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Heavy metal/ferromagnet interfaces feature emergent spin-orbit effects absent in the bulk materials. Because
of their inherent strong coupling between spin, charge, and orbital degrees of freedom, such systems provide a
platform for technologically sought-after spin-orbit torques (SOTs). However, the microscopic origin of purely
interfacial antidamping SOT, especially in the ultimate atomically thin limit, has proven elusive. Here, using two-
dimensional (2D) van der Waals materials as a test bed for interfacial phenomena, we address this problem by
means of a microscopic framework accounting for band structure effects and impurity scattering on equal footing
and nonperturbatively. A number of unconventional and measurable effects are predicted, the most remarkable
of which is a giant enhancement of antidamping SOT in the dilute disorder limit induced by a robust skew
scattering mechanism, which is operative in realistic interfaces and does not require magnetic impurities. The
newly unveiled skew scattering mechanism activates rich semiclassical spin-charge conversion effects that have
gone unnoticed in the literature, including a collinear Edelstein effect with nonequilibrium spin polarization
aligned with the direction of the applied current.

DOI: 10.1103/PhysRevResearch.2.043401

I. INTRODUCTION

When a current is driven through a surface with broken
inversion symmetry, a nonequilibrium spin polarization is in-
duced due the spin-orbital-entangled character of electronic
wave functions. If coupled to a ferromagnetic system, the
emergent spin polarization transfers angular momentum to
local spin moments, changing their state by exerting a torque
T ∝ m × S [1–4].

Current-induced spin-orbit torques (SOTs) are convention-
ally classified into two broad categories depending on their
behavior under time reversal T : the m-odd or fieldlike SOT
that affects the precession around the effective magnetic field
and the m-even or antidamping torque that renormalizes the
Gilbert damping and is responsible for the magnetization
switching [5–7]. Thinning down heterointerfaces and devices
by utilizing van der Waals (vdW) crystals opens up intrigu-
ing possibilities. Fueled by the discovery of ferromagnetism
in 2D materials, recent works have reported SOT switching
of vdW-bonded ferromagnets (FMs), an important stepping
stone toward the all-electrical control of atomically thin spin
memories [8–11]. Conversely, nonmagnetic 2D crystals with
heavy atomic elements can be used as a source of interfa-
cial SOT. Experiments employing WTe2 [12–14], a transition
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metal dichalcogenide (TMD) with reduced crystal symme-
try, have observed strong out-of-plane antidamping torques,
which are relevant for high-density magnetic memory applica-
tions. While these findings represent significant steps toward
SOT devices based entirely on 2D vdW crystals [15,16], the
understanding of the underlying mechanisms remains in its
infancy.

In this article, we identify and quantify the dominant
scattering-dependent mechanisms of SOT generation for
a wide class of weakly disordered 2D vdW monolayers
and their typical heterostructures. To this end, we develop a
microscopic framework wherein all interfacial spin-dependent
interactions experienced by charge carriers (including mag-
netic exchange interaction in arbitrary direction) are treated
nonperturbatively, which gives access to the full SOT angular
dependence so far inaccessible by rigorous diagrammatic
treatments. An exact resummation scheme of single-impurity
diagrams is found to capture a unique interplay between spin
and lattice-pseudospin degrees of freedom that activates all

SOT components compatible with hexagonal symmetry [17],
i.e., T = to1(φ)m × (ẑ × J) + te1(φ)m × [m × (ẑ × J)] +
to2(φ)m × (m × ẑ)(m · J) + te2(φ)m × ẑ(m · J), with ẑ the
versor normal to the 2D plane, φ = arccos(m · ẑ), J the
current density, and te(o)i with i = 1, 2 the torque efficiencies.
This unusual proliferation of SOTs that scale linearly with the

interface 2D conductivity stems from skew-scattering-induced
nonequilibrium spin polarization with components along
all spatial directions. Surprisingly, as shown below, the
m-even torques acquire significant magnitudes already for
graphene-based heterostructures with C6v symmetry. These
technologically relevant SOTs are highly sensitive to the
impurity potential strength as well as proximity effects that

2643-1564/2020/2(4)/043401(10) 043401-1 Published by the American Physical Society



SOUSA, TATARA, AND FERREIRA PHYSICAL REVIEW RESEARCH 2, 043401 (2020)

FIG. 1. (a) Schematic of a TMD/thin-film-FM (top) and TMD/graphene/2D-FM bilayer (bottom). (b) Electronic structure around K points
in reference heterostructure (plotted along a path with kx = 0). (c) Geometry of 2D material SOT-operated device. Direction of SOTs is
indicated for current applied along positive x̂ axis assuming ǫ > 0. (d) Current-induced distortion of the Fermi surface in the relaxation-time
approximation (gray) and full distortion accounting for skew scattering events, δ fk ∝ τ‖ k̂ · E + τ⊥(k̂ × E) · ẑ (purple). 3D arrows depict the
net nonequilibrium spin polarization density. (e) Fermi energy dependence of SOT efficiencies for reference C6v-invariant monolayer system.
Parameters: λ = 20 meV, �xc = 15 meV, φ = π/11, n = 1011 cm−2, and u0 = 1.2 eV nm2.

reduce the point group symmetry. This is encouraging as local
symmetry breaking and disorder landscape can be engineered
with nanofabrication methods.

