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ORIGINAL RESEARCH

A comparison of partitioned survival analysis and state transition multi-state
modelling approaches using a case study in oncology

Holly Cranmera , Gemma E. Shieldsb and Ash Bullementc,d

aTakeda Pharmaceuticals International Co., London, UK; bFaculty of Biology, Medicine, and Health, Division of Population Health, Health
Services Research, and Primary Care, School of Health Sciences, Manchester Centre for Health Economics, University of Manchester,
Manchester, UK; cDelta Hat Limited, Nottingham, UK; dSchool of Health and Related Research, University of Sheffield, Sheffield, UK

ABSTRACT

Aims: To construct and compare a partitioned-survival analysis (PartSA) and a semi-Markov multi-state
model (MSM) to investigate differences in estimated cost effectiveness of a novel cancer treatment
from a UK perspective.
Materials and Methods: Data from a cohort of late-stage cancer patients (N> 700) enrolled within a
randomized, controlled trial were used to populate both modelling approaches. The statistical software
R was used to fit parametric survival models to overall survival (OS) and progression-free survival (PFS)
data to inform the PartSA (package “flexsurv”). The package “mstate” was used to estimate the MSM
transitions (permitted transitions: (T1) “progression-free” to “dead”, (T2) “post-progression” to “death”,
and (T3) “pre-progression” to “post-progression”). Key costs included were treatment-related (initial,
subsequent, and concomitant), adverse events, hospitalizations and monitoring. Utilities were stratified
by progression. Outcomes were discounted at 3.5% per annum over a 15-year time horizon.
Results: The PartSA and MSM approaches estimated incremental cost-effectiveness ratios (ICERs) of
£342,474 and £411,574, respectively. Scenario analyses exploring alternative parametric forms provided
incremental discounted life-year estimates that ranged from þ0.15 to þ0.33 for the PartSA approach,
compared with �0.13 to þ0.23 for the MSM approach. This variation was reflected in the range of
ICERs. The PartSA produced ICERs between £234,829 and £522,963, whereas MSM results were more
variable and included instances where the intervention was dominated and ICERs above £7 million
(caused by very small incremental QALYs).
Limitations and conclusions: Structural uncertainty in economic modelling is rarely explored due to
time and resource limitations. This comparison of structural approaches indicates that the choice of
structure may have a profound impact on cost-effectiveness results. This highlights the importance of
carefully considered model conceptualization, and the need for further research to ascertain when it
may be most appropriate to use each approach.
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Introduction

In 2017, there were an estimated 24.5 million incident cases

of cancer globally and 9.6 million cancer deaths1. It is the

second leading cause of death globally and cancer deaths

are predicted to rise globally to 16.3 million by 20402,3.

Cancer can be severely debilitating (particularly for those

with progressed disease), often with a profound impact on

patient and carer quality of life4,5. In addition, cancer is often

associated with substantial financial burden causing distress

for patients, caregivers, and dependents6,7.

Since the turn of the century, there has been a rapid

development in the range of innovative treatments available

to treat patients with cancer by improving survival and qual-

ity of life. However, such treatments often come at a high

cost. With an ever-increasing demand for new, effective

treatments within the constraints of a finite healthcare

budget, decision modelling plays an important role in the

estimation of the value of these new cancer treatments.

Cost-effectiveness analysis (CEA) provides decision makers

with an objective basis from which decisions may be

informed. Typically, a CEA involves the development of an

economic model to synthesize the available evidence con-

cerning costs and effects in order to compare alternative

treatment strategies. The most common model structures

constructed in the field of oncology are partitioned survival

analyses (PartSA) and state transition models (STMs), which

are frequently based on three health states relevant to can-

cer: pre-progression, progressed disease and death8,9.

In the three-state structure, PartSA requires two outcomes

(progression-free survival (PFS) and overall survival (OS)) to
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inform health state occupancy, with time in the progressed

disease state inferred through the difference between the

two outcomes. PFS and OS outcomes are often readily avail-

able from the literature and are widely understood by clini-

cians and other stakeholders. This makes the PartSA a

practical model choice, which is likely to be one reason that

this structure was found to be the most common structure

applied for cancer treatments in health technology assess-

ments (HTAs) submitted to the National Institute for Health

and Care Excellence (NICE) – the HTA body for England

and Wales8,9.

