. As a consequence, standard

well-known techniques relying on first-order approximations,

e.g. the Extended Kalman Filter (EKF) [9], fail in the state

estimation [10]. However, for intrinsically nonlinear systems,

observability is a local property which also depends on the

inputs [8].

Observability analysis on matrix groups has been a topic of

research for several years [11]–[13]. However, all these works

deal with outputs on coset spaces, while we are interested

into outputs lying on homogeneous spaces [6]. More recently,

the authors of [14] proposed an observability analysis tool

for aerial vehicles formations based on bearing measurements.

This technique is based on the Observability Rank Condition

(ORC) [8] and deals with outputs on homogeneous spaces.

Moreover, the application of this technique reveals that a

more suitable approach for observer design exists, as we will

discuss.

Therefore, inspired by [14], we prove the system’s weak

local observability. This means that there exist inputs for

which the system is observable, thus the state can be esti-

mated. The lack of first order observability leads standard

methods, such as [1], to fail and force to a more suitable

choice for the observer. Based on these observations, we

aim to describe a novel approach in designing asymptotically

convergent observers based only on the measurement of ac-

celeration (accelerometer) and angular velocity (gyroscope).

We assume these measurements to be available and, unlike

the magnetometer data, free from artifacts. We show that

the information gained from the accelerometer output and its

derivatives of, at least, order 1 is enough for designing a stable

observer. This information leads to marginal stability when

observability singularities occur and asymptotic stability in

the case of full observability. Moreover, we emphasize that
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the first order derivative of the accelerometer output can be

analytically computed and there is no need for approximated

differentiation, which would lead to noise enhancement.

Before discussing the main contribution of our work, we

formulate the problem under analysis and introduce some pre-

liminaries about Riemannian Geometry [15] in Section II. The

latter is fundamental for the observability analysis presented

in Section III and is employed for the design of the proposed

observer, as discussed in Section IV and V. The proposed

technique is validated through numerical analysis provided in

Section VI and experimental results in Section VII. In both the

cases, a comparison with a Nonlinear Complementary Filter

(NCF) [1] and an EKF [9] is discussed. Section VIII reports

our conclusion and future perspectives, in light of our results.

II. PRELIMINARIES

For an in depth understanding of the paper’s contents

some key concepts of Riemannian geometry [15] need to

be introduced and discussed. We will partially consider the

introduction in [14] and underline the basics we are also

interested into.

A. Problem Formulation

Consider the problem of estimating the attitude of a rigid

body based on the measurements from an IMU [1]. We

describe the attitude on the special orthogonal group1 SO(3),
i.e. the rotation of the rigid body is embedded in R ∈ SO(3),
where

SO(3) =
{

R ∈ R
3×3|RTR = I, det(R) = 1

}

,

with I ∈ R
3×3 identity matrix. This group is associated with

the Lie algebra composed of the skew-symmetric matrices

so(3) =
{

S ∈ R
3×3|ST = −S

}

.

Detailed geometric definitions of SO(3) are discussed in Sec-

tion II-B. With the aim of formulating our problem, we define

the operators (·)× : R3 → so(3) and (·)V : so(3) → R
3. For

any vector v = (v1 v2 v3)
T ∈ R

3

v× =





0 −v3 v2
v3 0 −v1
−v2 v1 0



 , (v×)
V = v.

Since in many robotics applications the measurement from

the magnetometer is unreliable, we consider to be provided

with only acceleration (accelerometers) and angular velocity

(gyroscopes).

The main aim is to estimate the rotation matrix from the

local reference frame {B} to global frame {G}

R = GRB : {B} → {G}.

The overall system, is

Ṙ = R(ω + δ)× (1a)

y = RT (g + a+ σ) (1b)

1We will always refer to matrices with real entries, thus the reference is
avoided for simplicity’s sake.

where ω is angular velocity in body frame, ω+δ the measured

angular velocity (gyroscopes), g is the gravity vector and a
the linear acceleration in global frame; y is the measurement

provided by the accelerometer, and σ and δ measurement noise

in the global and local reference frames, respectively.