II. MODEL

The low-energy excitations in vdW heterostructures made
of typical monolayer compounds, such as graphene and TMDs
[see Figs. 1(a) and (b)], are governed by the following general-
ized Dirac-Rashba model, where ξ = ± signs refer to valleys
K (+) and K ′(−):

Hξ =
∫

dx ψ
†
ξ

[

v � · (−ı∇ + Aξ ) + ξ��z + A0
ξ − ǫ

]

ψξ ;

(1)

(ψξ , ψ
†
ξ ) ≡ (ψξ (x), ψ†

ξ (x)) are 4-component spinor fields de-
fined on the internal spaces of sublattice (�) and spin (s),
v ≃ 106 m/s is the bare Fermi velocity of 2D Dirac fermions,
and ǫ is the Fermi energy [18–23]. The gauge-field compo-
nents A

μ
ξ (μ = 0, x, y, z) in the Hamiltonian (1) are 2 × 2

matrices of the form A
μ
ξ = ∑

a=x,y,z A
μ
ξasa, which account for

all possible spin-dependent effects [24]. The Pauli matrices
�a and sa (a = x, y, z) all anticommute with T , so that their
products are invariant under time reversal (which also inter-
changes valleys ξ ↔ −ξ ). The staggered on-site potential (�)
describes orbital-gap opening due to broken sublattice sym-
metry [25,26]. The ubiquitous interfacial Bychkov-Rashba
(BR) effect, with coupling strength λ, is captured by the
gauge-field components Ax

ξy = −A
y

ξx = λ/v [27,28]. Other

spin-orbit effects include intrinsic spin-orbit coupling (SOC)
of McClure-Yafet-Kane-Mele type (Az

ξ = λ0sz) and spin-

valley coupling (A0
ξ = ξλsvsz) [29], which plays a crucial role

in spin relaxation [30–33] and spin Hall effect [22].
The interaction between the spin of 2D carriers and the

local moments in the adjacent FM layer induces an interfacial
exchange field, A0

ξ = −�xcm · s, with �xc > 0. A nonzero
in-plane exchange coupling (mx,y) lifts the rotational sym-
metry of the effective Hamiltonian (1), which will entail
the coexistence of in-plane and out-of-plane nonequilibrium
spin polarization (more on this later). Representative energy
bands for a reference graphene/FM heterostructure are shown
in Fig. 1(b). Without loss of generality, we choose the in-
plane exchange coupling along the x axis and write m =
mx x̂ + mz ẑ ≡ sin φx̂ + cos φẑ [Fig. 1(c)]. Thus, our micro-
scopic theory encompasses both perpendicularly and in-plane
magnetized SOT devices. The lowest carrier density regime
in Fig. 1(b) exists only in the anisotropic case (mx 	= 0) and
exhibits an electron (ǫ > 0) or hole (ǫ < 0) pocket away
from the K point. At intermediate carrier densities, we find
a “Mexican-hat” dispersion, followed by a narrow spin-gap
region with a single (distorted) Fermi ring [34]. At high elec-
tronic density, the two spin-split bands with counterrotating
spin textures are occupied. The spin texture of spin-majority
states [colored blue in Fig. 1(b)], as well as the current-
induced distortion of the Fermi surface, are illustrated in
Fig. 1(d). The out-of-plane component of the spin texture can
be triggered by an exchange field, spin-valley coupling, or
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competition between BR and orbital effects (see below and
Appendix A for more details).

III. MICROSCOPIC THEORY OF EXTRINSIC SOT

A. Semiclassical picture

We first determine the interfacial SOTs activated by im-
purity scattering mechanisms using a semiclassical analysis;
then we derive a general microscopic picture for current-
induced spin polarization in 2D vdW heterostructures and
discuss its consequences. For the first part, we restrict the
discussion to C6v-invariant models, which already display the
essential phenomenology. A general symmetry-based analysis
of the spin-charge response function is given in Appendix B.
The first step is to determine the spin texture at the Fermi
energy. Perturbation theory in the anisotropy parameter yields,
after a long but straightforward calculation, skν = ν(s0

k +
δsk ), with the signs ν = ±1 for majority/minority-spin bands
[marked blue/red in Fig. 1(b)], s0

k = ̺‖ k̂ × ẑ + mz̺⊥ẑ the
noncoplanar spin texture induced by an out-of-plane ex-
change combined with BR effect, and δsk = (γ‖ + μ‖) m ·
k̂ + 2μ‖ k̂ × (k̂ × m) + mzμ⊥k̂ × m the correction induced
by mx, or, in a more intuitive form,

