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Abstract

This paper studies stationary functional time series with long-range dependence, and esti-
mates the memory parameter involved. Semiparametric local Whittle estimation is used, where
periodogram is constructed from the approximate first score, which is an inner product of the
functional observation and estimated leading eigenfunction. The latter is obtained via classical
functional principal component analysis. Under the restrictive condition of constancy of the mem-
ory parameter over the function support, and other conditions which include rather unprimitive
ones on the first score, the estimate is shown to be consistent and asymptotically normal with
asymptotic variance free of any unknown parameter, facilitating inference, as in the scalar time
series case. Although the primary interest lies in long-range dependence, our methods and theory
are relevant to short-range dependent or negative dependent functional time series. A Monte-Carlo
study of finite sample performance and an empirical example are included.
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1 Introduction

The past few decades have seen extensive studies and notable developments in modelling long-
range dependent (LRD) time series, which appear to exist in many areas such as economics, finance
and geophysics. Beran (1994), Robinson (2003) and Giraitis, Koul and Surgailis (2012) provide
comprehensive reviews of this topic. The autocovariance/autocorrelation for LRD processes
decays to zero more slowly than for short-range dependent (SRD) ones, indeed is not summable,
and the spectral density is unbounded at zero frequency. These factors lead to a significant
difference in asymptotic theory. One of the most important issues in analysing LRD time series
is estimation of the memory (or self-similarity) parameter, which measures dependence strength.
The estimated memory parameter plays a crucial role in statistical inference. In general, there are
two major approaches to estimation. One is parametric such as Gaussian maximum likelihood
(e.g., Fox and Taqqu, 1986; Dahlhaus, 1989) which has the desirable asymptotic properties of root-n
consistency (with n denoting the sample size), asymptotic normality and asymptotic efficiency.
However, this relies on correct specification of the spectral density over the full frequency band
(−π,π], and becomes inconsistent in the case of misspecification. The other type is semiparametric
estimation, which only needs assumptions on the spectral density in a shrinking neighborhood of
zero frequency. The local Whittle (LW) or Gaussian semiparametric (Künsch, 1987; Robinson, 1995a)
and log periodogram (LP, Robinson, 1995b) are the most commonly-used semiparametric methods.
The LP regression has closed form, whereas LW is only implicitly defined but is more efficient.
Asymptotics for LP estimation are complicated by the nonlinear functions of the periodogram
involved, while LW has been justified under milder conditions. Hence, the main focus of the
present paper is the LW method. It has been extensively studied in recent years for stationary and
nonstationary time series settings (e.g., Velasco, 1999; Phillips and Shimotsu, 2004; Robinson, 2008).

The aforementioned methodology covers both univariate and finite dimensional multiple time
series, but becomes infeasible when the dimension is large. To address this issue, functional
time series provide a general framework by using a continuous function to approximate ordered
observations. The bulk of the literature studies functional data which are either independent or
stationary SRD (e.g., Bosq, 2000; Ramsay and Silverman, 2005; Ferraty and Vieu, 2006; Hörmann
and Kokoszka, 2010; Horváth and Kokoszka, 2012; Berkes, Horváth and Rice, 2013; Hsing and
Eubank, 2015). Li, Robinson and Shang (2020) is among the first to extend the functional framework
from SRD to LRD (see also Characiejus and Rauckauskas, 2014; Düker, 2018). They not only
establish the central limit theorem for a temporal sum of LRD functional observations, but also
develop functional principal component analysis (FPCA) and estimate the memory parameter for
the projected process via semiparametric R/S. However, R/S has a very slow convergence rate
and performs poorly in finite samples, while LW estimation is known to be more efficient in the
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traditional time series case. Hence, we extend LW to functional time series.

We restrictively assume the memory parameter is constant across the support of the functional
data. Our procedure uses the first score process (with each element defined as an inner product
of the functional observation and the leading eigenfunction corresponding to the maximum
eigenvalue of the long-run covariance operator to be defined in Section 2), which is univariate and
stationary, so it is expected that LW time series asymptotics will still hold in our setting. However,
as the first score is latent, we use FPCA to estimate the leading eigenfunction, and approximate
the score by an inner product of the functional observation and the estimated eigenfunction.
Then we apply LW to the approximate first score process to estimate the memory parameter.
Under regularity conditions, we derive consistency and asymptotic normality, analogous to
Theorems 1 and 2 of Robinson (1995a), showing that replacement of the latent score process by
its approximation has negligible effect. Our model framework also covers SRD and negative
dependent (ND) functional processes. The methodology developed in this paper complements
the frequency domain analysis for functional time series which has received increasing attention
in recent years (e.g., Panaretos and Tavakoli, 2013; Hörmann, Kidzinski and Hallin, 2015; Meyer,
Paparoditis and Kreiss, 2020).

