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ARTICLE

A method for validating the accuracy of NMR
protein structures
Nicholas J. Fowler 1, Adnan Sljoka 2,3✉ & Mike P. Williamson 1✉

We present a method that measures the accuracy of NMR protein structures. It compares

random coil index [RCI] against local rigidity predicted by mathematical rigidity theory,

calculated from NMR structures [FIRST], using a correlation score (which assesses sec-

ondary structure), and an RMSD score (which measures overall rigidity). We test its per-

formance using: structures refined in explicit solvent, which are much better than unrefined

structures; decoy structures generated for 89 NMR structures; and conventional predictors of

accuracy such as number of restraints per residue, restraint violations, energy of structure,

ensemble RMSD, Ramachandran distribution, and clashscore. Restraint violations and RMSD

are poor measures of accuracy. Comparisons of NMR to crystal structures show that sec-

ondary structure is equally accurate, but crystal structures are typically too rigid in loops,

whereas NMR structures are typically too floppy overall. We show that the method is a useful

addition to existing measures of accuracy.
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P
rotein structures are probably the single most important
resource for understanding protein function, and are
deposited in the protein data bank (PDB), which currently

contains around 160,000 structures, of which around 90% are X-
ray diffraction structures, 8% are nuclear magnetic resonance
(NMR) structures, and the rest are mainly from electron micro-
scopy (EM)1. The NMR structures are relatively small in number,
but are important because they include a high proportion of small
proteins with under-represented folds. Most NMR structures are
determined in solution, whereas X-ray structures are determined
in a crystalline environment. Arguably this makes NMR struc-
tures more representative of in vivo structures. However, struc-
tures are only useful if they are accurate (i.e., close to the “true”
structure) and (equally importantly) can be shown to be accurate.
The PDB has therefore become increasingly concerned about
validation of structures in the database: the community needs
objective and reliable measures to check whether the structure
deposited is accurate. The PDB set up four task forces to provide
recommendations for validation: for crystallography, NMR, EM,
and small-angle scattering, which have all reported2–5 and have
created a suite of validation tools for the PDB6. They concluded
that validation cannot be based on a single measure. The mea-
sures used comprise a combination of geometrical tests, and
comparison to input data. Because it is expected that crystal
structures and solution structures have the same physical forces
underlying them, the geometrical tests for crystal and NMR
structures are identical, and include clashscore (how well atoms
are packed together), an analysis of Ramachandran outliers (how
well the backbone dihedral angles comply with structural norms),
and an analysis of sidechain outliers. The comparisons to input
data are necessarily different for X-ray and NMR structures. For
X-ray structures there is a very good measure, namely the R
factor, which is the difference between the intensities of experi-
mental diffraction data, and those calculated from the final
structure. If the R factor is low (typically less than about 20%)
then the structure is almost certainly essentially correct. In
structural biology there is a strong temptation to over-fit the data,
i.e., to add extra detail in order to improve the fit between
experimental data and structure. Hence, a second measure was
developed: Rfree, which is an R factor calculated using 10% of the
diffraction data that was set aside and not used in the refine-
ment7. Rfree should be similar in size to R for a structure that is
not over-refined. Together these two measures provide a reliable
guide to the accuracy of the crystal structure.

Unfortunately, no such measure exists for NMR structures8–11.
The original experimental data have no direct mathematical
relationship with the structure in the way that diffraction data do;
and the experimental input restraints, of which the most common
and useful are distance restraints obtained from NOESY spectra,
require extensive manipulation and interpretation of the original
data before they can be used as restraints. Furthermore, the
quantity of information comprising the experimental restraints is
far less for NMR, and the information is much more local. This
makes NMR structures inherently less precise, and probably less
accurate too, and also means that cross-validation by missing out
10% of the data, as used for Rfree, is not generally possible for
NMR structures12. NMR structures thus tend to be validated
using an unsatisfactory set of restraint comparisons, typically
comprising number of restraints per residue, restraint violations,
and structure precision (RMS distance between members of the
ensemble)5,13. None of these is a direct comparison to the input
data, and the third of these is explicitly a measure of precision,
not of accuracy, and it is already well established that there is little
relationship between precision and accuracy14–17.

