

This is a repository copy of RO4 Cost-effectiveness analysis of rFVIIIFc, PEGylated rFVIII, and emicizumab for the prophylactic treatment of severe hemophilia A patients without inhibitors in the United States.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/169378/

Version: Submitted Version

Proceedings Paper:

Li, N., Bullement, A. orcid.org/0000-0001-7091-0972, McMordie, S. et al. (2 more authors) (2019) RO4 Cost-effectiveness analysis of rFVIIIFc, PEGylated rFVIII, and emicizumab for the prophylactic treatment of severe hemophilia A patients without inhibitors in the United States. In: Value in Health. ISPOR 2019: Rapid. Disruptive. Innovative: A New Era in HEOR, 18-22 May 2019, New Orleans, LA, USA. Elsevier , S389.

https://doi.org/10.1016/j.jval.2019.04.1898

© 2019 The Authors. For re-use permissions please contact the authors.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Cost-effectiveness analysis of rFVIIIFc, PEGylated rFVIII, and emicizumab for the prophylactic treatment of severe hemophilia A patients without inhibitors in the United States

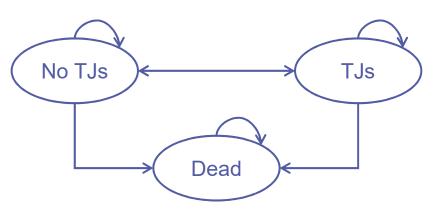
Li N¹, <u>Bullement A²</u>, McMordie S², Hatswell AJ^{2,3}, Wilson K⁴

¹Bioverativ, a Sanofi Company, Waltham, MA, USA; ²Delta Hat, Nottingham, UK; ³University College London, London, UK; ⁴Swedish Orphan Biovitrum AB, Stockholm, Sweden

Acknowledgements and Disclosures

- This study was funded by Bioverativ, a Sanofi Company and Swedish Orphan Biovitrum AB
- The views and opinions expressed within this presentation are those of the authors and not necessarily those of the organisations to which they are affiliated
- The presenting author is an employee of Delta Hat Limited, an independent consultancy firm which is not a subsidiary of Bioverativ, a Sanofi Company or Swedish Orphan Biovitrum AB. Delta Hat Limited received funding from Bioverativ, a Sanofi Company and Swedish Orphan Biovitrum AB to conduct this study

Background and Objectives


- Hemophilia is an inherited genetic disorder that impairs the body's ability to form blood clots
- Hemophilia A (HA) is the most common form of the disorder, and is caused by a deficiency of the blood clotting factor VIII (FVIII)
- The hindered ability to form clots leads to an increased risk of spontaneous bleeds, particularly into joints ("hemarthrosis")
 - While not fatal, repeated hemarthroses are a serious complication of HA and current treatment aims to reduce the risk of bleeding specifically into joints
 - Frequent joint bleeds prevent people with HA from being physically active, taking part in sports and in general, living a full life
- Joints into which frequent bleeds occur are termed "target joints" (TJs), which require urgent and comprehensive treatment if permanent joint damage is to be avoided¹

Background and Objectives

- Until recently, treatment options for patients with HA have largely revolved around the use of FVIII products
- Recombinant FVIII (rFVIII) products may be administered "on-demand" or "prophylactically", and are considered the cornerstone of severe HA treatment for patients without inhibitors (antibodies against FVIII)
- Standard of care for US patients with severe HA is rFVIII prophylaxis; however recent developments in treatment include:
 - rFVIII products with an extended half-life (EHL) (rFVIII-Fc fusion protein, Eloctate[®] and PEGylated rFVIII, Adynovate[®])
 - Monoclonal antibody (non-factor replacement) emicizumab-kxwh (Hemlibra®)
- This study aimed to evaluate the cost-effectiveness of these prophylactic treatment options for severe HA patients without inhibitors from a third party US perspective

Methods: Cost-Effectiveness Model

- Owing to the importance of joint health outcomes when attempting to quantify the cost-effectiveness of severe HA treatments, a cost-effectiveness model was constructed with health states based on the absence or presence of TJs, as well as the improvement in the modified hemophilia joint health score (mHJHS)
- Patients were categorized as having at least 1 TJ ("TJs"), or "No TJs"
- The model adopts a Markovian framework and a third-party US payer perspective

 Model outputs were the total costs and total quality-adjusted life years (QALYs) associated with each treatment

Methods: Input Data

- Transitions between health states were Dosing and efficacy data were determined according to calculated rates of TJ development or resolution based on published literature and background mortality rates²⁻⁷
- Costs relating to the use of on-demand and prophylactic extended half-life rFVIII products and emicizumab were included based on published weight data for US hemophiliacs⁸
- obtained from product labels and published literature
- Clinical outcomes were annualized bleeding rate (ABR) and presence of TJs based on published studies^{2-7, 9-12}
- A literature review was undertaken to identify evidence regarding joint health improvement
- Utility data were sourced from published literature sources¹³⁻¹⁴

References: 2: Manco-Johnson et al., (2017); 3: Mullins et al., (2017); 4: Mahlangu et al., (2013); 5: Young et al., (2015); 6: Mahlangu et al., (2018); 7: Wang et al., (2016); 8: ICER (2018); 9: Iorio et al., (2017); 10: Nolan et al., (2016); 11: Mahlangu et al., (2018); 12: Adynovi label, (2016); 13: O'Hara et al., (2018); 14: Neufeld et al., (2012). Full list provided at the end of this slide deck.