In the present work, we consider δ and σ as a null mean

Gaussian noise and that gravity (g) dominates over linear

accelerations (a), as per common approach in literature [1].

Therefore, our nominal model for the attitude dynamics is

Ṙ = Rω× (2a)

y = RT g. (2b)

Other linear components of the acceleration (a) and noises

(δ, σ) will be taken into account in the design of the EKF in

Section V, while the observability analysis (see Section III)

will consider the nominal dynamics in (2).

The aim of the present work is to find an asymptotically

convergent estimate for R, referred to as R̂ = GRE : {E} →
{G}. Here {E} is referred to as the estimator reference frame.

B. Riemannian Geometry

We refer to a generic manifold as M, when generality is

needed, and x ∈ M for any of its points.

a) Tangent Spaces: We define the tangent space of a

manifold M at the point x, referred to as TxM, as the space

spanned by the tangents of the curves passing through x. For

the Euclidean space R
3 the tangent space is R

3 itself [16]. In

the case of SO(3), we assume R(t) : T → SO(3) being a

parametrised curve, with T ⊂ R. Therefore, Ṙ(t) ∈ TRSO(3).
Moreover, it can be shown that the tangent space at R is given

by

TRSO(3) =
{

Rv× : v ∈ R
3
}

.

Notice that we made use of this fact for the definition of the

system in (2). Furthermore, note that TISO(3) ≡ so(3), in

line with the classical definition of so(3).
b) Metrics: We refer to Riemannian metric 〈·, ·〉 as the

operator which assigns an inner product to a tangent space.

In the case of R
3, the standard dot product is associated. On

SO(3), we consider the metric

〈Rv×, Rw×〉 =
1

2
tr(vT

×
w×) = vTw, (3)

for Rv×, Rw× ∈ TRSO(3); here tr(·) is the trace operator.

c) Differentials: Consider a vector field µ(x) ∈ TxM
and a scalar function l(x), l : M → R. We define the i-th
order Lie derivative of l(x) with respect to µ(x) as the scalar

function

Li
µ(x)l(x) = 〈∇xL

i−1
µ(x)l(x), µ(x)〉, (4)

with L0
µ(x)l(x) = l(x); here ∇x is referred to as the gradient

with respect to x. Moreover, for any parametrized curve x(t),
t ∈ T ⊂ R,

Li
µ(x)l(x) =

dil(x)

dti
= l(i)(x). (5)

Direct derivation is shown to be immediate, while defining the

gradients on SO(3) is less straightforward, but fundamental

for observability analysis purposes.
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By following the steps of [14], we infer that for a general

scalar function l(R), R ∈ SO(3)

dl(R)

dt
= tr(MT Ṙ) = tr(skew(RTM)TRT Ṙ) (6)

for some matrix2 M ; skew(A) = 1
2 (A−AT ), A ∈ R

3×3. By

comparing (6) and (3), we deduce

∇Rl(R) = 2
(

skew(RTM)V
)T
. (7)

According to the introduced metric on SO(3) (see (3)),

dl(R)

dt
= 2

(

skew(RTM)V
)T
ṘV .

In [14], this solution is referred to as the trace trick.

d) Covectors and codistributions: We interpret a

(smooth) covector field η(x) ∈ (Rm)⋆, as a (smooth) as-

signment of an element of the manifold M to an element

of (Rm)⋆. We refer to (Rm)⋆ as the dual of R
m [16], when

M is a m-dimensional manifold.

Examples of covector fields, employed in the present work,

are the differentials of any scalar function l(x) : M → R, i.e.

∇xl(x) ∈ (Rm)⋆. In the case M ≡ SO(3), ∇Rl(R) ∈ (R3)⋆.