δsk = mx[γ‖x̂ + μ‖(cos 2θ x̂ + sin 2θ ŷ) − mzμ⊥ sin θ ẑ],
(2)

with θ the wave vector angle. In these expressions, all the
coefficients {̺‖(⊥), γ‖, μ‖(⊥)} are functions of k = |k|, λ,
and m2

z . The spin-helical component (in s0
k) yields the well-

known inverse spin-galvanic effect (S ∝ ̺‖ẑ × J), which is
ubiquitous in heterointerfaces [23,35–39]. This nonequilib-
rium spin polarization exerts a fieldlike torque To1 ∝ m ×
(ẑ × J). Concurrently, the mx-induced distortion to the spin
texture [Eq. (2)] produces out-of-plane spin polarization Sz ∝
mxmzJy, when a current is applied transverse to the in-plane
anisotropy axis [see Fig. 1(d)]. This generates a fieldlike SOT
that is sensitive to the direction of the applied current, To2 ∝
m × (m × ẑ)(m · J). This newly unveiled effect, which can
be traced back to the unique Dirac-Rashba character of elec-
tronic states, still occurs when the two spin-split bands (with
opposite-in-sign ẑ polarizations) are populated. This avoided
cancellation of nonequilibrium out-of-plane spin polarization
stems from the interplay of pseudospin and spin angular mo-
mentum, which renders contributions from spin-split bands
inequivalent. This differs from 2D electron gases, for which
the only robust SOT is To1 [7].

To explain the emergence of robust antidamping SOTs,
we add the effect of a finite transverse scattering time to
the picture. Semiclassically, the nonequilibrium spin polariza-
tion is obtained as S = ∑

kν skνδ fkν , where δ fkν ∝ τ ν
‖ k̂ · E +

τ ν
⊥ (k̂ × E)z is the deviation of the distribution function away

from equilibrium [40]. Consider an electric field applied along
x̂. The Fermi surface is shifted perpendicular to the applied
current by an amount δ f ⊥

kν ∝ (τ ν
⊥ sin θ )Ex. This results in an

extrinsic anomalous Hall effect [34], but it also provides an
efficient mechanism for current-induced collinear spin polar-
ization Sx as shown here. Skew scattering plays an essential
role as there must be an imbalance between scattering cross
sections at angles ±θ , relative to E; otherwise all the states in
the Fermi surface will have their Sx component canceled by

states with opposite angle. This mechanism is operative un-
der rather general conditions because the spin-orbit-coupled
carriers experience an average out-of-plane Zeeman field ẑ ·
〈skν〉FS ∝ mz that breaks the left/right symmetry of scattering
events, regardless of the impurity potential specifics, where
〈...〉FS denotes the average over the Fermi surface. After per-
forming the angular integration accounting for a finite τ ν

⊥,
we easily find the magnetoelectric effect: S ∝ mz̺‖E. The
generation of collinear nonequilibrium spin polarization can
be extremely efficient in the clean limit due to its inherent
semiclassical scaling τ⊥ ∝ τ‖ ∝ n−1 (where n is the impurity
density) [41]. This phenomenon, which we term the collinear

Edelstein effect, contributes with an antidamping SOT Te1 ∝
m × [m × (ẑ × J)]. From Eq. (2), one can easily conclude
that the skewness also activates an out-of-plane spin re-
sponse, Sz ∝ τ⊥mxmzEx ∝ mxm2

z Ex. This yields an additional
antidamping torque Te2 ∝ m × ẑ (m · J). These SOTs, which
scale favorably with the conductivity σ0 ∝ ǫ τ‖/h̄ ≫ 1, are our
central result. The semiclassical mechanisms are summarized
in Fig. 1(d).

B. T-matrix diagrammatic approach

To derive an accurate microscopic theory of SOT that
includes intrinsic effects and disorder corrections (impurity
scattering) self-consistently, we extend the controlled dia-
grammatic technique developed in Refs. [20–23] to arbitrary
multiband models. Our approach has two essential features.
First, it is fully nonperturbative in the energy scales of the
bare Hamiltonian, which includes orbital mass �, exchange
field vector, BR interaction λ, and other couplings. This
technique allows us to explore rich scenarios, including the
experimentally relevant regime of proximitized materials with
competing energy scales, e.g., λ ≈ �xc ≈ ǫ. Simple analyt-
ical expressions can be obtained to leading order in mx by
developing the Green’s functions in Dyson series [7]. Sec-
ond, the three-leg spin-charge correlation or vertex function
Ŵiαβ (x, y, z) = 〈T Ji(x)�α (y)�†

β (z)〉 is evaluated by resum-
ming all single-impurity Feynman diagrams, which provides
the dominant contribution to the spin-charge response func-
tions in the dilute impurity regime. This is accomplished by
writing a Bethe-Salpeter equation with T -matrix insertions
[20], which is more general and accurate than the standard
approach based on ladder diagrams [Figs. 2(a) and 2(b)]. This
allows us to obtain virtually exact results in the dilute regime
as well as to explore the crossover between the standard weak
Gaussian limit and the important unitary scattering regime,
which physically corresponds to resonant scattering from va-
cancies or adatoms [42,43].