Hence there is a pressing need to find a better validation
measure for NMR structures. Here, we present such a measure. A

good validation method should (like the R factor) as far as pos-
sible compare input data directly to structure. The most obvious
input data for NMR structures is the spectra. There have been
attempts to do this18,19 but there are major difficulties: there is no
good way of accurately calculating chemical shifts from struc-
tures; dynamics in solution have big effects on spectra; there are
many experimental artifacts in NMR spectra; and the number
and variety of input spectra used in structure calculations makes
it hard to define or measure what should be compared. Hence, we
have here used backbone chemical shifts as our input data. These
can usually be obtained reliably and rapidly, and there is little or
no manipulation or sorting required, by contrast to distance
restraints. The method described here is named ANSURR
(Accuracy of NMR Structures using Random Coil Index and
Rigidity).

The structure of this paper is that we outline the method before
demonstrating how we have validated the method using a range
of “good” and “bad” structures and by comparing to other typical
measures of structure accuracy. We then demonstrate the power
of the method by using it to make comparisons between crystal
structures and NMR structures.

Results
Outline of the method. Backbone chemical shift assignments
(i.e., HN, 15N, 13Cα, 13Cβ, Hα, and C′) can usually be obtained
rapidly, semi-automatically, and reliably from a set of triple
resonance spectra obtained from 15N, 13C double labeled protein.
In order to determine a protein NMR structure, shift assignments
are the necessary first stage20, meaning that any protein that has
an NMR structure must have backbone shift assignments (which
are now required to be submitted with the structures). Crucially,
shift assignments are subject to minimal manipulation. This is
very different from distance restraints obtained from NOE
spectra. For distance restraints there are inevitably many stages of
data sorting and rejection, no matter whether the restraints are
inputted manually or automatically. Some person or computer
must decide which signals to include, how to assign them, when
to reject or modify the restraints, and how to set the calibration
between peak intensity and distance restraint. All of these reduce
the value of distance restraints as independent quality measures.
For all these reasons, backbone assignments are better validation
input than distance restraints.

In our method, backbone chemical shift assignments are compared
to a structure. Although a number of programs can calculate shifts
from structures, they are not sufficiently accurate to perform a useful
comparison except in rather general terms14,21. Hence, the heart of
our method is that the backbone shifts are used to calculate the local
rigidity of the backbone, based on an established measure, the
random coil index (RCI), which calculates how similar each of the six
backbone shifts is to a tabulated “random coil shift” value22. It has
been shown to provide a remarkably reliable guide to local rigidity,
whether measured by NMR relaxation or by crystallographic B
factor22,23.

We compare local rigidity as predicted by RCI to that computed
from a structure using techniques from mathematical rigidity
theory. Several software packages and methodologies relying on
rigidity theory such as the program Floppy Inclusions and Rigid
Substructure Topography (FIRST)24,25 and its various implemen-
tations and extensions have been developed for fast computational
predictions of rigidity and flexibility of protein structures. Starting
with a protein structure, FIRST creates a topological graph (a
constrained network consisting of nodes and edges), where atoms
are represented by vertices (nodes), and edges represent the
constraints corresponding to the intramolecular interactions of a
protein e.g., covalent bonds, hydrogen bonds and hydrophobic
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interactions. Applying the mathematically well-established pebble
game algorithm and molecular theorem26, FIRST then determines
locally rigid subgraphs (rigid regions in the network), a process
referred to as rigid cluster decomposition. The degree of flexibility
can be quantified as a function of hydrogen bond energy by
repeating rigid cluster decomposition as edges corresponding to
hydrogen bonds are removed incrementally from the graph, and
noting the energy at which the Cα atom of a residue no longer
belongs to a rigid subgraph, i.e., becomes flexible. We convert this
energy to a Boltzmann population ratio, effectively giving the
probability that a residue is flexible.

The two measures of local rigidity (RCI and FIRST) are then
compared and a numerical comparison gives a score: a measure
of how well the local rigidities match, and thus whether the
structures produce a local rigidity that matches the one described
by the RCI. Following extensive trials, we use two different
measures of similarity: (a) The correlation between the two. This
tests whether the peaks and troughs are in the same places. Peaks
are locally mobile regions while troughs are locally rigid regions,
generally regular secondary structure. This comparison therefore
mainly shows whether the secondary structure is correct. (b) The
root-mean square deviation (RMSD) between the two. This tests
whether overall the structure is too rigid or too floppy. It is
strongly influenced by the geometry of hydrogen bonds and other
non-covalent interactions in the structure. As discussed below,
the overall rigidity of a structure is determined by not just
backbone but also sidechain interactions. Protein structures are
often compared by superimposing backbones (often cartoons).
Two structures can look very similar in a comparison like this,
but one can be much worse than the other in terms of the
accuracy of the hydrogen bond network or side chain orienta-
tions. In order to assess the relationship between structure and
function, it is important that sidechain positions should be
correct. The RMSD measure between RCI and FIRST is therefore
important because it measures the kind of accuracy needed to
interpret function.