A (smooth) codistribution is the span of covector fields, i.e.,

given the covector fields η1(x), η2(x), . . . , ηr(x),

Λ(x) = span(η1(x), η2(x), . . . , ηr(x))

is a codistribution. It can be also interpreted, in matrix form,

as Λ(x) = (ηT1 (x) η
T
2 (x) · · · ηTr (x))

T .

e) Exponential Map of SO(3): We define the exponential

map as exp : so(3) → SO(3). For v× ∈ so(3) we define the

exponential as3

exp(v×) =
n
∑

k=0

vk
×

k!
.

We can also compute the differential of the exponential map

with respect to v× as

∂

∂v×
exp(v×) =

n
∑

k=0

vk
×

(k + 1)!
.

To avoid possible singularities for ||v|| = 0 we will not use

the Rodrigues formula but an approximation of the series, up

to some order n.

III. OBSERVABILITY ANALYSIS

The present section aims to derive the observability prop-

erties of the system in (2), based the results in Section

II-B. In the following, we employ the classical definition of

observability, based on the ORC [8], as stated below.

Definition 1: The system in (2) is weakly locally observable

if the codistribution

∇RO = span
({

∇RL
i
Ṙ
y, i ∈ N

+ ∪ 0
})

is full-rank.

The definition of the observability codistribution undergoes

to finding the gradients of the Lie derivatives of the outputs

2More details about matrix M will be discussed in Section III.
3Note that this is valid for any matrix Lie group.

with respect to the tangent space. This is achieved, on SO(3),
by using the trace trick introduced in Section II-B. We will

describe how that tool applies to the case under analysis.

We consider system in (2) and introduce the angular velocity

in {G} as γ = Rω. The output derivatives for (2) can be

computed recursively as

y
(j)
i = eTi

(

ṘTαj +RT α̇j

)

g j > 0, (8)

αj =−γ×αj−1 + α̇j−1,

where ei is the i-th element of the canonical basis of R3 and

selects the i-th row of y(j) and α1 = I .

For the computation of the gradients, we use a general

property of the scalar product, i.e. for any v, w ∈ R
3,

L ∈ R
3×3,

vTLw = tr(vwTLT ).

Therefore, (8) can be rewritten as

y
(j)
i = tr

(

eig
TαT

j Ṙ
)

+RT α̇jg (9)

= 〈∇RL
j−1

Ṙ
yi, Ṙ〉+ 〈∇γL

j−1
γ̇ yi, γ̇〉,

according to Section II-B.

From (9) and according to (6), we define

M<j>
i = αjge

T
i . (10)

We can also define the generalized gradient with respect to R
based on (6)

∇Ry
(j−1)
i = 2

(

skew(RTM<j>
i )V

)T

, j > 0. (11)

On the base of the defined gradients, we discuss the two

main steps to prove the lack of first-order observability and the

system weak local observability in Sections III-A and III-B,

respectively. For this purpose, we define

∇ROi+1 =
(

∇RL
i
Ṙ
yT1 ∇RL

i
Ṙ
yT2 ∇RL

i
Ṙ
yT3

)T

=

(

∇Ry
(i)
1

T
∇Ry

(i)
2

T
∇Ry

(i)
3

T
)T

(12)

and the i-th order observability codistribution

∇RO
i =

(

∇RO
T
1 ∇RO

T
2 · · · ∇RO

T
i

)T
i > 0. (13)

In order to simplify the following dissertation, we will

assume g = ej , j-th element of the canonical basis of

R
3, being free of defining {G}. Moreover, since ||g|| is a

constant multiplicative scalar, it does not affect the rank of

the observability distribution and the approach does not loose

generality.

A. First-order Observability Analysis

The analysis of the first-order observability, based on previ-

ous definitions, is the analysis of rank
{

∇xO
1
}

. It undergoes

to the computation of matrices M<1>
i , i = 1, 2, 3, defined in

(10).

