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Abstract. In recent years, the use of robotic systems to enhance the productivity of machining

operations has received significant attention from the research and manufacturing communities.

Robots have the potential to further improve productivity, for example by providing automated

workpiece fixturing, or by providing a flexible and reconfigurable platform from which a va-

riety of subtractive or additive manufacturing operations could be performed. One possible

approach is the use of a robotic arm to provide additional fixturing or support of the workpiece

during the machining operation. This can increase the stiffness of the workpiece system during

machining, which can improve productivity by limiting the onset of undesirable vibrations such

as chatter. Chatter is a form of self-excited vibration which leads to low surface quality of the

workpiece, shortens the cutting tool life and increases the cutting forces. In this paper, an ac-

tively controlled robot arm is simulated in order to suppress the chatter, in an effort to further

improve the chatter stability. During the milling operation, preload can be applied through

the robot to support the flexible structure, however, the robot cannot suppress high-frequency

forces. Since the stiffness and damping ratio of the large flexible structure vary during the oper-

ation due to material removal, active vibration control is performed. A proof-mass actuator is

proposed that can provide 45 N force up to 2000 Hz with 2 mm stroke. The dynamic properties

of the device are identified experimentally as part of a model of a robot fixture prototype. The

robotic arm is modelled as a three degree of freedom system; this is combined with a simplified

representation of the workpiece dynamics, and the proof-mass actuator, within a Matlab envi-

ronment. The effect of active control on the chatter stability is evaluated, focussing initially on

the use of direct velocity feedback as a control strategy. Estimated chatter stability predictions,

along with time, frequency domain simulation results, show that the application of active con-

trol method in robotic-assisted machining can suppress the chatter vibrations during machining

and hence increase productivity.
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1 INTRODUCTION

Thin-walled structures such as jet engine parts and aerospace fuselage components are com-

mon in the aeronautical industry. However, large flexibility of these components leads to ex-

cessive vibrations which are called chatter vibration during machining. Chatter is a form of

self-excited vibration which leads to low surface quality of the workpiece, shortens the cutting

tool life and increases the cutting forces. Milling stability theory [1] can be used to improve

the chatter stability by selection of the process parameters which are cutting speed, feed rate

and depth of cut. Also, in order to increase the productivity of the process, dynamic stiffness

and damping ratio of the workpiece can be improved. There are many techniques with fixed

supports [2] and mobile supports [3] to avoid chatter but an interesting current approach is to

use robotic systems as part of the machining system. Robots can be used to directly machine

components, yet they tend to exhibit very low stiffness which exacerbates excessive vibration.

Recently, considerable literature has grown up around the theme of robotic assisted machining.

Robots can be used to improve the fixturing or support of the workpiece during machining. The

method is called robotic assisted milling when a robot supports a workpiece from the opposite

surface to the milling process.

For instance, Ozturk et. al. [4] presented a new concept called robotic assisted milling of thin-

walled structures. The authors used two types of end effectors to support the workpiece from the

back surface. Experimental results showed that the surface roughness decreased considerably

by using moving support. During the milling, robot and the cutting tool moved synchronously.

As it is mentioned in the paper, the process was monitored not controlled. The authors did not

take account of stiffness change during machining. As the workpiece’s stiffness changes due

to the material removal, the supporting force needs to be adjusted to achieve better dynamic

response improvement.

Fei et al. [5] presented a moving damper to increase the stability of the process. Stability of

the process increased substantially. Nonetheless, since the moving damper is fixed to the ma-

chine itself, it can be used for only a particular workpiece unless the moving damper design is

changed. The authors also investigated the deformation model for moving fixture [6]. Surface

quality and machining errors are improved. Esfandi and Tsao [7] suggested using an industrial

robotic manipulator to avoid machining vibrations for turning process of the thin walled cylin-

drical structures. The results encouraged the use of manipulator which provides higher cutting

stiffness. Nevertheless, the robot sometimes influences negatively the stability of the machining

process given that the robotic arm itself is not rigid.

Some researchers have also studied the effect of the supporting preload force. Bo et al. [8]

investigated the influence of supporting force of moving support on machining stability during

mirror milling operation of the thin-walled structure. Supporting force influences not only

machining stability but also the dynamic behaviour of the workpiece.

In this paper, an actively controlled robot arm which is modelled as a three degree of freedom

system, is simulated for milling process in time and frequency domain. The aims are to improve

chatter stability, select the most effective actuator assembly point, and compare the effect of

the contact type between robot and workpiece. In section 2, contact parameter identification

using the receptance coupling formula is presented. In section 3, an inertial actuator which can

provide active control for robotic assisted milling is introduced. The effect of the active control

on the chatter stability improvement is simulated and evaluated, focussing on the direct velocity

feedback (DVF) as a control strategy. In the last section, the stability lobe diagram is estimated

for the process.
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2 IDENTIFICATION OF CONTACT PARAMETERS

The proposed robot and machine tool configuration is shown schematically in Figure 2.1.