The rest of the paper is organised as follows. Section 2 introduces the model assumptions and
the infeasible LW using the latent scores. Section 3 constructs an approximation of the first score
via FPCA, describes feasible LW estimation and states the main asymptotic theorems. Section 4
assesses finite-sample performance via a Monte-Carlo simulation study, and presents an empirical
data analysis using monthly sea surface temperature data. Section 5 concludes the paper. Proofs
of the main theoretical results are available in the online supplement. Throughout the paper, we
define the Hilbert space H as a set of measurable functions z(·) such that

∫
C z

2(u)du <∞ and the
relevant inner product is 〈z1, z2〉 =

∫
C z1(u)z2(u)du, where C is a compact set. Let LH be a space

of continuous linear operators from H to H equipped with the operator norm defined by ‖L‖ =
supz∈H {‖L(z)‖ : ‖z‖ 6 1} for L ∈ LH, where ‖z‖ = 〈z, z〉1/2 for z ∈ H. Denote z1 ⊗ z2 = 〈z1, · 〉z2

for all z1, z2 ∈ H and L? as the adjoint of the operator L. Let an ∼ bn and an ∝ bn denote that
an/bn → 1 and 0 < c 6 |an/bn| 6 c <∞, respectively.

2 Model and assumptions

In this section, we introduce a functional time series model structure covering LRD, SRD and ND
functional processes, some technical assumptions as well as an infeasible LW estimation procedure.
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2.1 Model framework

Assumption 1. For an observable functional time series Xt = (Xt(u) : u ∈ C), we impose

Xt =

∞∑
j=0

bjηt−j, t = 1, 2, · · · ,
∞∑
j=0

b2
j <∞, (2.1)

where (bj : j > 0) is a sequence of scalars and (ηt : t = 0,±1,±2, · · · ) with ηt = (ηt(u) : u ∈ C)
is a sequence of independent and identically distributed (i.i.d.) random functions defined on the
compact set C, with zero mean and positive definite covariance operator defined by

Cη(x)(u) =

∫
C
cη(u, v)x(v)dv, x ∈ H, cη(u, v) = E [ηt(u)ηt(v)] .

Remark 1. Since the last quarter of the 20th century, the i.i.d. assumption on innovations has been
relaxed in modern and relatively incisive treatments of central limit theory for estimates optimising
quadratic forms of linear time series processes, such as the Whittle parametric estimate and the
LW estimate: independence has been relaxed to martingale difference conditions, and identity of
distribution to a milder homogeneity condition. Analogous relaxations are undoubtedly possible
in our functional setting (2.1). Assumption 1 restrictively requires time series dependence structure
to be constant across the function support, but allows Xt to be SRD, LRD or ND. Specifically, we
may further assume under SRD,

∞∑
j=0

|bj| <∞,
∞∑
j=0

bj 6= 0; (2.2)

while under LRD or ND

bj ∼ j
H0−3/2 with 0 < H0 < 1/2 or 1/2 < H0 < 1 as j→∞, (2.3)

and, in addition,
∑∞
j=0 bj = 0 when 0 < H0 < 1/2, where H0 is the memory parameter. Special

cases of (2.1) under (2.3) include the parametric model used in Section 4 below and a functional
version of the fractionally integrated time series model.

Given functional time series observations (Xt : t = 1, · · · ,n), we define the unnormalised
long-run covariance operator:

Cn = E

[
n∑
t=1

n∑
s=1

Xt ⊗ Xs

]
, or equivalently, Cn(z) = E

[
n∑
t=1

n∑
s=1

〈Xt, z〉Xs

]
(2.4)
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for z ∈ H. Consider an eigenanalysis of Cn and obtain pairs of eigenvalues and orthonormal
eigenfunctions (ρnk,ψnk), k = 1, 2, · · · , where ρn1 > ρn2 > · · · > 0 and ψnk = (ψnk(u) : u ∈ C).
As Cn is unnormalised, ρn1 diverges to infinity as n increases and its divergence rate is mainly
determined by the decaying rate of bj defined in Assumption 1. Specifically, when (2.2) holds, by
the proof of Theorem 1 in Horváth, Kokoszka and Reeder (2013), we have ρn1 ∝ n; when (2.3)
holds, by Proposition 1 in Li, Robinson and Shang (2020) as well as Lemmas B.3 and B.4 in the
online supplement, we have ρn1 ∝ n2H0 with H0 defined in (2.3). As the divergence rate of ρn1

determines the normalisation rate of Cn, we define the normalised long-run covariance operator:

C = lim
n→∞

1
nH∗

Cn, H∗ =

{
2H0, when (2.3) holds,
1, when (2.2) holds,

(2.5)

and subsequently obtain (ρk,ψk), k = 1, 2, · · · , as pairs of eigenvalues and orthonormal functions
of C. In particular, we can easily show that ρk = limn→∞ 1

nH∗
ρnk for k = 1, 2, · · · .

2.2 Infeasible LW estimation

Define x1
t =
∫
C Xt(u)ψ1(u)du, the inner product of Xt and ψ1, which is usually referred to as the

first score in the functional data analysis. By (2.1) and Assumption 1, we may write

x1
t =

∞∑
j=0

bjη
1
t−j, η

1
t =

∫
C
ηt(u)ψ1(u)du. (2.6)

By Assumption 1, (η1
t, t = 0,±1,±2, · · · ) is an i.i.d. sequence with mean zero and positive variance

σ2
η = E

[
(η1
t)

2
]
. As in Robinson (1995a), we suppose that the spectral density of x1

t, denoted by
fx(λ), satisfies

fx(λ) ∼ G0λ
1−2H0 as λ→ 0+, (2.7)

where G0 is an unknown positive constant, 0 < H0 < 1, and λ→ 0+ denotes convergence to zero
from above. The decay rates in (2.3) and (2.7) are consistent. Our main interest lies in estimating
the memory parameter H0 via LW.

Define the periodogram of x1
t at frequency λ as

I1(λ) =
1

2πn

∣∣∣∣∣
n∑
t=1

x1
te
itλ

∣∣∣∣∣
2

. (2.8)

Define λj = 2πj/n and let m = mn be a bandwidth sequence chosen by the practitioner and
satisfying Assumptions 2 and 2∗ below. Following Robinson (1995a), we deduce from a Gaussian
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objective function the LW estimate:

H̃ = arg min
H∈Θ

R̃(H), (2.9)

where

R̃(H) = log G̃(H) −
2H− 1
m

m∑
j=1

log λj, G̃(H) =
1
m

m∑
j=1

λ2H−1
j I1(λj), (2.10)

Θ = [∆1,∆2] with ∆1 and ∆2 chosen such that 0 < ∆1 < ∆2 < 1. In practical implementation, we
may choose ∆1 and ∆2 arbitrarily close to 0 and 1, respectively.

Assumption 2. (i) fx(λ) satisfies (2.7), is differentiable in a neighborhood of the origin and

d

dλ
log fx(λ) = O(1/λ) as λ→ 0 + .

(ii)m→∞ andm = o(n) as n→∞.

Assumption 2∗. (i)
fx(λ) ∼ G0λ

1−2H0
(
1 +O(λδ1)

)
as λ→ 0+, (2.11)

where 0 < δ1 6 3, and β(λ) :=
∑∞
j=0 bje

ijλ is differentiable in a neighborhood of the origin, with

d

dλ
β(λ) = O

(
|β(λ)|

λ

)
as λ→ 0 + .

(ii)m→∞ andm1+2δ1(logm)2 = o
(
n2δ1

)
as n→∞ with δ1 defined as in (2.11).

Remark 2. Assumptions 2 and 2∗ above are similar to the conditions used in Robinson (1995a).
Assumption 2 is imposed to establish consistency of H̃. The stronger Assumption 2∗ is imposed to
derive asymptotic normality.

By Assumption 1, x1
t defined in (2.6) is a univariate stationary linear process, where

∑∞
j=0 b

2
j <∞ and (η1

t) is an i.i.d. sequence with mean zero and variance σ2
η > 0. This implies that Assumption

A3 in Robinson (1995a) is satisfied (in fact, this only requires innovations and centred squared
innovations in the linear process to be martingale differences). From Theorems 1 and 2 in Robinson
(1995a), we readily have the following proposition.