Results

- Based on the literature review, rFVIIIFc was associated with improved joint health over time measured by mHJHS¹⁵; no data regarding mHJHS were identified for PEGylated rFVIII or emicizumab
- An improvement in mHJHS of 1 point was assumed to be associated with a utility benefit of 0.003, and so patients receiving rFVIIIFc were assumed to have a higher utility of approximately 0.012 due to a 4.1-point improvement in mHJHS¹⁵
 - Patients receiving PEGylated rFVIII, and emicizumab were assumed to have a 0-point improvement in mHJHS (based on a lack of data identified)

Results

- The base-case analysis (Table 1) showed that rFVIIIFc was associated with the most QALYs (26.15) and lowest overall cost (\$15.64m)
- A sensitivity analysis in which a 1-point improvement in mHJHS was associated with a utility increment of 0.001 showed comparable results (Table 2)
- A further sensitivity analysis wherein on-demand rFVIII costs were removed for emicizumab patients also demonstrated similar results (Table 3)

Treatment	Costs	QALYs
rFVIIIFc	\$15.64m	26.15
PEGylated rFVIII	\$17.07m	25.80
Emicizumab	\$16.10m	25.83

2	Treatment	Costs	QALYs
	rFVIIIFc	\$15.64m	25.85
	PEGylated rFVIII	\$17.07m	25.80
	Emicizumab	\$16.10m	25.83

3	Treatment	Costs	QALYs
	rFVIIIFc	\$15.64m	26.15
	PEGylated rFVIII	\$17.07m	25.80
	Emicizumab	\$15.92m	25.83

Discussion

- rFVIIIFc is the only EHL rFVIII treatment with published evidence demonstrating improved joint health through the mHJHS
- This cost-effectiveness analysis, which includes the impact of treatment on joint health, indicates that rFVIIIFc is associated with lower costs and more QALYs compared to PEGylated rFVIII and emicizumab
- Further data collection is required to establish the longer-term impacts of treatment on joint health outcomes, and consequently the cost effectiveness of alternative treatment options
 - In particular, the lack of available data to capture changes in joint health for comparator treatments is a key limitation in the analysis presented
 - This study also assumed a 1 point improvement in the mHJHS is associated with a utility benefit of 0.003 further validation of this assumption is required

Thank you

⊠ <u>abullement@deltahat.co.uk</u>

References

- 1. Mulder et al., (2004) https://www.ncbi.nlm.nih.gov/pubmed/15479389
- 2. Manco-Johnson et al., (2017) https://www.ncbi.nlm.nih.gov/pubmed/28836341
- 3. Mullins et al., (2017) https://www.ncbi.nlm.nih.gov/pubmed/27891721
- 4. Mahlangu et al., (2013) <u>https://www.ncbi.nlm.nih.gov/pubmed/24227821</u>
- 5. Young et al., (2015) https://www.ncbi.nlm.nih.gov/pubmed/25912075
- 6. Mahlangu et al., (2018) <u>https://www.ncbi.nlm.nih.gov/pubmed/30157389</u>
- 7. Wang et al., (2016) http://www.bloodjournal.org/content/128/22/3791?sso-checked=true
- 8. ICER (2018) <u>https://icer-review.org/wp-content/uploads/2017/08/ICER_Hemophilia_Final_Evidence_Report_041618.pdf</u>
- 9. lorio et al., (2017) https://www.ncbi.nlm.nih.gov/pubmed/28233383
- 10. Nolan et al., (2016) https://www.ncbi.nlm.nih.gov/pubmed/26218032
- 11. Mahlangu et al., (2018) https://www.ncbi.nlm.nih.gov/pubmed/30157389
- 12. Adynovi label, (2016) <u>https://www.fda.gov/</u> (search 'Adynovi')
- 13. O'Hara et al., (2018) https://www.ncbi.nlm.nih.gov/pubmed/29720192
- 14. Neufeld et al., (2012) <u>https://www.ncbi.nlm.nih.gov/pubmed/22999142</u>
- 15. Oldenburg et al., (2018) https://www.ncbi.nlm.nih.gov/pubmed/29082639