

This is a repository copy of Modelling overall survival in immunotherapy using parametric techniques : Avelumab in previously treated metastatic Merkel cell carcinoma.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/169363/

Version: Submitted Version

Proceedings Paper:

Bullement, A. orcid.org/0000-0001-7091-0972, Amin, A., Stapelkamp, C. et al. (5 more authors) (2018) Modelling overall survival in immunotherapy using parametric techniques : Avelumab in previously treated metastatic Merkel cell carcinoma. In: Value in Health. ISPOR 21st Annual European Meeting, 10-14 Nov 2018, Barcelona, Spain. Elsevier , S11-S11.

https://doi.org/10.1016/j.jval.2018.09.062

© 2018 The Authors. For re-use permissions, please contact the authors.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Modelling Overall Survival in Immunotherapy Using Parametric Techniques: Avelumab in Previously Treated Metastatic Merkel Cell Carcinoma

<u>Bullement A^{1, 2}, Amin A³, Stapelkamp C³, Willis A¹, Lilley C¹, Hatswell A^{2, 4}, Pescott C⁵, Bharmal M⁵</u>

¹BresMed Health Solutions, Sheffield, UK; ²Delta Hat Limited, Nottingham, UK; ³Merck Serono Ltd, Feltham, UK; ⁴Department of Statistical Science, University College London, London, UK; ⁵Merck KGaA, Darmstadt, Germany

Podium Presentation at the ISPOR 21st Annual European Meeting, November 10-14 2018, Barcelona, Spain

Presentation code: MO2

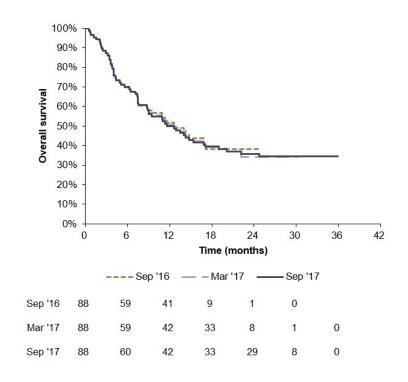
This presentation is the intellectual property of the authors.

Background and Objectives

- Avelumab (an anti–PD-L1 immune-checkpoint inhibitor) was recently approved in the United States, Europe, and Japan, among others, for the treatment of patients with metastatic Merkel cell carcinoma (mMCC)
- Safety and efficacy data are available from the JAVELIN Merkel 200: Part A trial of 88 patients with previously treated mMCC (NCT02155647)

2

- The availability of increasingly maturing data from JAVELIN Merkel 200: Part A allows for the production (and subsequent validation) of overall survival (OS) extrapolations
- This analysis compares observed and extrapolated OS estimates from multiple data cuts using standard parametric and splinebased approaches

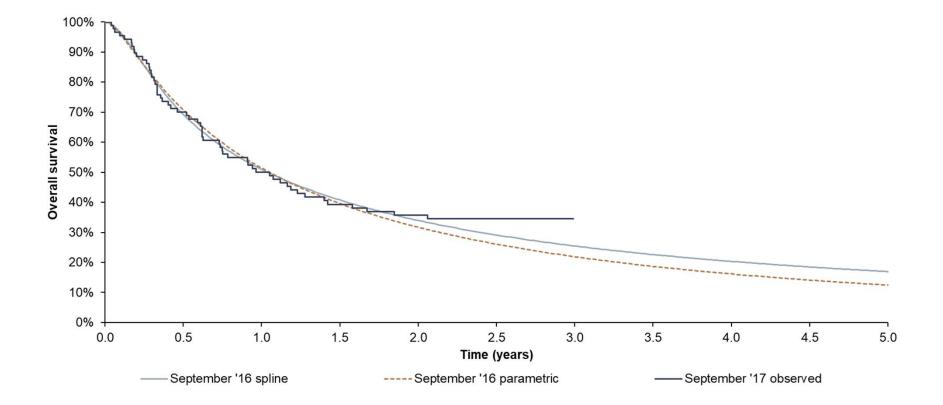

EMA approval: http://www.ema.europa.eu/docs/en_GB/document_library/Summary_of_opinion_- Initial_authorisation/human/004338/WC500231832.pdf FDA approval: https://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm547965.htm

JAVELIN Merkel 200: Part A study publication: Kaufman et al., (2016) https://www.ncbi.nlm.nih.gov/pubmed/27592805

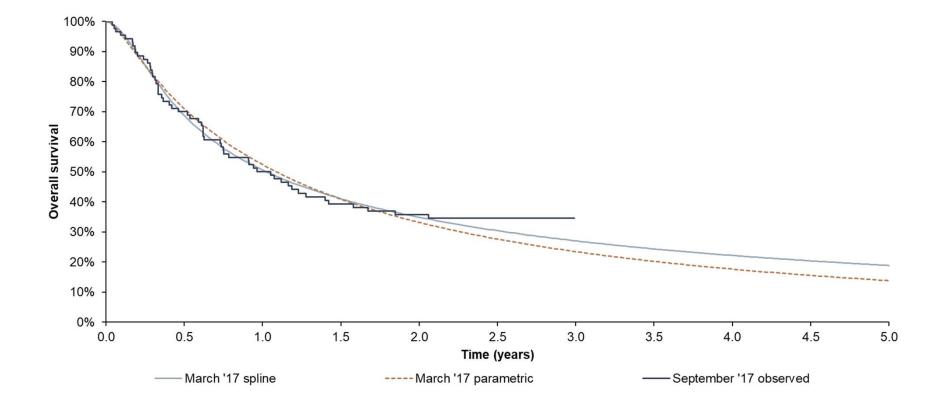
Data

- This analysis compares observed and extrapolated OS estimates from 3 data cuts from Part A of the JAVELIN Merkel 200 trial
- Each data cut constitutes a different period of minimum followup (MFU) for all patients:
 - Data cut Sep-2016
 - 12 months' MFU
 - Data cut Mar-2017
 - 18 months' MFU
 - Data cut lock Sep-2017
 - 24 months' MFU