Since M<1>
i = geTi ,

RT eje
T
i = ρTj e

T
i =

(

03,i−1 ρTj 03,3−i

)

(14)
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where ρj is the j-th row of R and 0l,k ∈ R
l×k is referred to

as the zero matrix. Eventually, we find

2skew(RT eje
T
i ) =

(

03,i−1ρ
T
j 03,3−i

)

−





0i−1,3

ρj
03−i,3





and, from (7),

∇Ry1 = (0 −Rj3 Rj2)

∇Ry2 = (Rj3 0 −Rj1)

∇Ry3 = (−Rj2 Rj1 0) .

By stacking the gradients together, we obtain

∇RO1 =





0 −Rj3 Rj2

Rj3 0 −Rj1

−Rj2 Rj1 0





which is skew-symmetric (its rank is 2), thus, only two modes

of the attitude dynamics are first-order observable. Physically,

we can conclude that the unobservable rotation is the one

around g, as inferred in previous works [1].

B. Second-order Observability Analysis

In the following, we show that the computation of the

second-order observability codistribution leads to conclude for

the weak local observability. In this case, we aim to compute

the matrices M<2>
i = −γ×ge

T
i , i = 1, 2, 3.

The direct computation of these matrices is long and in-

volves several algebraic steps. Also, the generalization to any

g is difficult to be described, therefore, we report the results

for the case of g = −e3

∇Rẏ1 = (0 γ1R23 − γ2R13 γ2R12 − γ1R22) (15)

∇Rẏ2 = (γ2R13 − γ1R23 0 γ1R21 − γ2R11)

∇Rẏ3 = (γ1R22 − γ2R12 γ2R11 − γ1R21 0) .

The codistribution ∇RO2 = (∇Rẏ
T
1 ∇Rẏ

T
2 ∇Rẏ

T
3 )

T is

rank 2. However, the second-order codistribution ∇RO
2 =

(

∇RO
T
1 ∇RO

T
2

)T
is rank 3. This proves the weak local

observability. By analysing (15), one can notice that it does not

depend on γ3, which is the rotation around g (for the specific

case under analysis). This means that, for any rotation around

g, the system observability does not change. Moreover, the

only condition for which the system loses observability (singu-

larity condition) is γ1 = γ2 = 0. This means that any rotation

around any axis orthogonal to g makes the system observable.

This is summarized by the analysis of the minimum singular

value of ∇RO
2 in Fig. 1, which shows that the minimum

singular value of the second-order observability codistribution

is zero only when γ1 = γ2 = 0. Therefore, observability is

lost only in case of either no rotation (ω = 0) or pure rotation

around g. Without taking into account numerical precision

related to observers implementation, in real environments pure

rotation around an axis is very hard to occur. In the case no

rotation occurs, only the rotations around axis orthogonal to g
can be estimated. Therefore, in applying the proposed results,

the IMU needs to be rotated to calibrate the initial error, at

least once, before use.

0

0.1

0.05

0.1

0.1

0

0.15

0

-0.1 -0.1

Figure 1. Analysis of the minimum singular value of ∇RO2 (σm).

Example 1: A simple example of this inference is rota-

tion around the gravity direction, assumed being ej (observ-

ability singularity). This can be composed as rotej (θ) =
rotei(φ)rotej (θ)rotei(−φ) for any i 6= j, and guarantees

γk 6= 0, if φ 6= 0, for some k 6= j. We refer to rotei(ψ)
as the rotation matrix around the axis ei of an angle ψ.

IV. OBSERVER DESIGN

The proof of weak local observability, provided in the previ-

ous section, supports the possibility of defining an asymptoti-

cally convergent observer. However, it also points out that first-

order approximations [9] are not suitable, being the system not

first order observable [10]. Moreover, the sole output does not

provide enough information for state estimation, as discussed

in [1].

Although, since the dynamics in (2) is second-order observ-

able, the system

Ṙ = Rω× (16a)

z =

(

y
ẏ

)

=

(

RT g
−ω×R

T g

)

(16b)

is first order observable, as a direct consequence of the

definition of observability codistribution in (12) and (13).