Conversely, STMs require specific information relating to

the three transitions possible between the health states.

When patient-level data are available this requirement is sim-

ple to fulfil. However, often these data are unavailable for

comparators outside of a pharmaceutical company’s clinical

trial. As an additional complexity, STMs can be further div-

ided based on discrete-time/continuous-time, Markov/semi-

Markov or cohort/patient level. Multi-state modelling (MSM)

falls under the STM bracket and could be considered when

there are a series of competing events and when these

events occur sequentially. In the three-state cancer model,

progression and death are competing events and could

occur sequentially, thus MSM is a suitable modelling method

for consideration in cancer. The MSM approach models each

of the transitions of interest simultaneously and uses a con-

tinuous-time framework.

A review of published CEAs in cancer found that despite

the modelling structures available, typically only one is pre-

sented with limited explanation as to the justification and

validation of this choice8. This is despite guidance from the

Decision Support Unit (DSU) supporting NICE in UK HTAs

stating that “state transition modelling should be used

alongside the PartSA approach to assist in verifying the

plausibility of PartSA’s extrapolations and to address uncer-

tainties in the extrapolation period”9.

There is limited research considering the impact of differ-

ent structural assumptions within economic models of cancer

treatments. Studies that have been published highlight a dis-

crepancy in results across the different approaches, suggest-

ing that model structure may influence conclusions of

clinical- and cost-effectiveness:

� Williams et al. (2017) considered a case study in first-line

chronic lymphocytic leukemia comparing outcomes from

a PartSA, a discrete-time semi-Markov STM and a continu-

ous-time semi-Markov (i.e. MSM) STM – results approxi-

mated ICERs of: £16,000, £13,000 and £29,000

respectively10.

� Degeling et al. (2018) compared the use of a cohort dis-

crete-time STM with a discrete event simulation STM in

patients with metastatic colorectal cancer; estimated

ICERs were e172,443 and e168,383, respectively11.

� Gibson et al. (2019) and Gibson et al. (2018) considered a

PartSA, a discrete-time Markov STM and a patient level

simulation STM to assess the value of immuno-oncology

therapies in metastatic melanoma12,13. Both studies also

explored extending the standard three state oncology

model by including an immune-specific health state.

Results were discrepant between the different model

structures with incremental cost-effectiveness ratios

(ICERs) varying between £6,474 and £49,000

� Smare et al. (2020) compared the use of a PartSA to two

variations of a semi-Markov STM for a treatment for renal

cell carcinoma and found that model structure varied esti-

mated survival benefit by up to 14%14.

The studies published to date emphasize the importance

of justifying and validating the choice of model structure.

Ideally, for each CEA, all suitable model structures should be

considered, and results presented with an explanation as to

which best reflects the dynamics of the disease and treat-

ment pathway, with clinician input and external data sources

serving as a critical source of validation. However, there are

many reasons why this may not be standard practice; such

as, feasibility constraints (e.g. time and funding), challenges

acquiring patient-level data, and a lack of understanding

relating to the structural assumptions underpinning different

model structures.

The aim of this paper is to compare a PartSA and a semi-

Markov MSM STM approach as methods for estimating the

cost-effectiveness of a novel treatment compared to the

standard of care within the context of late-stage cancer. This

paper aims to add to the growing body of literature empha-

sizing the importance of justifying model structure and to

explore why these differences occur.

Data and methods

Data used for extrapolation

To inform both modelling approaches, data were sought to

populate the model transitions. While data could have been

developed using simulation methods, data collected as part

of a clinical trial were preferred in order to test the

approaches using “true” data. Data to compare modelling

approaches were provided to the authors under the proviso

that the treatments compared were anonymized.

A case study comprising of data from a randomized con-

trolled trial (RCT) comparing two treatments (TX1 vs. TX2) for

a type of late-stage cancer was used to compare the two

modelling frameworks (PartSA vs. MSM) – the average age of

patients was between 60 and 70. The RCT considered a large

cohort of patients (N> 700) and had a median follow-up of

approximately 15 months. At the end of follow-up between

50–70% patients had progressed and between 20–30% had

died across both the TX1 and TX2 arms, respectively.