We are interested in SOTs generated by weakly disordered
2D materials and thus focus our subsequent analysis on Fermi
surface processes. The latter are captured by the spin density–
charge current response function [20,44]

Kai = 1

2π
Tr[sa〈G+JiG

−〉], (3)

with G± the retarded (+)/advanced (−) Green’s function,
Ji = −e ∂pi

Hp = −ev�i the charge current operator, and Tr
the trace over all degrees of freedom. Here the angular brack-
ets denote disorder averaging and Hp is the extension of the
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FIG. 2. Diagrammatic expansion of the response function.
(a) Bethe-Salpeter equation for the charge current vertex in the R-A
sector. (b) Skeleton expansion of the T -matrix ladder. Full (open)
square denotes a T (T †) matrix insertion, while circles represent
electron-impurity interaction vertices. The red × stands for impurity
density insertion (n).

single-particle Hamiltonian to the space of two valleys. Since
our aim is to develop a generic SOT theory, which does not
rely on the existence of spinful scattering centers, such as
spin-orbit-active impurities [45–49], we assume a standard
scalar short-range potential V (x) = u0

∑N
i=1 δ(x − xi ), where

xi are random impurity locations and u0 parametrizes the
potential scattering strength. Leading terms Kai ∝ 1/n in the
dilute impurity regime are obtained by replacing in Eq. (3)
〈G+JiG

−〉 → G+
p J̃iG

−
p , where G±

p is the disorder-averaged

Green’s function and J̃i is the renormalized vertex [Figs. 2(a)
and 2(b)]. The final trace in Eq. (3) is carried out using an
exact SO(5) decomposition of the response function; technical
details will be published elsewhere [50].

IV. RESULTS

A. Graphene-based heterostructures

Armed with this formalism, we evaluate the SOTs and
determine their efficiency. Within linear response theory,
we write T = d−1 m × HT , where d is the FM thin-film
thickness, HT = −�xc K̂J · J is the current-induced spin-orbit
field, and K̂J ≡ K̂ · σ̂−1, with σ̂ the conductivity tensor, is
a 3 × 2 matrix that quantifies the underlying SOC transport
effects. The earlier semiclassical picture suggests the decom-
position (to leading order in mx)

KJ =

⎛

⎜

⎝

mzκ
ss
‖ κE

−κE mzκ
ss
‖

mxκ
ss
zx mzmxκzy

⎞

⎟

⎠
, (4)

where the superscript ss marks the responses activated by
skew scattering. The Fermi energy dependence of KJ for a
graphene heterostructure is shown in Fig. 1(e). The highly
efficient Edelstein-type response (κE ∼ 0.4 for ǫ ∼ 0.1 eV)
is reminiscent of topological surface states and nonmagnetic
graphene/TMD bilayers [23,39]. This process is accompanied
by the generation of robust out-of-plane spin polarization.
This is at variance with 2D electron gases in Rashba ferro-
magnets, for which KJ

zy → 0 in the weak scattering limit [7].
Concurrently, the newly unveiled skew scattering mechanism,
which is operative in all systems with mz 	= 0, enriches the
class of SOTs to include T -odd (m-even) terms. Despite the

FIG. 3. (a) Giant enhancement of dampinglike SOT due to skew
scattering for proximitized graphene. Dashed (solid) lines are calcu-
lated in the weak (unitary) scattering regime with u0 = 0.1 eV nm2

(u0 → ∞). Other parameters as in Fig. 1(e). (b) Highly anisotropic
SOT generated by TMDs in the unitary limit. Orbital-gap depen-
dence of T -odd SOTs is evaluated at fixed carrier density ne ≃
4.7 × 1013cm−2 for φm = π/10 (squares) and φm = π/18 (circles).
Inset: Angle dependence of τe1(2) for � = 0.75 eV. Shaded area in-
dicates nonperturbative region where high-order harmonics in tei(φ)
become prominent. Other parameters: �xc = 0.1 eV, λ = 60 meV,
λsv = 3 meV, and impurity density n = 1011 cm−2.

moderate scattering potential strength in Fig. 1(e), a collinear
Edelstein response is induced KJ

ii (i = x, y). The total spin-
orbit field thus comprises He1

T ∝ m × J × ẑ and He2
T ∝ ẑ m · J

antidamping contributions. Owing to its skew scattering ori-
gin, the spin-orbit fields scale linearly with the conductivity
with an efficiency KJ

ii ∼ (σ0)0 ∼ n0. This behavior is notori-
ously different from predicted T -odd torques for topological
insulators, whose quantum-side-jump origin [21] yields KJ

ii ∼
1/σ0 in the clean limit [39].

An unprecedented sensitivity of the SOT efficiency to the
potential scattering strength is borne out by our theory. In
contrast to the Edelstein efficiency (κE ), which receives slow
(logarithmic) disorder corrections [23,51], all dampinglike

efficiencies exhibit a monotonic increase with u0. This im-
portant feature is illustrated in Fig. 3(a), where a tenfold
increase in both KJ

ii and KJ
zx approaching the unitary regime

of a resonant scatterer (u0 → ∞) can be observed. In the
weak scattering regime (u0ρ ≪ 1) with ǫ ≫ {λ,�xc}, where
ρ is the clean density of states, the leading-order coefficients
in the m expansion of the current-induced torque (te(o)i ≡
d−1�xcτe(o)i) admit a compact analytic form (to leading order
in mx)

τo1 ≃ 2λ3 / fǫ, τo2 ≃ 2�2
xcλ/ fǫ, (5)

τe1 ≃ u0�xcǫ λ5/
(

v f 2
ǫ

)

, τe2 ≃ −τe1, (6)

where fǫ = vǫ(λ2 + �2
xcm2

z ) (see Appendix C). For interpret-
ing these results, it is important to note that the BR coupling
should be not too small compared to kBT so that the torques
are appreciable in realistic conditions. Notably, the slow alge-
braic decay with the Fermi energy ∝ ǫ−1 in Eqs. (5) and (6)
effectively quenches the effect of thermal fluctuations [23],
which in principle allows room-temperature SOT operation
even for samples with weak BR effect λ ≈ 1 meV. Recent ob-
servations of gate-tunable and reversible spin galvanic effect
in graphene-based vdW heterostructures at room temperature
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[52–55] provide extra confidence that the interfacial SOTs
unveiled here can be demonstrated experimentally.