Here, a flexible robot is pushed against a flexible workpiece via a soft contact interface whose

dynamics must be identified. The machining stability can be improved by using an active vi-

bration control device on the end effector. During the milling operation, preload will be applied

through the STAUBLI TX90 robot to stiffen the flexible workpiece. It should be noted that

for the purposes of this proof-of-concept experiment, a nominal ’thin walled workpiece’, is re-

placed by a solid workpiece block that is mounted on a flexure. The contact parameters which

are stiffness and damping ratio, between the end-effector that is hard rubber, and the flexure are

identified by receptance coupling formula [9]. Parameters are identified when 240 N support

force is applied to the flexure.

Figure 2.1: Actively Controlled Robot Arm for Milling

The workpiece and robot are modelled as single and three degree of freedom system, respec-

tively. The combined system’s frequency response function (FRF) is calculated as;

FRFcombined = FRFpart − FRFpart(FRFpart + FRFrobot +
1

K ′
)FRFpart (1)

K ′ = k + iwc (2)

where FRFcombined, FRFpart, FRFrobot, k, c and w are the combined FRF, workpiece FRF,

robot FRF, contact stiffness, damping and the frequency, respectively.

As a first step, flexure and robot were tested using a modal hammer and accelerometer.

The flexure FRF was measured at its midpoint. Since the robot’s stiffness varies due to the

configuration, the robot was tested on the end-effector while the robot was not touching the

flexure but very close to the measurement point. Then, the experiments were repeated with
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hard rubber supporting the workpiece at the middle point of the flexure. The flexure flexibility

is improved 61% by utilizing preload through the robot as seen in Figure 2.2. Seeing that the

experimental contact is flexible, the coupled system’s natural frequency is changed from 380

Hz to 399 Hz. The contact stiffness and damping are identified for flexible contact as 4.5e5

N/m and 35.5 Ns/m, respectively.

Also, the combined FRF is estimated for rigid contact. If the contact was assumed as rigid

contact, which can be provided with a metal castor end-effector presented by Barrios et. al. [10]

by using a different robot, natural frequencies would have been shifted close to robot’s natural

frequencies which are 32, 76 and 136 Hz.
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Figure 2.2: Frequency Response Functions and Receptance Coupling Model

3 ACTIVE CONTROL AND SIMULATION RESULTS

Active control is simulated for robotic assisted milling by using an actuator as shown in

Figure 2.1. The direct velocity feedback (DVF) control system is selected as it is a model free

control method and easy to apply. Once it is implemented, only the gain needs to be adjusted.

An inertial actuator is chosen as this approach is easily deployed on the robot’s end effector.

3.1 Inertial Actuator

The inertial actuator seen in Figure 3.1 can be represented by a vibrating mass mp with a

damper cp and spring kp. The mass is excited by a electromagnetic force fa according to the

voltage input Vin. The transfer function between the mass displacement x and the voltage input

Vin can be written as,

x(s)

Vin(s)
=

G1G2

ms2 + cs+ k
(3)

where G1 is the electromagnetic gain and G2 is the power amplifier gain [11].
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The transfer function between the reaction force fa and the voltage input Vin can be written

as,

fa(s)

Vin(s)
=

−G1G2ms2

ms2 + cs+ k
= ga

s2

s2 + 2ζωps+ ω2
p

(4)

where ωp is the natural frequency, ζ is the damping ratio of the actuator and ga is the actuator

gain [11].

Figure 3.1: Proof-Mass Actuator [12]

An inertial actuator which is a model of Micromega Dynamics, is used to perform the sim-

ulations. This actuator has a mode at 8.4 Hz and is capable of applying up to 45 N supporting

force up to 2000 Hz. Its transfer function [13] can be written as:

fa(s)

Vin(s)
= 5

s2

s2 + 15.834s+ 2785.6
(5)

3.2 Case Studies

In this section, 4 cases which show the effect of the actuator, actuator assembly point, and

effect of the contact parameters, are presented. Time domain solutions are solved by ODE 45

function within a Matlab environment. This function implements a Runge-Kutta method with

a variable time step for the time domain solution. Robot and workpiece are modelled as a three

and single degree of freedom, respectively. Model parameters and cases can be seen in Table

3.1 and Table 3.2.