Economic models

Both economic models were developed to compare the total

costs and quality-adjusted life-years (QALYs) associated with

TX1 and TX2 from a UK National Health Service (NHS) per-

spective, ultimately providing an ICER for TX1 vs. TX2. Costs

and QALYs were discounted using a rate of 3.5%, in line with

UK HTA requirements15. A 15-year time horizon was selected

JOURNAL OF MEDICAL ECONOMICS 1177



such that all patients had died in each model framework and

a monthly cycle length, across both modelled strategies.

Models were constructed in the statistical software R

version 3.0116. The code used is provided in the

Supplementary Material.

PartSA structure

The PartSA was characterized by three health states (pre-pro-

gression, progressed disease and death); this structure is the

most commonly seen in cancer submissions to NICE in the

UK8,9. State membership was determined by two independ-

ent survival curves (PFS and OS) that allow sub-division (or

“partitioning”) of the OS curve. Time dependency (i.e. the

relationship between time spent in a health state and the

probability of leaving that health state) is implicitly captured

within the PartSA framework. The model structure is pre-

sented in Figure 1.

Joint parametric models were fitted to the independent

PFS and OS outcomes using the phreg, aftreg and flexsurvreg

functions in R (using eha and flexsurv packages, respectively);

the proportional hazard assumption was considered appro-

priate following inspection of the log-cumulative hazard

plots and the Schoenfeld residual plots (Supplementary

Material). As per DSU guidance, six parametric distributions

were fit using the individual patient-level data for each trial

outcome: exponential, generalized gamma, Weibull, lognor-

mal, log-logistic and Gompertz17. Goodness of fit was based

on Akaike’s Information Criterion (AIC), Bayesian Information

Criterion (BIC) and visual comparison with Kaplan-

Meier estimates.

Statistically, the generalized gamma and the lognormal

provided plausible fits to the PFS data. Visual interpretation

indicated the lognormal to predict an implausibly wide tail.

The generalized gamma appeared to provide estimates that

better aligned with other literature in this disease area.

Therefore, the generalized gamma curve was selected to

model PFS outcomes in the base case. The goodness of fit

statistics indicated that the lognormal, log-logistic and

Weibull parametric curves provided plausible fits to the OS

data. Based on visual interpretation of the extrapolated

curves and comparison with other literature in this disease

area, the Weibull curve was applied in the base case. Out of

the three highlighted by the goodness-of-fit statistics, the

Weibull was the most pessimistic curve in terms of mean sur-

vival predicted. Therefore, this is considered a conservative

assumption. Alternative parametric curves are explored in

scenario analyses.

MSM structure

The MSM was also characterized by the same three health

states: progression-free, progressed disease and death. The

model structure is presented in Figure 2.

The MSM requires assessment of the Markovian assump-

tion; this assumption refers to the memoryless feature of a

Markov model i.e. transitions from a health state are inde-

pendent of the duration of time spent in the currently-occu-

pied or any previously-occupied health state(s). To assess the

applicability of this assumption, a Markov Cox proportional

hazards model was constructed. The model considered the

transition from progression to death explained by the time

spent in the previous health state. This covariate (time in the

Figure 1. PartSA model structure.

Figure 2. MSM model structure.
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previous state) was shown to be statistically significant

(p¼ .022); results indicated a longer duration spent in the

progression health state would increase the risk of death.

Therefore, a semi-Markov approach was undertaken, wherein

the time spent in the progression health state depends on

time spent in the pre-progression health state.

In line with the PartSA approach, joint parametric models

were fit to the data for each transition. Three survival models

were estimated (transition 1 [T1]: progression-free to pro-

gressed disease; transition 2 [T2]: progression-free to death

and transition 3 [T3]: progressed disease to death). The pub-

lished code from Williams et al. (2017) was adapted to this

dataset to estimate the transitions relevant to this MSM

structure18. The aforementioned standard six distributions

were considered for each transition. These methods are simi-

lar to the PartSA approach with one key difference: any

observation where an event occurs which is not the event of

interest for a specific transition is treated as a censored

observation i.e. patients that experience competing events

are treated in the same way as a patient that was lost to fol-

low-up. For example, for the transition from progression-free

to progressed [T1] any deaths reported in the data are not

the event of interest and so they are censored.