B. Group-VI dichalcogenides

Next, we consider models with broken sublattice sym-
metry (C6v → C3v); two examples are shown in Fig. 1(a).
As a case study, we focus here on semiconducting TMDs,
for which interfacial magnetic exchange coupling can be up
to 100 times greater than in graphene-based heterostructures
[56–59]. The presence of an orbital gap in TMDs (Eg = 2�)
modifies the k-space spin texture dramatically. We find that
the “orbital mass” (� ≫ λ) stabilizes a giant equilibrium
out-of-plane spin polarization around K points even in the
absence of spin-valley coupling (see Appendix A). To de-
termine the antidamping spin-orbit fields H

e1(2)
T , we evaluate

the spin-charge correlation vertex of the full model [Eq. (1)].
Figure 3(b) shows the SOT evolution with the orbital gap. Its
most salient feature is a strong enhancement of out-of-plane
antidamping efficiency (Kzx). This phenomenon is accom-
panied by a sizable collinear Edelstein effect, with tunable
degree of anisotropy ∂�|Kxx − Kyy| > 0 (e.g., by applying
strain), as indicated by the colored arrows. The figure of merit
(KJ efficiency) for antidamping SOT generated by electrons
in the doped regime (ǫ > �) reaches 4% with τe/τo ratios
of order 0.1. A remark is in order. We have thus far em-
ployed the commonly used terminology of (anti)dampinglike
and fieldlike torques for tei and toi, respectively. Rigorously,
one needs to expand these terms in vector spherical harmon-
ics to truly discriminate damping and fieldlike components
[60], especially when considering strong in-plane magne-
tization. In that case tei will yield fieldlike contributions
and toi dampinglike. The leading contributions in the m

expansion are nonetheless of the nature we have denoted
them. (The exceptions are te2 and to2 which already at lead-
ing order are a mixture of field and damping-like SOTs.)
This implies that the presence of Kzy, already at the Gaus-
sian level as unveiled here, represents a robust source of
genuine dampinglike SOT on its own.

We briefly discuss the implications of our findings for the
magnetization dynamics. Crucially, as soon as a finite in-plane
magnetization mx is included nonperturbatively in the mi-
croscopic treatment (this is possible only within a numerical
approach), the SOT efficiency tensor KJ acquires higher-order
harmonics, which invalidates a simplistic analysis in terms
of constant “torkances” [Eqs. (5)–(6)] as emphasized recently
in Ref. [61]. The shortcoming of the standard approximation
can be clearly seen in the TMD-based system, where the SOT
becomes highly anisotropic [i.e., δτ12 ≡ ||τe2| − |τe1||/|τe1| ≈
0.25] for φ ≈ π/10 [Fig. 3(b)], reflecting the O(2) rotational
symmetry breaking. Thus, a fully fledged microscopic treat-
ment for T(φ) becomes indispensable to faithfully capture the
ensuing magnetization dynamics when solving the Landau-
Lifshitz-Gilbert equation [1], irrespective of the FM geometry
and its initial macrospin configuration m(t = 0). The full
angular dependence of the torkances is shown in Appendix D
for a graphene-based heterostructure. Finally, we emphasize
that the angular dependence of the torkances, as well as the
leading scaling of antidamping terms te1(2) ∝ (σ0)0 (resulting
in Te1(2) ∝ σ0 ∝ τ‖) reported here, are not captured within

perturbative Kubo-Streda calculations for disordered inter-
faces employed in previous works [7,39,62,63].

V. CONCLUSIONS

In summary, we have reported a microscopic theory of
SOT generated by 2D materials proximity coupled to a fer-
romagnet. The SOTs are evaluated in linear response theory
for a generalized Dirac-Rashba model describing 2D vdW
heterostructures with C6v or C3v point group symmetry in the
presence of smooth magnetic textures, which is readily ap-
plicable to SOT devices with both in-plane and perpendicular
magnetization. The microscopic calculations are carried out
within a T-matrix diagrammatic approach that captures the
extrinsic skew scattering contribution to the current-induced
SOT inacessible by previous perturbative treatments. We find
that skew scattering from non-magnetic impurities enables
the robust generation of non-equilibrium non-coplanar spin
polarization. Through a complementary semiclassical analy-
sis, we attribute the interfacial skew scattering mechanism to
the tilting of the Rashba spin texture caused by the exchange
coupling to the ferromagnet. The skewscattering-induced
collinear and out-of-plane inverse spin galvanic effects were
shown to activate all m-even SOTs compatible with hexagonal
symmetry. Interestingly, such m-even SOTs are massively
enhanced in the resonant scattering regime of strong impu-
rity potentials (e.g. due to atomically sharp defects), with
ratios |T|even/|T |odd on the order of 0.1 for TMD-based het-
erostructures with large magnetic proximity effect. These
semiclassical SOTs scale linearly with the 2D charge conduc-
tivity and thus are expected to dominate in the dilute disorder
limit. These findings put the spotlight on skew scattering as
a promising extrinsic source of technologically relevant anti-
damping SOTs in weakly disordered interfaces.
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APPENDIX A: ELECTRONIC STRUCTURE AND