Table 3.1: Model Parameters

Parameters Value (kg) Parameters Value (N/m) Parameters Value (Ns/m)

M1 32.8 K1 7.3e5 C1 573

M2 21.6 K2 1.88e6 C2 368

M3 21.4 K3 9.47e6 C3 1210

M4 0.748 K4 4.5e5 C4 35.5

Ma 1 K5 4.27e6 C5 25

Ka 2785.6 Ca 15.83
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Table 3.2: Cases

Case Number Explanation

Case 1 Preloaded case, without actuator

Case 2 Actuator on the end-effector, flexible contact

Case 3 Actuator on the end-effector, rigid contact

Case 4 Actuator on the workpiece, flexible contact

The first case is uncontrolled and has a flexible contact. Three degree of freedom robot

supports the workpiece. Vibration on the workpiece is suppressed by applying preload through

the robot. Its spring-mass model can be seen in Figure 3.2.

Figure 3.2: Flexible Contact Without Actuator

The natural frequency of the workpiece is shifted from 380 Hz to 399 Hz in this configura-

tion. The model natural frequency is calculated by Cramer’s rule [14]. The amplitude of the

workpiece is reduced by around 61%. This scenario matches the results already presented in

Figure 2.2.

Case 2 is with the actuator mounted on the end-effector seen in Figure 3.3. So as to carry out

the direct velocity feedback (DVF) control method, vibration of the end-effector is differentiated

to velocity and the velocity is multiplied with feedback gain to drive the actuator.

Figure 3.3: Actuator on the End-effector with Flexible Contact

The simulated FRF for this case is shown in Figure 3.4. The input force is implemented on

the end-effector and workpiece while output is measured on workpiece for both simulations.

Direct FRF (red dashed line) for the workpiece has only one mode at 399 Hz yet the cross FRF

(blue solid line) has two modes at 19 Hz and 54 Hz. In practice when the optimum gain limit is

exceeded, the system becomes unstable due to actuator nonlinearities such as force and stroke
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saturation. So, the optimum actuator gains were determined via simulations and the best case

scenario is presented in Figure 3.5. In the simulations, a sinusoidal excitation force of 100 N at

399 Hz, was applied to the workpiece to approximately represent the forces due to the milling

operation. Figure 3.5 shows the simulated workpiece response under these conditions. It can be

seen that the actuator cannot provide enough force to suppress the vibration on the workpiece

since the vibration on the end-effector is too small due to the flexible contact. Consequently,

the actuator is ineffective and the workpiece vibrations are not suppressed.

Nevertheless, if the system is excited with 100 N at 19 Hz, vibration on the workpiece is sup-

pressed by 23% shown in Figure 3.5b. Vibration on the workpiece is decreased up to feedback

gain g=800. Gain greater than 800 makes the system unstable due to the actuator nonlinearity.
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Figure 3.4: Frequency Domain Model for Case 2
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Figure 3.5: Workpiece Vibration for Case 2
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Case 3 is with the actuator on the end-effector with rigid contact (metal castor) as shown

in Figure 3.6. Since the vibration on the end-effector is equal to workpiece’s vibration, the

actuator can provide the vibration suppression on the workpiece. Rigid contact decreases the

natural frequencies to 34, 65, 160 Hz. All three modes are damped by active control.

Figure 3.6: Actuator on the End-effector with Rigid Contact

To excite the system a sinusoidal force which is 50 N at 65 Hz is applied. 65 Hz is the most

flexible frequency for the workpiece. Actuator force varies from 13 N to 45 N for the gains: 100

(dashed red line), 500 (dotted yellow line), 1000 (dash-dot purple line), 2500 (solid green line)

and blue solid line is for the uncontrolled system shown in Figure 3.7. Workpiece vibration is

suppressed around 90% for the case 3. Since the maximum produced force by the actuator is 45

N, gain can be increased up to 2500 for this excitation force value. If the gain is selected greater

than 2500, the system will be unstable owing to the force saturation.
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Figure 3.7: Time Domain Model with Rigid Contact

Case 4 with actuator on the workpiece can be seen in Figure 3.8. The contact between the

end-effector and the workpiece is flexible. In this case, the support is fixed support since the

actuator is assembled directly to the workpiece. 50 N at 399 Hz sinusoidal excitation force is

implemented. Optimum gain is determined as 5000, yet the gain only can be increased to 150

owing to the actuator force limitation. Time domain result is shown in Figure 3.9. Actuator

force varies from 20 N to 45 N for the gains 10 (dashed red line), 50 (dotted yellow line), 100

(dash-dot purple line), 150 (solid green line). Vibration on the workpiece is suppressed around

90%. If the gain was increased up to 5000 without actuator force limitation, vibration on the

workpiece could have been suppressed around 99%.
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Figure 3.8: Actuator on the Workpiece
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Figure 3.9: Time Domain With Actuator on the Workpiece

All the cases are compared in regards of workpiece vibration whilst the robot applies the

preload to the midpoint of the flexure. The effect of preload point can affect the results slightly,

which is given in the next section.