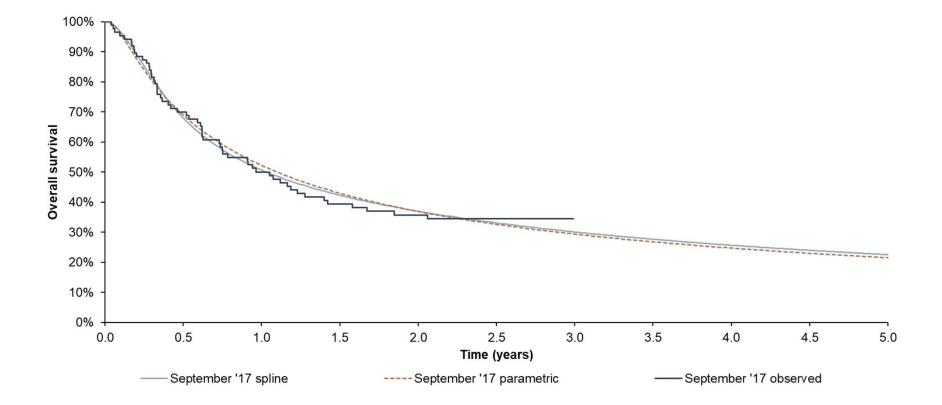
Kaplan-Meier plot of OS for each data cut


12 months' MFU: Kaufman *et al.*, (2018) <u>https://www.ncbi.nlm.nih.gov/pubmed/29347993</u> 18 months' MFU: D'Angelo *et al.*, (2018) <u>http://ascopubs.org/doi/abs/10.1200/JCO.2018.36.5_suppl.192</u> 24 months' MFU: Nghiem *et al.*, (2018) <u>https://meetinglibrary.asco.org/record/161628/abstract</u>

3


Methods

- Standard parametric and spline-based models were fitted to OS data from Part A of JAVELIN Merkel 200 for each data cut
- All survival models were fitted in the statistical software R using the flexsurv package
 - The standard parametric survival models considered were the exponential, generalised gamma, Gompertz, log-logistic, log-normal, and Weibull (routinely considered to inform the estimation of OS in health technology assessment
- The spline-based models considered were natural restricted cubic spline models. The spline-based models were fitted with 1-3 internal knots using each of the 3 functional forms permitted by flexsurv. Knot locations were selected according to the percentiles of the loguncensored survival times
- The selection of the best-fitting parametric survival model was determined through a combination of visual fit to the observed OS data, statistical goodness-of-fit (measured by Akaike's information criterion [AIC]), and the plausibility of long-term extrapolation (based on clinical expert input)


Results *Extrapolation from September '16 (12 months' MFU) data cut*

Results *Extrapolation from March '17 (18 months' MFU) data cut*

Results *Extrapolation from September '17 (24 months' MFU) data cut*

Results Summary

Assessment time			12 months	18 months	24 months	
Observed survival						
September 2016 (12 months' MFU) data cut			51.8%	38.3%	38.3%	
March 2017 (18 months' MFU) data cut			50.8%	39.9%	34.3%	
September 2017 (24 months' MFU) data cut			50.1%	39.3%	35.8%	
Assessment time	Model	AIC	12 months	18 months	24 months	
Standard parametric survival						
September 2016 (12 months' MFU) data cut	Log-normal	377.70	51.5%	39.3%	31.8%	
March 2017 (18 months' MFU) data cut	Log-normal	431.54	52.5%	40.7%	33.3%	
September 2017 (24 months' MFU) data cut	Log-normal	455.31	54.1%	42.9%	35.8%	
	Generalised gamma	454.68	52.3%	42.8%	37.0%	
Spline-based survival						
September 2016 (12 months' MFU) data cut	1-knot odds	379.26	51.5%	40.5%	34.1%	
March 2017 (18 months' MFU) data cut	1-knot odds	432.29	50.7%	40.9%	35.0%	
September 2017 (24 months' MFU) data cut	1-knot odds	453.81	50.8%	42.1%	37.1%	

Conclusions

- Spline-based models provided a more accurate estimation of the observed 24-month OS based on extrapolation from earlier data than standard parametric approaches
- Longer-term survival estimates from the spline-based models were more aligned with clinical expectations of immunotherapy, ie, an emergent plateau in OS associated with the immuneresponse effect of treatment

- Limitations and further research:
 - Landmark or cure-based models may also reflect the expected immune-response effect in OS but require explicit assumptions about the estimation of long-term OS (such as the OS for cured patients, the prognostic importance of response, and the difference in the hazard of death by response)
 - Longer-term data are required to validate OS extrapolations

Thank you

⊠ <u>abullement@deltahat.co.uk</u>