

This is a repository copy of *MO2* - How errors in the implementation of background mortality leads to bias in models.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/169368/

Version: Submitted Version

Proceedings Paper:

Bullement, A. orcid.org/0000-0001-7091-0972 and Hatswell, A.J. (2018) MO2 - How errors in the implementation of background mortality leads to bias in models. In: Value in Health. ISPOR 8th Asia-Pacific Conference, 08-11 Sep 2018, Tokyo, Japan. Elsevier, S8.

https://doi.org/10.1016/j.jval.2018.07.055

© 2018 The Authors. For re-use permissions please contact the authors.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

 $\hat{\delta}$

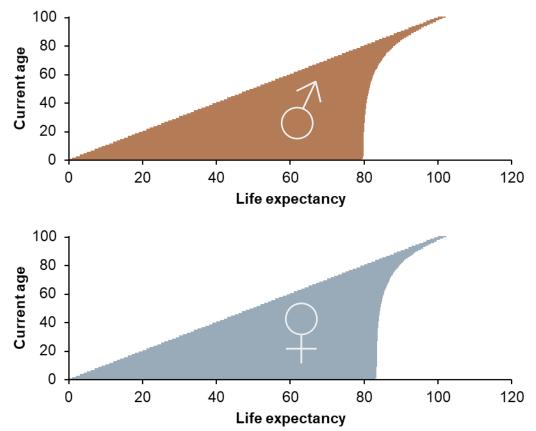
How Errors in the Implementation of Background Mortality Leads to Bias in Models

Ash Bullement¹, Anthony Hatswell^{1,2} ¹Delta Hat Limited, Nottingham, UK

²University College London, London, UK

Background and Objectives

- Patients considered in economic models are typically exposed to 'competing risks' of death
 - An example of these 'competing risks' is
 disease-specific and other-cause mortality
- The implementation of other-cause mortality (or 'background mortality') is often inappropriately defined and based on a population mean, when the risk is not linearly related to age
- This research looks at the impact of a simplified application of background risk on model results



Figures: Life expectancy by age and sex for the United Kingdom, 2016

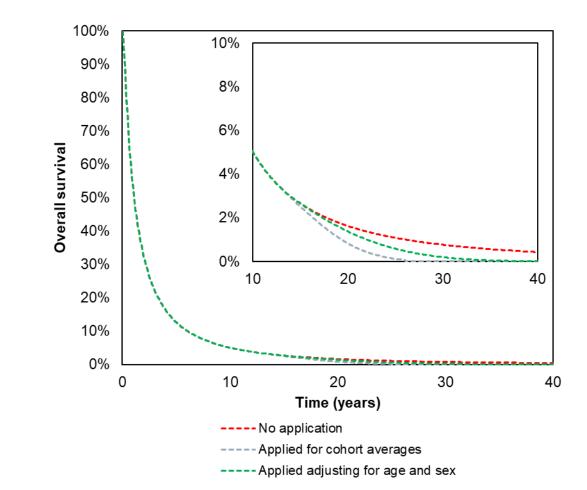
(https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/datasets/nationallifetablesenglandreferencetables)

Methods

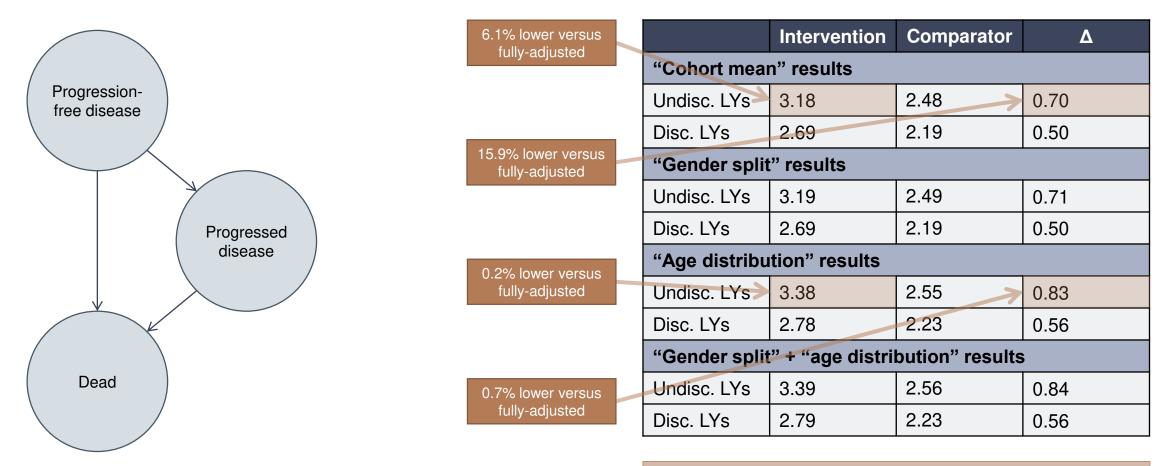
- Three economic models were constructed using simulated disease data:
 - 1. Example 1: partitioned survival model (PSM) for a cancer treatment
 - 2. Example 2: state-transition model (STM) for multiple sclerosis
 - 3. Example 3: individual-level model (ILM) for cyanide poisoning
- The models incorporated mortality according to the following data and assumptions:
 - Disease-specific mortality: parametric survival curves or survival probabilities
 - Background mortality: UK Life Tables
- Model outcomes (undiscounted and discounted life years [LYs]) were compared between background mortality applied using the following methods (where applicable):
 - 1. Based on mean age and gender split at baseline ("cohort mean")
 - 2. Accounting for the dynamic gender split of patients over time ("gender split")
 - 3. Considering the distribution of patient age at baseline ("age distribution")
 - 4. On a per-patient basis ("individual level")