The MSM approach considered a continuous time structure

using the exact timing of transitions. However, for the purposes

of estimating mean survival using the area under the curve

approach, a monthly cycle length was applied. Due to compu-

tational issues with the generalized gamma and Gompertz dis-

tributions when fitting the transitions from progression-free to

progressed disease, the calculation of transition probabilities

with the MSM used cycle increments shorter than one month

(up to 1/72 of a month) for these distributions up to the 15-

year time horizon. This shortening of the cycle length was

needed to overcome a difficulty in meeting the requirement

that differences in cumulative hazards between consecutive

time points were below one (as is aligned with the approach

proposed by Williams et al. [2016])18.

The AIC and BIC provide us with information as to how

well the parametric curves fit the individual transitions.

However, the transitions do not correspond to the state occu-

pancy probabilities, which are defined by the competing risks

of progression and death. Therefore, the AIC and BIC meas-

ures need to be interpreted with caution in an MSM frame-

work as they do not account for the underlying relationships

between the transitions; transitions defined by AIC/BIC score

may not produce health state occupancies that provide a

good fit to the data. Parametric curves were selected based

on AIC, BIC and visual comparison with Kaplan–Meier esti-

mates. The generalized gamma was selected for T1 and the

Weibull was selected for T2 and T3. These base case paramet-

ric forms broadly align with those applied in the PartSA struc-

ture for PFS and OS outcomes, respectively. Alternative

parametric curves are explored in scenario analyses.

Cost and utility inputs

Table 1 presents the cost and quality of life inputs informing

the economic models. Costs applied within the models

included: drug, adverse event, concomitant medication, hos-

pitalization and subsequent therapy costs. It was assumed

that all patients remained on treatment until progression.

Therefore, all costs associated with treatment (drug, adverse

event, concomitant medication and hospitalization costs)

were accrued by patients in the pre-progression health

states. Only drug and hospitalization costs were dependent

on type of treatment. It was assumed that receipt of TX1 or

TX2 did not impact choice of subsequent therapy. This is a

simplification of the treatment pathway; in real-world clinical

practice subsequent therapies may differ between the treat-

ment arms. However, for the purposes of focusing on differ-

ences in model structure driving results, these costs have

been assumed to be equal. All patients in the progressed

disease health states accrued a weekly cost of subse-

quent therapy.

In reality, some costs may differ within a given health

state; for example: patients may discontinue treatment

before documented disease progression or toxicity profiles

may differ. However, these differential impacts were not

explored so that the impact of model structure on outcomes

could be clearly identified – without introducing additional

differences from cost inputs. In addition, both of these exam-

ples are expected to predominantly affect costs and effects

related to pre-progression disease which should be captured

reasonably well by both the PartSA and MSM approaches.

Quality of life was captured through the application of

health state specific utility values: 0.80 for pre-progression

and 0.60 for progressed disease. These inputs were applied

identically across both model structures. While inputs are

based on an approximation from the literature, these inputs

were considered to reflect patients with late-stage cancer

treated with TX1 and TX2.

Comparison of approaches

To understand the differences in the model approaches, the

occupancy of the model health states projected using each

approach were compared using Markov traces. Through

inspection of Markov traces, the proportion of patients resid-

ing within each health state may be established (regardless

of how long patients have been within a given state). This

approach allows for a more in-depth inspection of the

Table 1. Cost and utility inputs.

Parameter Value� Frequency Health state applied

Drug costs
TX1 £6,000 Every 4-weeks Pre-progression
TX2 £4,000 Every 4-weeks
Adverse events £30 Weekly
Concomitant medications £50 Weekly

Hospitalizations
TX1 £100 Weekly Pre-progression
TX2 £130 Weekly
Subsequent therapy £500 Weekly Progressed disease

Utility values
Pre-progression 0.8 Constant Pre-progression
Progressed disease 0.6 Constant Progressed disease

Note: Cost and utility inputs are arbitrary parameters that were included to
broadly resemble values seen in a range of late-stage cancer models. Simple
assumptions informed these parameters such that this analysis could focus on
the comparison of model structures rather than model inputs.
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accrued life-years (LYs) in each model health state. After

comparing health state occupancy, the probability of resid-

ing within a given state was plotted over time to establish

differences in this outcome.

To contextualize the differences in the modelling

approaches, the costs and utility inputs described above

were used to produce CEA results. The values used to popu-

late these results are informed by simple assumptions rather

than robust data and are used to simply demonstrate how

the modelling approaches will affect modelled outcomes.