Proposition 1. Suppose that Assumptions 1 and 2 are satisfied and ∆1 < H0 < ∆2. Then, (i) H̃ is weakly
consistent; (ii) under Assumption 2∗ and assuming E

[
‖ηt‖4

]
<∞,

m1/2
(
H̃−H0

)
d−→ N(0, 1/4), as n→∞. (2.12)
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As in Robinson (1995a) the lack of bias entailed in the centring at H0 is due to Assumption
2∗. Unfortunately, H̃ is practically infeasible as the eigenfunction ψ1 and the first score x1

t are
unobservable. In Section 3 below, we use FPCA to consistently estimate ψ1 (up to possible sign
change), obtain an approximation to x1

t, and subsequently construct feasible LW estimation of H0,
for which Proposition 1 continues to hold.

3 Main methodology and theory

In this section, we first introduce classical FPCA to estimate ψ1 and a feasible LW estimation
method using the approximate first score process, and then state the main asymptotic results
including consistency and asymptotic normality for the feasible LW.

3.1 FPCA and feasible LW estimation

In order to construct feasible LW estimation of H0, we need to approximate the latent score x1
t. This

can be done by consistently estimating the eigenfunction ψ1. The latter can be achieved via FPCA
of a sample version of the long-run covariance operator Cn defined in (2.4). Let Xn = 1

n

∑n
t=1 Xt,

and

Rn,k =

{
1
n

∑n−k
t=1

(
Xt − Xn

)
⊗
(
Xt+k − Xn

)
, k > 0,

1
n

∑n−|k|
t=1

(
Xt+|k| − Xn

)
⊗
(
Xt − Xn

)
, k < 0,

where |k| 6 q, and q is a tuning parameter satisfying some mild restrictions. Define

Cn =

q∑
t=1

q∑
s=1

Rn,t−s =
∑
|k|6q

(q− |k|)Rn,k, C̃n =
1
qH∗

Cn, (3.1)

where H∗ is defined as in (2.5). Note that C̃n is a natural extension of the classic heteroskedasticity
and autocorrelation consistent estimator due to Hannan (1957) and the nonparametric spectral
density estimation literature, and subsequently heavily developed in the econometric literature, as
well as in inference on the memory parameter by Robinson (2005) and Abadir, Distaso and Giraitis
(2009). However, as H∗ in the normalisation factor depends on the unknown parameter H0, we
must replace H0 by an estimate with sufficient convergence rate. As Cn is proportional to C̃n, the
sample eigenfunctions obtained via FPCA of Cn are the same as via FPCA of C̃n. A significant
advantage of Cn is that we do not require any prior information or a preliminary estimate of H0

and thus it is applicable no matter whether the underlying functional time series are LRD, SRD or
ND. Let ψ1 be the eigenfunction of Cn corresponding to the maximum eigenvalue.

Proposition 2 in Section 3.2 below shows that ψ1 is consistent for ψ1, so it is sensible to
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approximate the first score x1
t by x1

t =
〈
Xt,ψ1

〉
. Following the LW estimation procedure with x1

t

replaced by x1
t, we can obtain a feasible estimator of H0. Specifically, as in (2.8), we define the

periodogram of x1
t at frequency λ as

I1(λ) =
1

2πn

∣∣∣∣∣
n∑
t=1

x1
te
itλ

∣∣∣∣∣
2

, (3.2)

and analogously to Section 2.2, we consider the estimate

H = arg min
H∈Θ

R(H) = arg min
H∈Θ

{
logG(H) −

2H− 1
m

m∑
j=1

log λj

}
(3.3)

with G(H) = 1
m

∑m
j=1 λ

2H−1
j I1(λj). Section 3.2 below will show that the asymptotic results stated in

Proposition 1 still hold for the feasible LW estimate H.

3.2 Main asymptotic theory

We first give some restrictions on the coefficients bj which are needed to prove consistency for C̃n
and ψ1 in Proposition 2 below.

Assumption 3. (i) For SRD, (2.2) holds and
∑∞
j=0

∑∞
k=j |bk| <∞.

(ii) For LRD, (2.3) holds for 1/2 < H0 < 1.

(iii) For ND, bj = jH0−3/2(1 +O(jδ2)) with δ2 < H0 − 1/2 for 0 < H0 < 1/2, and
∑∞
j=0 bj = 0.

With Assumptions 1 and 3 above, we can derive the following proposition, which will play a
crucial role in deriving the main asymptotic result (Theorem 1).