Results Illustration

- Cohort with mean age of 75 years (SD) 7.5), 60% female
- Red line shows unadjusted overall survival (OS)
- Grey line shows naïve application of background mortality based on cohort averages at baseline
- Green line shows OS adjusted for age distribution at baseline and gender split variation over time

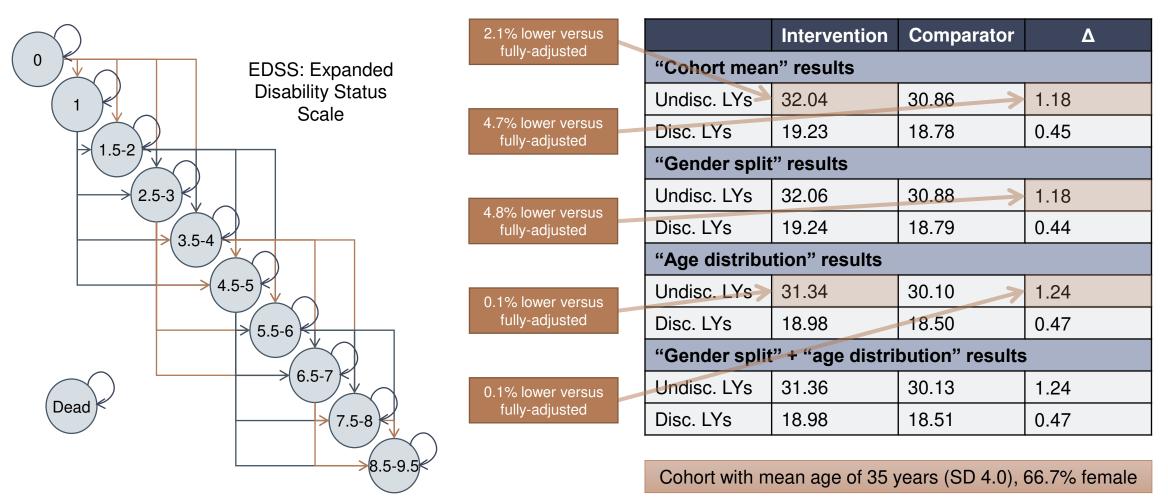


Results Example 1 (PSM, cancer)

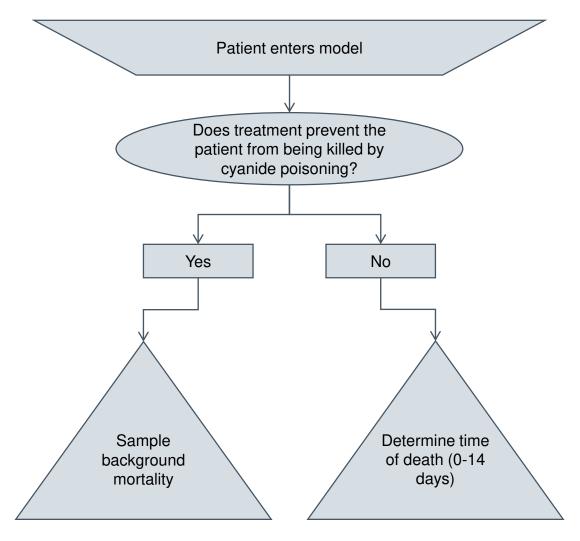


Cohort with mean age of 75 years (SD 7.5), 60.0% female

Results Example 2 (STM, multiple sclerosis)



Results Example 3 (ILM, cyanide poisoning)



	Intervention	Comparator	Δ
"Cohort mean	" results		
Undisc. LYs	38.68	21.50	17.18
Disc. LYs	20.13	11.23	8.96
"Individual lev	vel" results		
Undisc. LYs	39.07	21.73	17.34
Disc. LYs	18.53	10.31	8.23
Cohort with r Large number of t incremental LY		ears (SD 23.6), {	50.5% female
		ower versus -adjusted	0.9% lower versus fully-adjusted

Results *Summary*

- Predicted LYs using alternative applications of background mortality can vary dramatically, particularly where patients have a wide spread in age, and low diseasespecific mortality
- Examples 1 and 2 demonstrate the error in undiscounted LYs for a given treatment could be substantial – up to 6.1% in our stylised examples
 - This magnitude of error has the potential to influence decision making
- Even in a simplistic individual level model (Example 3), simplification of background mortality implementation could lead to a percentage error in undiscounted LYs of 0.9%
 - The impact of discounted LYs however was ten times as large (9.0%). If discounted incremental LYs were translated into discounted incremental quality-adjusted life years (QALYs), a substantial impact may be observed in the cost per QALY gained in a cost-utility analysis (not presented here)

Conclusions

- $\hat{\delta}$
- The implementation of background mortality in economic models is often flawed, which has the potential to meaningfully alter results
- The level of bias introduced varies, being relatively small when patients are close in age and disease-specific mortality constitutes the majority of risk
 - Conversely this can be large when there is a large age range, and capacity to demonstrate benefit in the longer term (for example, cancer immunotherapies, chimeric antigen receptor tcell [CAR-T] therapy, stem cell transplantation [SCT])
 - Accounting for the change in gender split over time is good practice, though it does not have a large impact in our results
- While the impact of simplifying background mortality is highly context dependent, modellers should be mindful of the risks over-simplification could pose
 - This is particularly where background mortality is a major cause of death

 $\hat{\delta}$

Thank you

⊠ <u>abullement@deltahat.co.uk</u>