Therefore, we can design any first-order approximated ob-

server for the extended system in (16), which considers all

the information from the output and its derivative, without the

need for approximated numerical differentiation. This avoids

noise enhancement and reduces approximations.

Example 2: Intuitively, the “virtual” measurement ẏ =
−ω×R

T g = −RT γ×g captures the modes that are not mea-

sured with the sole y. In fact, assume g = −e3 again, if we aim

to distinguish the initial configurations R0 = rote3(θ) from

R′

0 = I , we can rotate with angular velocity γ = (φ̇ 0 0)T .

We obtain the instantaneous measurement and its derivative as
{

y = −e3
ẏ = −rote3(−θ)φ̇e2

Therefore, even if y does not capture the rotation around g, ẏ
does, as it is function of rote3(−θ). This justifies the results

of the observability analysis in Section III and confirms the

possibility of designing a first-order observer on the system in

(16), as discussed in the next section.
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V. DISCRETE EKF ON SO(3)

Particularly effective in providing state estimation is the

EKF [9], when systems are first order observable. In the

following we present a discrete time version on SO(3) [14],

which is employed in the following sections to enforce our

conclusions on the system weak local observability.

We define the discrete dynamics of the estimated attitude

R̂, based on EKF, as

R̂k+1 = R̂k exp
(

ωk×
T
)

exp
(

(Kkz̃k)×
)

(17a)

z̃k = zk − h(R̂k, ωk), (17b)

with k = 0, T, 2T, . . . and Kk gain, defined by the standard

EKF prediction and update steps defined below. We intend

with exp(·) the exponential map of SO(3), introduced in

Section II-B (we use order n = 10 to approximate the series).

Here h : SO(3) × R
3 → R

3N , where N = 1, 2 represents

whether we employ the output extension proposed in (16b)

(N = 2) or we apply the EKF to the sole accelerometer output,

as in (2b) (N = 1).

a) Prediction: We consider the error R̃ = R̂TR ∼
N (µk, Pk), with4 µk ∈ R

3 and Pk ∈ R
3×3, and the input

noise δ ∼ (03,1, Qn); Qn ∈ R
3×3, constant matrix. The state

covariance evolves as

Pk = FkP k−1F
T
k +GkQnG

T
k ,

with Fk = exp
(

ωk×
T
)

and Gk = Rk
∂

∂ωk
×

exp
(

ωk×
T
)

.

The computation of the exponential map and its differential

is defined in Section II-B.

b) Update: Consider the output noise σ = N (0m,1, Rn),
with Rn ∈ R

m×m, constant matrix, for z ∈ R
m. The update

aims at computing the observer’s gain, by following the steps

Sk =HkPkH
T
k +Rn

Kk = PkH
T
k S

−1
k

P k = Pk −KkSkK
T
k .

Fundamental to our discussion is matrix Hk = ∂zk
∂Rk

. In fact

[14],
{

Hk = ∇RO
1|R=Rk

if z = y
Hk = ∇RO

2|R=Rk
if z = (yT ẏT )T

Therefore, we propose to apply a standard EKF to an extended

dynamics, which considers also the output derivatives. This

guarantees state estimation, as long as the system does not

evolve on an observability-singular submanifold of SO(3). In

fact, only if Hk is full-rank the gain of the EKF would act on

all the modes of the system [10].

We experimentally observed more stability in the proposed

method by adding a further output derivative, i.e. z =
(yT ẏT ÿT )T . This is probably due to an increase of amount

of information over the noise. On-the-other-hand, the second

order derivatives, according to (8), reads as

ÿ = RT γ2
×
g +RT γ̇×g,

4Note that SO(3) is a 3-dimensional manifold.

Table I
EKFS COVARIANCE MATRICES (SIMULATIONS).