Results

The fitted PFS and OS curves for TX1 and TX2 under the

PartSA approach based on the generalized gamma and

Weibull functions, respectively, are presented in the

Supplementary Material. The Supplementary Material also

presents the fitted transitions for TX1 and TX2 under the

semi-Markov MSM approach.

Health state occupancy

Figure 3 presents the Markov traces for TX1 and TX2 for

each model structure (PartSA and MSM). Figure 4 then

presents the probability of residing in each of the health

states over time for each model structure. Table 2 presents

the undiscounted LYs accrued in each health state for

each structure.

Each of the model structures show similar predictions for

the within-trial period. However, after the end of follow-up,

there are clear differences between the results associated

with each structure; both in absolute terms (i.e. affecting

estimates for each treatment individually) and relative terms

(affecting the estimated incremental benefit).

The probability of residing in the pre-progression health

state is similar between the two model structures for each

treatment – this is partly explained by the same parametric

form which has been assumed for PFS and for T1 under the

two approaches (i.e. generalized gamma). While similar, the

MSM predicts slightly fewer LYs for both TX1 and TX2 and a

larger resulting difference in progression-free LYs (PFLYs) of

0.49 compared with 0.34 for the PartSA.

As seen for the progression-free state, the probability of

residing in the progressed disease health state is similar from

model baseline to 13 and 20months, for TX1 and TX2,

respectively. These timepoints coincide with the approximate

times until which data are available from the trial. However,

after these time points (i.e. in the extrapolation period), the

probability of residing in this health state continues to

increase under the PartSA structure and begins to decline

under the MSM structure. The probability of residing in the

progressed health state does eventually decline under the

Figure 3. Markov traces for TX1 and TX2 from the PartSA (3a and 3b, respectively) and MSM (3c and 3d, respectively) approaches.
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PartSA but at a later time point and at a slower rate than

the MSM structure.

The progressed disease LYs (PDLYs) are very different

under the two different model structures; the PartSA predicts

2.31 and 2.30 PDLYs for TX1 and TX2, respectively; whereas

the MSM predicts 1.19 and 1.37, respectively. The absolute

values are smaller under the MSM approach and the direc-

tion is reversed i.e. more PDLYs are accrued for TX2 than

TX1 under the MSM approach, whereas fewer PDLYs are

accrued for TX2 than TX1 under the PartSA approach.

Finally, as would be expected, due to the differences aris-

ing in the progressed disease health state, the probability of

remaining alive over time is higher under the PartSA

approach compared with the MSM approach – as described

by the total LYs: 5.02 and 4.66 for TX1 and TX2, respectively

derived from the PartSA approach and 3.86 and 3.55 for TX1

and TX2, respectively derived from the MSM approach. The

probability of being alive begins to diverge at 15 and

16months for TX1 and TX2, respectively (again, approxi-

mately in line with the end of the observed data period).

Figure 4. Probability of residing in each health state over time for TX1 (4a) and TX2 (4b) from the PartSA and MSM approaches, respectively.

Table 2. Undiscounted life-years.

Pre-progression Progressed disease Total

PartSA MSM PartSA MSM PartSA MSM

TX1 2.71 2.67 2.31 1.19 5.02 3.86
TX2 2.37 2.18 2.30 1.37 4.66 3.55
Incremental 0.34 0.49 0.01 �0.18 0.36 0.31

Abbreviation. MSM, multi-state model; PartSA, partitioned survival analysis.
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Cost-effectiveness analysis results

Headline CEA results are presented in Table 3. Incremental

costs are estimated as £78,045 and £78,199 for the PartSA

and MSM approach, respectively; with incremental QALYs of

0.23 and 0.19, respectively. This results in ICERs of £3,42,474

(PartSA) and £4,11,574 (MSM).

The differences in the ICER are mostly driven by differen-

ces in incremental QALYs, which in turn are affected primar-

ily by differences in the overall LYs, and the split of LYs

between PFLYs and PDLYs estimated from the two model

structures (as described above). Health state specific costs

and QALYs are presented in Table 4.

While the incremental costs are similar, there are differen-

ces in terms of absolute total costs which will impact other

economic outcomes (including budget impact) depending

on which model structure is considered. The absolute costs

estimated with the MSM structure are lower than the PartSA

structure. This is due to a slightly smaller proportion of

patients residing in the progression-free health state over

time (accruing a lower total treatment cost), as well as a

smaller proportion of patients who are alive over time (accru-

ing fewer costs associated with any treatment and dis-

ease management).