Proposition 2. Let Assumptions 1 and 3 be satisfied, q = o(n1/2), and E
[
‖ηt‖4

]
< ∞. Then (i)∥∥∥C̃n −C

∥∥∥ = oP(1); and (ii) if also that 0 6 ρ2 < ρ1 < ∞,
∥∥ψ1 − τ1ψ1

∥∥ = oP(1) with τ1 =

sign
(
〈ψ1,ψ1〉

)
.

Remark 3. As the functional linear process Xt is allowed to be LRD, SRD or ND, Proposition 2
has wider applicability than existing results developed for LRD (Proposition 2 in Li, Robinson
and Shang, 2020) or SRD (Theorem 4.1 in Hörmann and Kokoszka, 2010). Proposition 2(ii) is
critical to ensure that the feasible LW has the same asymptotic distribution as the infeasible LW.
Furthermore, by assuming that 0 6 ρp+1 < ρp < · · · < ρ1 < ∞ for a positive integer p, we have∥∥ψk − τkψk∥∥ = oP(1) with τk = sign

(
〈ψk,ψk〉

)
for any 1 6 k 6 p.
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Theorem 1. Suppose that Assumptions 1, 2∗ and 3 are satisfied, q = o(n1/2), and E
[
‖ηt‖4

]
<∞. Then

(i) H is weakly consistent; and (ii)

m1/2 (H−H0
) d−→ N(0, 1/4), as n→∞. (3.4)

Remark 4. Replacing ψ1 by its estimate ψ1 thus has negligible impact. This is mainly due to
application of Proposition 2(ii) and Assumption 2∗. As in Proposition 1(ii), the asymptotic variance
in (3.4) is free of any nuisance parameter, facilitating statistical inference of the parameter H0.

4 Numerical studies

We now present both simulation and empirical studies to examine numerical performance of the
proposed feasible LW estimation method in finite samples.

4.1 Monte-Carlo simulations

We use an algorithm of Davies and Harte (1987) to simulate functional time series observations.
Let Xt be a “fractional noise” process with autocovariance γj = 1

2

(
|j+ 1|2H0 − 2|j|2H0 + |j− 1|2H0

)
,

where H0 = 0.2, 0.35, 0.5, 0.65 and 0.8. These parameter values are chosen to reflect ND, SRD and
LRD properties. For each n, let gk := gn,k, k = 0, 1, · · · , 2n− 1, be the discrete Fourier transform of
the real sequence {γ0,γ1, · · · ,γn−1,γn,γn−1, · · · ,γ1}, i.e.,

gk = γ0 + 2
n−1∑
j=1

γj cos
(
πkj

n

)
+ γn cos(kπ), k = 0, 1, · · · ,n− 1,

and gk = g2n−k for k = n, · · · , 2n − 1. Let (ηt) be an i.i.d. standard Brownian motion sequence
over [0, 1] and define

η̃t =


ηt, 1 6 t 6 n− 1,
η2n−t, n+ 1 6 t 6 2n− 1,√

2ηt, t = 0,n.

Then we construct

Xt =
1

2n1/2

[
√

2η0g
1/2
0 +

√
2ηng1/2

n + 2
n−1∑
k=1

ηkg
1/2
k cos

(
πkt

n

)]
, 0 6 t 6 n. (4.1)

We take n = 250, 500, 1000 with 2000 replications.
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We choosem = n4/5 that lies between the lower and upper bounds recommended by Lobato
and Robinson (1998), and obtain the LW estimates Hb, b = 1, · · · , 2000. We compute the Monte-
Carlo bias and mean squared error (MSE). The results are reported in Table 1. Biases are always
positive for LRD cases (H0 = 0.65, 0.80) and negative otherwise, and are slowly decreasing (in
absolute value) in n, except for the SRD case (H0 = 0.50) where they slightly increase. MSE
decreases slowly in n. Overall, bias and MSE are somewhat worst in ND cases (H0 = 0.20, 0.35).

Table 1: Monte-Carlo bias and MSE of the feasible LW based on 2000 replications.