EKF Proposed

State P0 = 10−4I P0 = 10−4I

Input Qn = 10−5I Qn = 10−5I

State Rn = 10−5I Rn = diag(10−5I, 10−7I, 10−9I)

so only the left-most term can be analytically computed. We

will consider the right-most one being part of the output noise

parametrization, considering it in matrix Rn.

Therefore, we propose a first order EKF as in (17), with

zk =





RT
k g

−ωk×
RT

k g
ω2
k×

RT
k g



 .

VI. NUMERICAL RESULTS

In the following we report the results obtained by applying

the proposed approach to observer design. This technique is

compared with a standard EKF and a NCF [1], applied to

the dynamics in (1). Both the EKFs were implemented as

discussed in previous section. As a difference, the proposed

technique employs the output and its derivatives up to second

order.

We consider g = −9.81 e3 m/s
2. Concerning the initial

error R̃0 = rote3(45)rote2(60)rote1(30). The proposed EKF

and standard EKF parameters are reported in Table I. The gain

of the NCF was set to k = 10−1, to achieve a convergence

speed comparable to the other strategies.

We considered the input ω = (0.09 8.58 6.01)T o/s, being

one of the choices for which we obtain a satisfactory observ-

ability index. Results are reported in Fig. 2, 3 and 4. Therein,

Γ = eul(R) and Γ̃ = eul(R̃), where eul(·) : SO(3) → R
3

maps the rotation to Euler angles ZYX. As underlined by the

results, even if the output converges for all the applied methods

(Fig. 2(b), 3(b) and 4(b)), the only one capable of estimating

the attitude is the proposed approach, as shown in Fig. 2(c).

In Fig. 5 we employ tr(I − R̂TR) = tr(I − R̃) as an

error metric [14], by analyzing the results for different angular

velocities, and underlining that only for slow movements the

results of the proposed method are comparable to the ones of

previously proposed approaches.

The numerical results underline that the proposed approach

attains a final error of 0.004%, against the 45.5% of the EKF

and 17.3% of the NCF, in the case of full observability.

VII. EXPERIMENTAL ANALYSIS

For experimental testing, we considered the data5 related to

the EuRoC micro aerial vehicle [17]. We used only IMU data

(accelerometer and gyroscope) and compared the results with

the provided ground-truth measurement from a Leica Nova

MS50 laser tracker6. In this case g = (0.32 0.07 9.85)T m/s2

5Data is available at the link: https://projects.asl.ethz.ch/datasets/doku.php?
id=kmavvisualinertialdatasets.

6https://leica-geosystems.com/en-GB/products/total-stations/multistation/
leica-nova-ms60
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Figure 2. Proposed method numerical results.
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Figure 3. EKF numerical results [9].
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Figure 4. NCF numerical results [1].

and the initial error is R̃0 = rote3(15)rote2(−60)rote1(−45).
The global gravity has been extracted from experimental data,

by performing a calibration procedure: from the accelerometer

and ground-truth measurement an identification of the gravity

direction was performed. The misalignment between g and

e3 may be due to sensor noise or small estimation errors.

We also calibrated the gyroscope data using ground truth

measurements, in order to remove possible bias.

The EKFs parameters, reported in Table II, were obtained

from the sensors information provided in the documentation

of the dataset [17]. The gain of the NCF was set to k = 10−2,

Table II
EKFS COVARIANCE MATRICES (EXPERIMENTS).

EKF Proposed

State P0 = 10−4I P0 = 10−4I

Input Qn = 1.7 · 10−4I Qn = 1.7 · 10−4I

State Rn = 2 · 10−3I Rn = diag(2 · 10−3I, 3.4 · 10−7I,

5.7 · 10−11I)

to achieve similar convergence rate.
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Figure 5. Error comparison over different input velocities.
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Figure 6. Experimental tracking comparison (real state in solid line, estimated state in dashed line).
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Figure 7. Experimental error comparison.