Sensitivity analysis

A total of 36 scenarios were explored within the PartSA

structure, based on all possible combinations of the six

“standard” parametric curve choices applied to the OS and

PFS data (i.e. 6� 6). The incremental costs and QALYs

derived from these scenarios are presented in Figure 5 –

these scenarios yielded ICERs ranging from £2,34,829 to

£522,963. PFLYs ranged from 1.63–2.59 for TX1 and

1.44–2.31 for TX2; PDLYs ranged from 0.78–4.78 for TX1 and

0.91–4.82 for TX2.

For the MSM structure, 216 scenarios were explored based

on different parametric curve choices applied to T1, T2 and

T3 (i.e. 6 � 6 � 6). The incremental costs and QALYs derived

from these scenarios are presented alongside the PartSA

scenarios in Figure 5. These scenarios yielded results ranging

from TX2 being dominant, to TX1 being associated with an

ICER of £7,695,487. High ICERs are caused by very small

incremental QALYs being estimated in some scenarios.

Table 3. Headline CEA results.

Model approach Total Incremental ICER

Costs QALYs Costs QALYs

PartSA
TX1 £265,693 3.14
TX2 £187,648 2.91 £78,045 0.23 £3,42,474

MSM
TX1 £239,499 2.57
TX2 £161,300 2.38 £78,199 0.19 £4,11,574

Abbreviations. CEA, cost-effectiveness analysis; ICER, incremental cost-effective-
ness ratio; MSM, multi-state model; PartSA, partitioned survival analysis; QALY,
quality adjusted life year.

Figure 5. Scenario analyses associated with parametric forms.

Table 4. Disaggregated model costs and outcomes.

Discounted
outcomes

Pre-progression Progressed disease Total

PartSA MSM PartSA MSM PartSA MSM

Costs
TX1 £2,14,316 £2,11,674 £51,377 £27,825 £2,65,693 £2,39,499
TX2 £1,36,146 £1,28,387 £51,502 £32,913 £1,87,648 £1,61,300

QALYs
TX1 1.96 1.93 1.18 0.64 3.14 2.57
TX2 1.73 1.63 1.18 0.76 2.91 2.38

Abbreviaions. CEA, cost-effectiveness analysis; ICER, incremental cost-effective-
ness ratio; MSM, multi-state model; PartSA, partitioned survival analysis; QALY,
quality adjusted life year.
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PFLYs ranged from 1.58-2.51 for TX1 and 1.38-2.21 for TX2;

PDLYs ranged from 1.05-1.97 for TX1 and 1.24-2.15 for TX2.

Figure 5 demonstrates a higher spread of uncertainty in

terms of parametric curve selection from the MSM structure

compared with the PartSA structure – this may be explained

by the fact that the MSM structure specifies the model based

on more specific data for each transition (three transitions

vs. two endpoints in the PartSA structure using the same

data source). Additionally, varying T1 has a “knock-on” effect

within the model due to the embedded structural links; this

transition directly impacts the proportion of patients eligible

for T2 and T3. Therefore, varying the parametric curve

informing T1 will likely have an amplified effect on the

model results. The scenarios associated with the MSM struc-

ture are largely to the left of the scenarios associated with

the PartSA structure, indicating that MSM scenarios predicted

fewer incremental QALYs.

Summary of key differences

The key differences between the model structures are driven

by differences in estimated outcomes beyond the duration

of follow up. The MSM structure predicts a lower probability

of being in the progressed disease state over time from 13

to 20 months for TX1 and TX2, respectively and a higher

probability of being in the death health state from 15 to

16months, respectively. These differences have implications

for both the total costs and total QALYs accrued, which then

go onto impact the ICER. The sensitivity analysis results illus-

trated a broad spread of estimated costs and QALYs, with

the MSM scenarios generally predicting fewer incremen-

tal QALYs.

Discussion

The PartSA is the most commonly applied model structure in

oncology within the UK. However, the limitations associated

with this structure are often not acknowledged or explored

thoroughly8. Use of MSMs in HTA are less common, a recent

example considering the structural link between progression

and death through MSM is described in the UK HTA NICE

submission TA58719. The comparison of modelling

approaches (PartSA vs. semi-Markov MSM) indicates that the

choice of structure can have a profound impact on predicted

outcomes and cost-effectiveness results which may subse-

quently impact reimbursement decisions made by HTA

bodies. Given these differences it is important to understand

the assumptions underpinning each structure.