PSEUDOSPIN-SPIN TEXTURE

The low-energy Hamiltonian of C3v-invariant vdW mono-
layers reads as

Hξ = �μ(vp + ASO + Axc + Aorb)μ, (A1)

where pμ ≡ (−ǫ/v, px, py) is the 3-momentum of the inter-

face, �μ = (�0, ��), and

ASO = λ (syx̂ − sx ŷ) + λKMsz ẑ + ξλsvszt̂, (A2)

Aex + Aorb = (m · s)t̂ + ξ� ẑ, (A3)

are non-Abelian gauge fields capturing all symmetry-allowed
SOCs [Eq. (A2)], on-site staggered potential, and interfa-
cial exchange coupling [Eq. (A3)]. Here, m = −�xcm ≡
m(sin φ x̂ + cos φ ẑ) with π � φ � 0 parametrizes the ex-
change field. For brevity, in this supplementary information,
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FIG. 4. Electronic structure of a TMD|graphene|FM (a) and
TMD|FM (b) heterostructure plotted along p = (0, py )t (full lines)
and p = (px, 0)t (dashed lines) directions. Shaded areas highlight
spectral region II. Parameters: for (a) and (b) λ = 40 meV, mx =
20 meV, mz = 30 meV, and for (b) � = 0.4 eV, λsv(ǫ < 0) =
150 meV, and λsv(ǫ > 0) = 5 meV.

the analytical expressions are provided for the strong SOC
regime with λ > m̃z ≫ mx and λKM = 0, where m̃z ≡ mz +
ξλsv. Figure 4 shows the low-energy spectrum for two repre-
sentative systems: (a) TMD/graphene/FM and (b) TMD/FM.
In panel (a) only low-energy states (within the TMD gap)
are shown. In-plane magnetization (mx) breaks the Cv∞ sym-
metry of the continuum model, rending the Fermi surface
anisotropic.

The electronic structure comprises four distinct spectral
regions:

Regime Ia. Low-energy regime where the Fermi level
crosses an electron/hole pocket for

ǫIa < |ǫ| < ǫIb. (A4)

Regime Ib. Very narrow energy range where the Fermi level
crosses two different Fermi rings both belonging to the spin
majority band. This happens for

ǫIb < |ǫ| < ǫIc. (A5)

Regime Ic. Intermediate regime where the Fermi level
crosses only the spin majority band, hinting at stronger spin
density responses for

ǫIc < |ǫ| < ǫII. (A6)

Regime II. Typical high-electronic-density regime in the
experiments. Here, we have ǫ > ǫII and the Fermi level
crosses two Fermi rings with opposite spin textures.

The expressions for the different limits are given in Table I.
In regime II, the spin operators have the following equilibrium
average values at the Fermi energy, in the asymptotic limit
ǫ ≫ mz ≡ m̃z ≫ mx (here, θ is the wave vector angle with
respect to x̂ axis):

〈sx〉 ∼= λ
√

λ2 + m
2
z

(

1 − (�mz + λ2)2

2ǫ2(λ2 + m
2
z )

)

sin θ

+ mx

2
√

λ2 + m
2
z

(

1 + m
2
z + λ2 cos 2θ

λ2 + m
2
z

)

, (A7)

〈sy〉 ∼= − λ
√

λ2 + m
2
z

(

1 − (�mz + λ2)
2

2ǫ2
(

λ2 + m
2
z

)

)

cos θ

+ mx

2
√

λ2 + m
2
z

λ2 sin 2θ

λ2 + m
2
z

, (A8)

〈sz〉 ∼= mz
√

λ2 + m
2
z

(

1 + λ2

2ǫ2

�2 − m
2
z

λ2 + m
2
z

− mxλ sin θ

λ2 + m
2
z

)

+ λ4

ǫ2

� − mz

(λ2 + m
2
z )3/2

, (A9)

for the spin majority band; the other band has opposite polar-
ity. The pseudospin texture, on the other hand, is

〈�x〉 ∼=
(

1 − λ2 + �2

2ǫ2

)

cos θ ± λmx

2ǫ

sin 2θ
√

λ2 + m
2
z

, (A10)

〈�y〉 ∼=
(

1 − λ2 + �2

2ǫ2

)

sin θ ∓ αmx

2ǫ

1 + cos 2θ
√

λ2 + m
2
z

, (A11)

〈�z〉 ∼= �

ǫ
∓ mz

√

λ2 + m
2
z

�mz + λ2

ǫ2

(

1 − λmx sin θ

λ2 + m
2
z

)

,

(A12)

for the spin majority (+)/minority (−) bands. Figure 5 shows
the spin and pseudospin profiles along the x̂ and ŷ directions
in momentum space. The orbital mass (�) broadens up the
p-space spin texture dramatically, which boosts the generation
of out-of-plane spin polarization in applied current.