Correlation and RMSD are simple numerical values, but they
do not scale linearly to intuitive measures of accuracy. In the
output from ANSURR, we therefore present the numerical values,

but we also calculate the percentile of each measure relative to all
NMR structures in the PDB with good chemical shift complete-
ness (see below for further discussion of completeness), which we
term correlation score and RMSD score, respectively. These are
relative values (and are thus likely to change slightly as more
structures are added to the PDB), but are easier for the user to
interpret. The crystallographic validations in the PDB adopt a
similar procedure for both geometrical tests and Rfree. In what
follows, we report the scores rather than the numerical values.

Correlation and RMSD scores highlight different aspects of
accuracy, so we decided not to combine them into a single score
to represent overall accuracy. Instead, we plot both on a single
graph, as demonstrated in Fig. 1 for four different models of the
same protein. The most accurate models (those with good scores
for both correlation and RMSD) appear in the top right-hand
corner of the plot.

RECOORD CNS (unrefined) vs. CNW (refined) structures.
There is currently no accepted method for measuring the accu-
racy of an NMR structure. There are also no databases of “good”
or “bad” structures. We have therefore created or adopted data-
sets that can reasonably be assumed to be bad or good. There are
also a range of methods that have been used to measure structure
quality, including the geometrical methods described above. We
compare our findings to these methods in turn.

The RECOORD project27 set out to standardize and tabulate
methods for NMR structure calculation. It produced a curated set
of structure restraints, which were applied in a consistent manner
to more than 500 proteins from the PDB, and then analysed the
resultant structures. It carried out two sets of structure calculations
on each protein: one using a typical simulated annealing
calculation in vacuo using CNS (termed CNS) and another using
CYANA (termed CYA)28,29. They then took these two sets of
structures and refined them in explicit water using ARIA (termed
CNW and CYW, respectively)30. There is an extensive literature
indicating that refinement of NMR structures in explicit water
produces better geometries and generally better quality struc-
tures31, so not surprisingly, the CNW/CYW structures are better.
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Fig. 1 ANSURR analysis of four models from NMR ensembles for the DNA binding domain of the human Forkhead transcription factor AFX (PDB ID

1e17). In the four plots, the blue lines show the flexibility predicted by RCI while the orange lines show flexibility predicted by FIRST. In the center of the

figure is the ANSURR analysis showing the RMSD and correlation scores derived from the four models. The two models on the right are from the CNW

dataset27 (refined in explicit solvent), while the two on the left are from the CNS set (refined in vacuo). As is typical, the CNW-refined structures have

better RMSD, meaning that the calculated flexibilities compare well on average. The two models at the bottom have poor correlations, because the

locations of the peaks do not match well between RCI and FIRST. The two at the top both have good correlations, because the locations of the peaks do

match, even though (in the case of the top left structure) their heights are very different.
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We have therefore carried out a comparison of those CNS and
CNW datasets for which there is sufficient (>75%) chemical shift
completeness, which comprises a set of 173 ensembles each made
up of 25 models (see Supplementary Table 1 for details). From
here on we refer to these datasets as CNS75 and CNW75,
respectively. In Fig. 2a, the differences in average correlation and
RMSD score for each of the 173 ensembles are depicted in a
histogram. There is no real improvement in correlation score on
refinement in water, with an average improvement of only 1.0.
This is expected, as the secondary structure, which ultimately
determines the location of peaks and troughs and therefore
correlation, changes very little during refinement. As an example,
Fig. 2b shows the lack of change in fold for one model. In
contrast, RMSD scores are greatly improved, with an average
increase of 36.2 and with only one ensemble scoring worse after
refinement. This is mostly due to the improvement in hydrogen
bonding which acts to rigidify the entire protein. This can be seen
in the difference in computed rigidity before and after refinement
(Fig. 2c).