Fig. 6 and 7 report the tracking performance of the three

techniques when dealing with a “fast movement” (EuRoC

Machine Hall 3 dataset): average angular rate ω = 16.6 o/s.
We detail the respective tracking of the three Euler angles and

the error. It is observed that the proposed technique leads to a

significant reduction of the estimation error, compared to the

other techniques, as also underlined by Fig. 8(a). In particular

we attain a final error of 0.15%, against 15.44% for the EKF

and 17.49% for the NCF.

In Fig. 8, we report the results obtained for different

velocities and underline the effect of the angular rate on the

observability properties of the target dynamics and, therefore,

on the performance of the methods. This is particularly evident

for the proposed one, whose performance is comparable to the

other strategies for lower rotation rates, as expected from the

simulation. This is due to the physical properties of the system,

as there is no way of avoiding observability singularities to

cause deterioration of the observer convergence. Nonetheless,

there exist control approaches (e.g. [18]) which attain optimal

observability for weakly observable dynamics.

Fig. 8(c) also underlines that, in real-world scenarios,

performance does not only depend on the observability (or

angular rate). This may be due to the restrictive assumptions

in applying the EKF. Possible solutions are the Unscented

Kalman Filter (UKF) [19] and Particle Filters [20].
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Figure 8. Experimental error comparison over different input velocities.

VIII. CONCLUSIONS

The present work dealt with the analysis of the observability

and observer design for attitude estimation on the Special

Orthogonal Group SO(3), based on partial inertial sensing.

In particular, we proved that we can obtain an asymptotic

estimate of the attitude with the sole measurement of ac-

celerometer and gyroscope.

We, first, show that the dynamics is weakly locally ob-

servable, then, reveal that, by using the output derivatives,

convergences can be attained in the case of full-observability.

The proposed strategy was validated through numerical

and experimental analysis and compared with an EKF which

considers no derivatives and a NCF. Both the studies underline

that the use of output derivatives enhances error convergence,

in case of full observability, and that comparable results are

obtained when close to observability singularities.

In the present work, possible bias on the gyroscope was

assumed negligible and removed from experimental data by

calibration. Future investigation will target scenarios when this

calibration is not possible and bias can not be neglected.

REFERENCES

[1] R. Mahony, T. Hamel, and J.-M. Pflimlin, “Nonlinear Complementary
Filters on the Special Orthogonal Group,” IEEE Transactions on Auto-

matic Control, vol. 53, no. 5, pp. 1203–1218, 2008.

[2] Y. Zhang, K. Song, J. Yi, P. Huang, Z. Duan, and Q. Zhao, “Absolute
attitude estimation of rigid body on moving platform using only two
gyroscopes and relative measurements,” IEEE/ASME Transactions on

Mechatronics, vol. 23, no. 3, pp. 1350–1361, June 2018.

[3] A. J. Baerveldt and R. Klang, “A low-cost and low-weight attitude
estimation system for an autonomous helicopter,” in Proceedings of

IEEE International Conference on Intelligent Engineering Systems, Sep
1997, pp. 391–395.

[4] G. Santaera, E. Luberto, A. Serio, M. Gabiccini, and A. Bicchi, “Low-
cost, fast and accurate reconstruction of robotic and human postures
via IMU measurements,” in 2015 IEEE International Conference on

Robotics and Automation (ICRA), May 2015, pp. 2728–2735.

[5] A. Z. Taddese, P. R. Slawinski, M. Pirotta, E. De Momi, K. L. Obstein,
and P. Valdastri, “Enhanced real-time pose estimation for closed-loop
robotic manipulation of magnetically actuated capsule endoscopes,” The

International Journal of Robotics Research, vol. 37, no. 8, pp. 890–911,
2018. [Online]. Available: https://doi.org/10.1177/0278364918779132

[6] A. Khosravian, J. Trumpf, R. Mahony, and C. Lageman, “Bias esti-
mation for invariant systems on Lie groups with homogeneous outputs,”
Proceedings of the IEEE Conference on Decision and Control, pp. 4454–
4460, 2013.
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