TABLE I. Spectral regimes of the C3v model. To ease the notation, all couplings are taken to be positive.

ǫII ǫIc ǫIb ǫIa

� = 0
√

m̃
2
z + 4λ2

m̃z + m
2
x

2m̃z

m̃zλ√
m̃

2
z +λ2

+ λmxm̃z

√
2λ2+m̃

2
z

(λ2+m̃
2
z )3/2

m̃zλ√
m̃

2
z +λ2

− λmxm̃z

√
2λ2+m̃

2
z

(λ2+m̃
2
z )3/2

� 	= 0 m̃z + �
√

(� − m̃z )2 + 4λ2 λ(�+m̃z )√
λ2+m̃

2
z

+ λmx

√
m̃z (�+m̃z )(2λ2+m̃

2
z −�m̃z )

(λ2+m̃
2
z )3/2

λ(�+m̃z )√
λ2+m

2
z

− λmx

√
m̃z (�+m̃z )(2λ2+m̃

2
z −�m̃z )

(λ2+m̃
2
z )3/2
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FIG. 5. Emergent pseudospin-spin texture of spin-majority band
for a 2D material|FM interface in the presence (thick lines) and
absence (thin lines) of orbital gap. The pseudospin-spin textures are
plotted along the path k = (kx, 0) (top panels) and k = (0, ky ) (bot-
tom panels). Band structure parameters: λ = 20 meV, � = 400 meV,
�xc = 15 meV (with φ = π/8), and λsv = 0.

APPENDIX B: SYMMETRY ANALYSIS OF

FERMI-SURFACE K-RESPONSE TENSOR

The Fermi surface density-current response functions are
determined from the zero-temperature limit of the term I in
the Kubo-Streda formula, namely

Kai = 1

2π

∫

(dp)Tr{saG
+
p J̃iG

−
p }, (B1)

where J̃i is the renormalized current density vertex and (dp) ≡
dp/(2π )2. To determine the parity of Kai with respect to the
field reversal m → −m, it suffices to consider the “empty”
bubble [7]. The disorder-averaged Green’s functions satisfy
the following symmetry relations:

sxσyG
a(−px, py)σysx = Ga(px, py)|

S1
, (B2)

syσxG
a(px,−py )syσx = Ga(px, py)|

S2
, (B3)

szσzG
a(−px,−py)szσz = Ga(px, py)|

S3
, (B4)

with S1 ≡ {mz → −mz, λsv → −λsv,� → −�}, S2 ≡ {mz → −mz,mx → −mx, λsv → −λsv,� → −�}, and S3 ≡ {mx →
−mx}. Using these symmetries, we find after some straightforward algebra (sum over repeated indices a = x, z is implied)

{Kai} =

⎛

⎜

⎝

mzκxx + m
2
a �αξ · �f a

xx + �αξ · �g κxy + mz �αξ · �fxy + m
2
aha

xy

−κxy − mz �αξ · �fxy + m
2
aha

yx mzκxx + �αξ · �g + m
2
a �αξ · �f a

yy

mxκzx + mzmx �αξ · �zzx mzmxκzy + mx �αξ · �zzy

⎞

⎟

⎠
, (B5)

where �αξ = ξ (λsv,�) and {κia, fi j, fa
i j, g, ha

i j, zzi}i, j=x,y are
even functions of mx and mz. The terms linear in �αξ are
activated by the breaking of sublattice symmetry, vanishing
upon the summation over the two valleys.

APPENDIX C: ANALYTICAL RESULTS FOR WEAK

SCATTERING REGIME

For 2D materials with intact sublattice symmetry (� =
λsv = 0), the self-energy at high carrier density reads as

�±(ǫ) ≃ ∓ıη

(

1 + mx

ǫ
sx + mz

ǫ
sz

)

, (C1)

where η = nu2
0ǫ/(4v

2) is the disorder-induced quasiparticle
broadening. There is already a significant difference at this
stage between magnetized Dirac fermions and 2DEGs since,
in the latter, the self-energy is a scalar. For 2D Dirac fermions,
it is fundamental to keep the full matrix structure of �± in
order to obtain physically sensible results that comply with
exact symmetry relations of the four-point vertex function,
known as Ward identities [22]. In the main text, we pre-
sented full nonperturbative results obtained with a numerical
inversion of the Bethe-Salpeter equation (Fig. 3). Analytical
expressions for the weak scattering regime can be obtained by
evaluating special subsets of diagrams [20]. Three responses,

TABLE II. Gaussian matrix structures of the renormalized current vertex. In-plane magnetic coupling (mx 	= 0) generates additional orbital-
spin mixings, which are fundamental for the accurate description of SOTs.

mx = 0 O(mx )

J̃x �xs0, �0sy, �xsz, �zsy �xsx, �ysy

J̃y �ys0, �0sx, �ysz, �zsx �0s0, �zs0, �0sz, �xsy, �ysx, �zsz
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Kxy, Kyx, and Kzy, are activated at the “Gaussian level” with the
standard correlator 〈V (x)V (x′)〉 = nu2