H0 n = 250 n = 500 n = 1000
Bias MSE Bias MSE Bias MSE

0.20 -0.0858 0.0107 -0.0776 0.0080 -0.0692 0.0059

0.35 -0.0333 0.0046 -0.0294 0.0028 -0.0256 0.0017

0.50 -0.0020 0.0033 -0.0036 0.0019 -0.0041 0.0011

0.65 0.0197 0.0037 0.0131 0.0021 0.0087 0.0011

0.80 0.0379 0.0048 0.0262 0.0026 0.0183 0.0014

We next use the normal approximation in Theorem 1(ii) to conduct statistical inference of
the memory parameter. Specifically, for each replication, we construct a nominal 100(1 − α)%
confidence interval for H0 as follows:(

Hb −m
−1/2zα/2/2, Hb +m−1/2zα/2/2

)
,

where zα denotes the upper α-quantile of the standard normal distribution and b = 1, · · · , 2000. For
H0 = 0.35, 0.5, 0.65, we report in Table 2 the empirical coverage probabilities for α = 0.05, 0.01, 0.001.
The coverage probabilities tend to be too small, especially in ND cases, where they actually get
markedly worse with increasing n.

4.2 Application to monthly sea surface temperatures

We next consider a time series of average monthly sea surface temperature from January, 1950
to December, 2019, available online at https://www.cpc.ncep.noaa.gov/data/indices/
ersst5.nino.mth.81-10.ascii. These temperatures are measured by moored buoys in the
“Niño region”. The function support C is the time interval between January and December in each
calendar year, and a linear interpolation algorithm is used to produce time series of continuous
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Table 2: Empirical coverage probabilities for H0 = 0.35, 0.50, 0.65 and α = 0.05, 0.01 and 0.001

H0

1 − α n 0.35 0.50 0.65

0.95 250 0.8900 0.9370 0.9245
500 0.8785 0.9330 0.9300
1000 0.8625 0.9365 0.9360

0.99 250 0.9590 0.9855 0.9795
500 0.9535 0.9820 0.9835
1000 0.9500 0.9800 0.9830

0.999 250 0.9910 0.9975 0.9965
500 0.9860 0.9960 0.9980
1000 0.9870 0.9955 0.9970

functions. Thus n = 70, a relatively small sample size for estimates with nonparametric rate.
We chose m = n4/5 ≈ 30 in the feasible LW, but with such a small n one cannot be confident
that any m would achieve modest bias or imprecision. In Figure 1, we present rainbow plots
of the monthly sea surface temperatures for four El Niño regions. The functional stationarity
test of Horváth, Kokoszka and Rice (2014) never rejects the null of stationarity with large p-
values in Table 3. Applying the feasible LW estimate to the first set of the estimated functional
principal component scores, we obtain the estimated memory parameters together with nominal
95% confidence intervals for each El Niño region, reported in Table 3. The rather large confidence
intervals, reflecting the smallness ofm, make it difficult to draw conclusions about whether LRD,
SRD or ND assumption applies for El Niño 1+2, 3 and 3+4 regions, whereas the result for region 4
is consistent with LRD. Note that all the upper bounds of the confidence intervals are smaller than
the boundary value of nonstationarity, confirming the result of the functional stationarity test.

Table 3: For monthly sea surface temperature data from four El Niño regions with various coordi-
nates: test p-values and estimates of the memory parameter with confidence intervals (CI)

region coordinate p-value H 95%-CI

Niño 1+2 region 0 − 10◦ South, 90 − 80◦ West 0.647 0.5810 (0.4021, 0.7599)
Niño 3 region 5◦ North - 5◦ South, 150 − 90◦ West 0.609 0.5252 (0.3463, 0.7041)
Niño 4 region 5◦ North - 5◦ South, 160◦ East - 150◦ West 0.505 0.7299 (0.5510, 0.9088)
Niño 3+4 region 5◦ North - 5◦ South, 170 − 120◦ West 0.731 0.5032 (0.3243, 0.6821)
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Figure 1: Rainbow plots for displaying monthly sea surface temperature at four El Niño regions
from January, 1950 to December, 2019.
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5 Conclusions

In this paper we have introduced feasible LW estimates of the memory parameter for stationary
functional time series which are LRD, SRD or ND. Under regularity conditions which restrictively
require constancy of the memory parameter across function support, we derive asymptotic theory
including weak consistency and asymptotic normality, comparable to the classic time series LW
asymptotic theory (Robinson, 1995a). As a crucial preliminary step in the estimation procedure,
we use FPCA to estimate the leading eigenfunction corresponding to the maximum eigenvalue
of the estimated long-run covariance operator, and subsequently obtain an approximation to the
(latent) first score process. Monte-Carlo simulations find the LW estimate performs well in finite
samples, and an empirical example is included.
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