3.3 The Effect of Robot Position

The robot applied the preload to the midpoint of the flexure in the previous section. The

flexibility of the flexure is improved 61%. However, if the robot applies the preload to the edge

point of the flexure, the flexibility is improved 51%. Case 4 results are compared for both robot’s

preload position and it is presented in the Figure 3.10. The DVF control method is applied with

the same gains (10, 50, 100, 150) to the case 4 for both robot’s position. In terms of controlled

vibration results, there is no significant difference.
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Figure 3.10: Comparison of Robot’s Position Effect on Vibration Result

All cases are evaluated regarding vibration of the workpiece. By using active control through

the robot, the dynamic response of the structure can be improved significantly. Contact param-

eters and the actuator assembly point are very critical in order to get a well damped and stable

system. Selection of the end-effector and the actuator assembly point must be taken into con-

sideration for further applications. From a machining context the implications of this vibration

suppression can be considered from the perspective of the chatter stability. This is considered

in the next section.

4 STABILITY LOBE DIAGRAM

Selection of proper axial depth of cut and spindle speed is important to avoid chatter vibra-

tions [1]. Stability lobe diagram is often used to select optimal parameters so as to improve

productivity. The stability lobe diagram is estimated for the robot configurations described in

Section 3 in order to demonstrate the performance improvement that can be obtained from a

manufacturing context.

The stability lobe diagrams were obtained using Budak and Altintas’s method [15]. Details

of this approach are outside the context of the current contribution, but the theory and method is

widely reported elsewhere [1,15]. Down milling was a assumed, with a 20 mm diameter 4 tooth

tool and a radial immersion of 3 mm. The workpiece was assumed to have a cutting stiffness

of Ks=796e6 N/m2, Kt=768e6 N/m2, corresponding to Al-7075-T6 material. With reference to

Figure 4.1, five scenarios are shown:

• Flexible workpiece without active control and preload (blue solid line)

• Case 1: With preload which is implemented through the robot arm (red dashed line)

• Case 3: With the actively controlled robot arm by the inertial actuator on the end-effector,

rigid contact (for g=150 dotted green line, for g=2500 purple dash-dot line)

• Case 4: With the actively controlled robot arm by the inertial actuator on the workpiece,

flexible contact (for g=150 black solid line)

SLD is not developed for case 2 since the FRF was no improved in this scenario.
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Figure 4.1: Stability Lobe Diagram

Comparison of the limiting (min) depth of cut for each cases can be seen in Table 4.1.

Table 4.1: Comparison of the Limiting Depth of Cut blim

Cases blim (mm)

Uncontrolled, Without Preload 0.29

Case 1, Uncontrolled, With Preload (240 N) 0.74

Case 3, Controlled, Actuator on the End-Effector, Rigid Contact, g=150 4.38

Case 3, Controlled, Actuator on the End-Effector, Rigid Contact, g=2500 33.09

Case 4, Controlled, Actuator on the Workpiece, g=150 11.58

As seen in Figure 4.1 and Table 4.1, the depth of cut is increased around 2.5 times with

preload through the robot arm. To achieve greater depth of cut, active vibration control is

applied. The greatest depth of cut is achieved when the actuator is assembled on the end-

effector with rigid contact, gain=2500. However, when the actuator is mounted directly onto

the workpiece, the depth of cut is improved more than when the actuator is mounted on the

end-effector.

5 CONCLUSIONS

The purpose of the current study is to determine the dynamic response improvement in

milling operation by using an actively controlled robot arm. The concept is evaluated in terms
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of the contact type between the robot, workpiece, and actuator. Direct velocity feedback (DVF)

control method is performed in order to improve the dynamic response. It is concluded that the

actively controlled robot arm can improve the productivity of the milling process by decreasing

the vibration on the workpiece.

In the conducted simulations, workpiece vibration is damped around 61% by applying preload

through the robot to the midpoint of the flexure. An inertial actuator is mounted on the end-

effector and the workpiece for different cases to compare the effect of the actuator assembly

point on the dynamic response. An actuator on the end-effector with flexible contact cannot

improve the dynamic response of the workpiece except at low frequencies. However, when the

actuator is assembled on the end-effector with rigid contact, the vibration on the workpiece is

significantly decreased to around 90%. If the actuator is mounted directly onto the workpiece,

rather than via the robot, then the workpiece vibration decreases by around 90%. Similar per-

formance improvements can be observed in the so-called stability lobe diagram for a machining

scenario. To summarise, the work has proved the concept of using a robotically assisted ac-

tive vibration control system, for the machining of flexible workpieces. It has been shown via

simulations that improved machining stability can be achieved even when accounting for the

flexibility of the robot and the workpiece to robot contact.

As future work, all the simulations will be validated by experimental study. Direct velocity

feedback control method will be compared with more sophisticated control methods such as

PID, LQG, LQR and H∞. Finally, different end-effectors can be designed to compare the

contact parameter effect on the chatter stability.
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