The PartSA extrapolates PFS and OS independently; and

so, mortality in this structure is only determined by time to

death data and is not explicitly linked to earlier progression

events. The assumption that the modelled survival endpoints

are structurally independent is potentially problematic as

there are a number of dependencies between the survival

endpoints, for example: (1) they include some of the same

events (e.g. PFS and OS curves include the same pre-progres-

sion deaths); (2) events are structurally dependent (e.g. death

cannot be followed by progression and time spent

progression-free contributes to time spent alive); and (3)

intermediate events are often of prognostic importance for

later events (e.g. progression is generally considered a nega-

tive prognostic factor for mortality)9. For the within-trial

period, these dependencies are reflected in the data and

should be closely reflected in the PartSA results. However,

for analyses that model beyond the trial period, dependen-

cies between endpoints are ignored with potentially import-

ant implications for extrapolation. Around 60% of patients in

the dataset informing this research had progression events

at data cut-off. Therefore, ignoring the dependences

between endpoints is likely to impact the validity of extrapo-

lated outcomes.

Conversely, the MSM approach models clinical events

such that they are explicitly related. Note: there remains

uncertainty within the MSM associated with extrapolating

outcomes from immature data, for example: the probability

of transitioning from progressed disease to death will

encompass uncertainty if not all patients have progressed

within the data set. Additionally, the MSM has the potential

to model counterfactuals regarding the patterns of treatment

post-progression which may offer a better reflection of the

outcomes observed in clinical practice. In the three-state

example presented in this paper, external data sources of

post-progression survival could directly inform transition 3 of

the MSM. Whereas, these data would have to be combined

with the OS outcomes informing the PartSA.

The MSM approach is not without limitations. Currently,

available analytical methods rely on access to individual-level

data for the treatments of interest, which are unlikely to be

available for published clinical studies. Furthermore, as with

standard STMs, the MSM approach requires sufficient data to

inform the transitions from progression-free to death and

progressed disease to death. Data on these transitions specif-

ically are often limited if the majority of deaths occur after

disease progression or when follow-up is limited.

Within the context of a clinical trial, data following disease

progression are often restricted due to limited follow-up.

This limitation is sometimes used in defense of a model

approach that does not require these data specifically (i.e. a

PartSA). However, while a PartSA can (in theory) be fitted to

any dataset where PFS and OS are available, this does not

mean that the outcomes are robust.

From a feasibility stance, MSMs are objectively more com-

plex and time-consuming to develop. However, the analysis

and code relating to the msm R package is explained in detail

by Williams et al. alongside a worked example18. Once this

code is understood (requiring working knowledge of R pro-

gramming), it is relatively simple to adapt and apply to other

settings. To further encourage use and transparency in this

area, we have also published our code in the Supplementary

Material for both the PartSA and MSM frameworks.

A PartSA informed by sufficiently robust data should yield

very similar outcomes to the MSM framework. However,

where data are limited (e.g. due to administrative censoring),

it is likely that each approach will yield different estimates of

post-progression survival. Rigorous model calibration and

validation from clinical experts can help to align the
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post-progression survival with real world experiences.

However, without more data, there is only so much model

calibration can achieve. There are published guidelines avail-

able for choosing a model structure based on key require-

ments (including: output requirements, population size and

system complexity)20. However, to date, there is no pub-

lished validation tool to assess the relative fit of two or more

model structures – this is an unmet need for model develop-

ers which should be addressed in future research.

The key differences between the model structures are

driven by the estimated outcomes beyond the trial follow-

up; the example presented in this paper considers a 15-year

time horizon, given that the median follow-up of the trial is

15-months, predicted outcomes inform the majority of the

model time horizon. The 15-year time horizon aligns with

HTA guidelines for life-extending treatment i.e. the time hori-

zon should be long enough to reflect all important differen-

ces in costs or outcomes between the technologies being

compared15. Extrapolating beyond the trial follow-up intro-

duces uncertainty into the model estimates. Therefore,

shorter time horizons, with less uncertainty, may be consid-

ered in scenario analyses. However, it is important to note

that these shorter time horizons would likely not reflect all

the benefits or costs that would be accrued by the treatment

and, as such, would not be the “true” ICER.