0δ(x − x′). To capture
the antidamping responses Kxx, Kyy, and Kzx, one supplements
the ladder series with the Y diagrams generated by the high-
order correlator 〈V (x)V (x′)V (x′′)〉 = nu3

0δ(x − x′)δ(x′ − x′′).
We find for the Gaussian Fermi-surface responses

Kxy = −Kyx = 2

vη

λ3ǫ2
(

ǫ2 + m
2
z

)

ǫ4
(

λ2 + m
2
z

)

− m
4
z (ǫ2 − 3λ2)

, (C2)

Kzy = − 2

vη

λmxmz

λ2 + m
2
z

+ O(ǫ−3), (C3)

σxx = σyy = ǫ

η

(

1 − 4λ2
m

2
z (ǫ2 − 2λ2)

ǫ4
(

λ2 + m
2
z

)

− m
4
z (ǫ2 − 3λ2)

)

, (C4)

and

KY
xx = KY

yy = u0mzλ
5ǫ2

(

ǫ2 − m
2
z

)(

ǫ2 + m
2
z

)2

v
3η

[

ǫ4
(

m
2
z + λ2

)

− m
4
z (ǫ2 − 3λ2)

]2
, (C5)

KY
zx = − u0λ

5
mxm

2
z

2v
3η

(

λ2 + m
2
z

)3
+ O(ǫ−3), (C6)

σ Y
xy = −σ Y

yx = − 2u0mzλ
6ǫ

(

ǫ2 + m
2
z

)3

v
2η

[

ǫ4
(

λ2 + m
2
z

)

− m
4
z (ǫ2 − 3λ2)

]2
, (C7)

for the skew-scattering Fermi-surface terms.
The linear response function at the Gaussian level is deter-

mined by a single component of the renormalized vertex [51],
which provides a transparent scheme to identify candidate
nonzero responses Kia based on a symmetry analysis (see Ta-
ble II). The current vertex transverse to the in-plane magnetic
coupling axis (J̃y) displays a complex structure with a term
proportional to sz, showing that Kzy is finite already at the
Gaussian level, in agreement with the analysis of Boltzmann
transport equations outlined in the main text.

Defining γi j ≡ �is j , one obtains γ̃i j = ∑

kl ci jklγkl with
the following nonzero coefficients at the Gaussian level:

c1010 = c2020 = 2 − 4λ2
m

2
z (ǫ2 − 2λ2)

ǫ4
(

λ2 + m
2
z

)

− m
4
z (ǫ2 − 3λ2)

, (C8)

c1002 = −c2001 = − 2λ3ǫ(ǫ2 + m
2
z )

ǫ4
(

λ2 + m
2
z

)

− m
4
z (ǫ2 − 3λ2)

, (C9)

c2003 = − 2λmxmz

ǫ
(

λ2 + m
2
z

) + O(ǫ−2). (C10)

The longitudinal conductivity is determined by Eq. (C8), the
Edelstein (inverse spin galvanic) effect is encoded in Eq. (C9),
and Eq. (C10) determines the out-of-plane nonequilibrium
spin polarization. Replacing the renormalized vertex in the
“bubble” [Eq. (B1)] yields the Gaussian response functions
presented earlier.

APPENDIX D: FULL ANGULAR DEPENDENCE OF

CURRENT-INDUCED SOT

From the knowledge of the spin-charge response tensor
K̂J (φ) = K̂ (φ) · σ̂ (φ)−1, one can easily extract the SOT ef-

FIG. 6. Angular dependence of m-odd response functions (top)
and associated SOT efficiencies (bottom). System parameters: �xc =
0.1 eV, λ = 60 meV, λsv = � = 0, n = 1011 cm−2, and ǫ = 0.4 eV.

ficiencies or “torkances”

to1(φ) = KJ
xy(φ) − tan(φ) KJ

zy(φ), (D1)

to2(φ) = cosec2(φ)
[

KJ
xy(φ) + KJ

yx(φ)
]

− 2cosec(2φ)KJ
zy(φ),

(D2)

te1(φ) = sec(φ)KJ
yy(φ), (D3)

te2(φ) = cosec2(φ) sec(φ)
[

KJ
xx(φ) − KJ

yy(φ)
]

− cosec(φ)KJ
zx(φ) − sec(φ)KJ

xx(φ), (D4)

entering in the final expression for the current-induced SOT

T = to1(φ) m × (ẑ × J) + te1(φ) m × [m × (ẑ × J)]

+ to2(φ) m × (m × ẑ)(m · J) + te2(φ) m × ẑ (m · J).

(D5)

These expressions match those reported by Ado et al. [7]
(apart from an overall minus sign in the m-even torques).
The evaluation of the angular dependence of the torkance
functions {to1(φ), to2(φ), te1(φ), te2(φ)} requires a full nonper-
turbative treatment beyond previous microscopic formulations
[7,39,62,63]. The angular dependence of the skew-scattering-
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activated response function and SOT efficiency parameters
obtained by a numerically exact procedure is depicted in

Fig. 6 for a magnetized graphene layer with strong interfacial
exchange and SOC effects.
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