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Background and Objectives

• Patients considered in economic models are 
typically exposed to ‘competing risks’ of death

• An example of these ‘competing risks’ is 
disease-specific and other-cause mortality

• The implementation of other-cause mortality 
(or ‘background mortality’) is often 
inappropriately defined and based on a 
population mean, when the risk is not linearly 
related to age

• This research looks at the impact of a 
simplified application of background risk on 
model results

2Raw data from the UK Office for National Statistics 
(https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/datasets/nationallifetablesenglandreferencetables) 

Figures: Life expectancy by age and sex for the United Kingdom, 2016
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https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/datasets/nationallifetablesenglandreferencetables


Methods

• Three economic models were constructed using simulated disease data:
1. Example 1: partitioned survival model (PSM) for a cancer treatment

2. Example 2: state-transition model (STM) for multiple sclerosis

3. Example 3: individual-level model (ILM) for cyanide poisoning

• The models incorporated mortality according to the following data and assumptions:
• Disease-specific mortality: parametric survival curves or survival probabilities

• Background mortality: UK Life Tables 

• Model outcomes (undiscounted and discounted life years [LYs]) were compared between 
background mortality applied using the following methods (where applicable):

1. Based on mean age and gender split at baseline (“cohort mean”)
2. Accounting for the dynamic gender split of patients over time (“gender split”)
3. Considering the distribution of patient age at baseline (“age distribution”)
4. On a per-patient basis (“individual level”)
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Results
Illustration

• Cohort with mean age of 75 years (SD 
7.5), 60% female

• Red line shows unadjusted overall 
survival (OS)

• Grey line shows naïve application of 
background mortality based on cohort 
averages at baseline

• Green line shows OS adjusted for age 
distribution at baseline and gender split 
variation over time
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Results
Example 1 (PSM, cancer)
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Intervention Comparator Δ
“Cohort mean” results
Undisc. LYs 3.18 2.48 0.70

Disc. LYs 2.69 2.19 0.50

“Gender split” results
Undisc. LYs 3.19 2.49 0.71

Disc. LYs 2.69 2.19 0.50

“Age distribution” results
Undisc. LYs 3.38 2.55 0.83

Disc. LYs 2.78 2.23 0.56

“Gender split” + “age distribution” results
Undisc. LYs 3.39 2.56 0.84

Disc. LYs 2.79 2.23 0.56

Dead

Progression-

free disease

Progressed 

disease

Cohort with mean age of 75 years (SD 7.5), 60.0% female

6.1% lower versus 
fully-adjusted

15.9% lower versus 
fully-adjusted

0.2% lower versus 
fully-adjusted

0.7% lower versus 
fully-adjusted



Results
Example 2 (STM, multiple sclerosis)
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EDSS: Expanded 
Disability Status 

Scale

0

1

1.5-2

2.5-3

3.5-4

4.5-5

5.5-6

6.5-7

7.5-8

8.5-9.5

Dead

Intervention Comparator Δ
“Cohort mean” results
Undisc. LYs 32.04 30.86 1.18

Disc. LYs 19.23 18.78 0.45

“Gender split” results
Undisc. LYs 32.06 30.88 1.18

Disc. LYs 19.24 18.79 0.44

“Age distribution” results
Undisc. LYs 31.34 30.10 1.24

Disc. LYs 18.98 18.50 0.47

“Gender split” + “age distribution” results
Undisc. LYs 31.36 30.13 1.24

Disc. LYs 18.98 18.51 0.47

Cohort with mean age of 35 years (SD 4.0), 66.7% female

2.1% lower versus 
fully-adjusted

4.7% lower versus 
fully-adjusted

0.1% lower versus 
fully-adjusted

0.1% lower versus 
fully-adjusted

4.8% lower versus 
fully-adjusted



Intervention Comparator Δ
“Cohort mean” results
Undisc. LYs 38.68 21.50 17.18

Disc. LYs 20.13 11.23 8.96

“Individual level” results
Undisc. LYs 39.07 21.73 17.34

Disc. LYs 18.53 10.31 8.23

Results
Example 3 (ILM, cyanide poisoning)
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Determine time 

of death (0-14 

days)

Sample 

background 

mortality

Patient enters model

Does treatment prevent the 

patient from being killed by 

cyanide poisoning?

NoYes

Cohort with mean age of 40 years (SD 23.6), 50.5% female

Large number of total 
incremental LYs

9.0% lower versus 
fully-adjusted

0.9% lower versus 
fully-adjusted



Results
Summary

• Predicted LYs using alternative applications of background mortality can vary 
dramatically, particularly where patients have a wide spread in age, and low disease-
specific mortality

• Examples 1 and 2 demonstrate the error in undiscounted LYs for a given treatment could 
be substantial – up to 6.1% in our stylised examples

• This magnitude of error has the potential to influence decision making

• Even in a simplistic individual level model (Example 3), simplification of background 
mortality implementation could lead to a percentage error in undiscounted LYs of 0.9%

• The impact of discounted LYs however was ten times as large (9.0%). If discounted 
incremental LYs were translated into discounted incremental quality-adjusted life years 
(QALYs), a substantial impact may be observed in the cost per QALY gained in a cost-utility 
analysis (not presented here)
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Conclusions

• The implementation of background mortality in economic models is often flawed, which 
has the potential to meaningfully alter results

• The level of bias introduced varies, being relatively small when patients are close in age 
and disease-specific mortality constitutes the majority of risk

• Conversely this can be large when there is a large age range, and capacity to demonstrate 
benefit in the longer term (for example, cancer immunotherapies, chimeric antigen receptor t-
cell [CAR-T] therapy, stem cell transplantation [SCT])

• Accounting for the change in gender split over time is good practice, though it does not have a 
large impact in our results

• While the impact of simplifying background mortality is highly context dependent, 
modellers should be mindful of the risks over-simplification could pose

• This is particularly where background mortality is a major cause of death
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Thank you

 abullement@deltahat.co.uk
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