This analysis presents deterministic results. Probabilistic

results are often important for decision making to assess the

impact of uncertainty on the dispersion of results. However,

these were outside of the scope of this example. In practice,

is important that probabilistic analyses conducted within

both the PartSA and MSM framework account for the correl-

ation between endpoints and transition probabilities such

that clinically implausible results are not generated (e.g. PFS

curves crossing OS curves).

There is insufficient information available to inform our

analysis in order for us to conclusively make a recommenda-

tion as to which of the presented models is the “least

wrong”, with the understanding that no health economic

model is “right”. It is likely that there is uncertainty intro-

duced within the PartSA structure due to the immature sur-

vival data yet understanding the extent of this is difficult

without further information on long-term outcomes.

Similarly, transitions from the progressed disease to death

health state in the MSM framework are based on limited fol-

low-up from a subgroup of patients who have progressed

within the clinical trial. Therefore, these data are also likely

to lead to somewhat uncertain estimates of OS.

In the absence of longer follow-up from the trial, external

data sources may be considered (where available). These

sources can be used as a validation tool or directly built into

the modelling framework. The MSM structure lends itself to

the implementation of external data sources for the T2 tran-

sition, from progressed disease to death. However, given

that outcomes are not modelled explicitly for patients with

progressed disease in the PartSA approach, it is not possible

to incorporate such external data in this framework.

Our analysis has used “real” data from a late-stage cancer

clinical trial, simulating a “real-world” scenario where only

immature data are available. The methods and results have

been clearly explained such that the analyses can be easily

repeated, additionally, the R code has been made available

to encourage this. However, the research has limitations.

Firstly, directional findings from our study are specific to the

setting in which the clinical trial is set. Limited information

has been provided on the disease area and the clinical trial

due to confidentiality requirements from the pharmaceutical

company. However, this does not impact the conclusions of

the study in relation to model structures. Additionally, the

research is limited to exploring a three-state oncology model

structure for both PartSA and MSM – MSMs may be consid-

ered as a better option when the causal pathway is more

complicated. The clinical data used in this study are limited.

Having a longer follow-up from the clinical trial would pro-

vide more information as to which model is predicting the

outcomes closest to reality. Future research could explore

the impact of follow-up time on the robustness of the

results; for example, censoring patients at shorter follow-up

times or limiting the analyses to subgroups with different fol-

low-up times. It would also be beneficial to re-visit these

analyses with longer term data to see which model was pre-

dicting outcomes in line with observed data. In addition, we

have only considered relatively “simple” parameterizations

for each transition/curve used in both modelling approaches

due to currently-available packages for the MSM approach.

Further research is required to understand which model

should be used and when, in terms of different contexts and

settings8. However, it is important that for now, we under-

stand the implications of the different modelling methods

and sufficiently explore these such that decisions remain evi-

dence based and allow for the most efficient allocation of

resources. In relation to MSM structures specifically, research

should consider how to incorporate relative efficacy for treat-

ments which only have OS and PFS outcomes reported in

the literature. In terms of deciding the most appropriate

model structure, it is important to acknowledge that no one

approach will be without limitations. Therefore, we recom-

mend that researchers state and discuss the assumptions

and drawbacks featured for their chosen model structure(s) –

the NICE Technical Support Documents provide a useful

starting point as to what should be presented for each mod-

elling approach9. Ideally, multiple model structures should

be developed, and the relative advantages and limitations

associated with each approach stated and explored in scen-

ario analyses. Recommendations for decision makers using

health economic models to inform allocative decisions are to

explore how the assumptions underpinning the model struc-

ture may be influencing results and, where there are insuffi-

cient data to support the underlying structures, to be

cautious when interpreting results.

Conclusions

This analysis adds to the growing literature demonstrating

the importance of justifying the underlying model structure

and exploring structural assumptions within scenario analy-

ses. We recommend that where feasible a comparison of

1184 H. CRANMER ET AL.



model structures is made and further research to ascertain

when it may be most appropriate to use each approach. In

terms of contemporary HTA, we urge relevant parties to pre-

sent a detailed account of the approach used alongside its

associated strengths and limitations, acknowledging that

other structures could have been considered.
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