Decoy vs experimental structures. A straightforward way to
generate a pool of structures of varying accuracy is to calculate
decoys. We used the 3DRobot web server32, which begins from a
crystal or NMR structure, identifies possible structure scaffolds
from a library, assembles them together, and then refines them.
The sets of structures generated using 3DRobot are designed to
have a high density of structures close to the native state with
good hydrogen bonding and compactness, and of high diversity.

In other words, they should look like genuine proteins, with good
packing and hydrogen bonds, and they should span a range, from
structures that closely resemble the native state, to ones that are
very different, although still with good packing and hydrogen
bonding. These sets therefore allow us to test whether ANSURR
can discriminate between structures that are all geometrically
good structures, but differ in their accuracy.

For about half (79 of 173) of the ensembles in the CNW75
dataset (see Supplementary Table 2 for a list of the chosen
models), we calculated a group of 300 decoys. These decoys were
then compared to the experimental structure using a Global
Distance Test (GDT), which measures the similarity between two
structures, calculated as the largest set of Cα atoms in the model
structure falling within a defined cut-off of their position in the
test structure, after superimposing the structures33. A selection of
results is shown in Fig. 3a (results for all 79 sets of decoys are
depicted in Supplementary Fig. 1). The score for the experimental
structure is indicated by a black asterisk and scores for decoys are
circles, colored according to their GDT.

From inspection of the examples shown in Fig. 3a, it can be
seen that the experimental model is usually one of the best
structures, as one would expect. Also apparent is that as GDT
increases (i.e., as decoys become more like the experimental
structure), both the validation scores tend towards those of the
experimental structure, confirming that our method does
specifically validate accuracy. There is a consistent difference
between α-helical proteins (e.g., 1itf) and β-sheet proteins (e.g.,
1gh5). Helical proteins tend to improve more in their correlation
score than in their RMSD score. This seems reasonable: helices
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Fig. 2 The effect of explicit solvent refinement on the two measures of structure accuracy. a Histogram showing the change in average correlation score

(blue) and RMSD score (orange), comparing ensembles from the CNS75 to the CNW75 sets. RMSD scores improve dramatically while there is no

significant change in correlation scores. b Backbone superposition of CNS model 14 and CNW model 14 of the restriction of telomere capping protein 3

from S. cerevisiae (PDB ID 1nyn), as a typical example of the effect of refinement in explicit solvent. Although the RMSD score is much better after

refinement, the backbones do not look very different. c Comparisons of RCI (gray) with flexibility calculated using FIRST for representative models from

CNS (blue) and CNW (orange) refinements. The colored bars at the top of each plot show the regular secondary structures: α-helix (red) and β-sheet

(blue). The three proteins are (top) the N-terminal domain of VAM3P from S. cerevisiae (CNS/CNW model 4, PDB ID 1hs7), a largely helical protein;

(middle) a single-domain antibody from Brucella (CNS/CNW model 20, PDB ID 1ieh), a largely β-sheet protein, and (bottom) the restriction of telomere

capping protein 3 from S. cerevisiae (CNS/CNW model 14, PDB ID 1nyn), a mixed α/β protein.
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are almost always rigid26, but not necessarily in the correct
location, whereas β-sheet proteins tend to improve more in their
RMSD score, because β-sheets can adopt a wide range of local
geometries, implying that β-sheet proteins can appear almost
correct but have poor hydrogen bonds and thus be much too
floppy. Scores for proteins with both α-helical and β-sheet
content tend to move in a diagonal, a combination of both effects.

The protein 1bqz presents an interesting example. It is DnaJ, a
largely helical protein, and unusually there are many decoys that
have a better correlation score but considerably worse RMSD
score than the experimental structure, despite most having GDT
of around 80 and with some close to 100. However, calculated
hydrogen bond correctness scores34 i.e., the percentage of
hydrogen bonds in the experimental structure that also appear
in the decoy, show that these high correlation score decoys
(indicated in Fig. 3a with a red box) have poor hydrogen bond
geometries (average hydrogen bond correctness of only 47%), and
hence a poor RMSD score. By contrast, decoys for 1cfc that
approach the accuracy of the experimental structure have good
RMSD and correlation scores and have better hydrogen bond
geometries (average hydrogen bond correctness of 69%).

Another interesting example is the beta-fold protein 1gh5 (an
antifungal protein from S. tendae). There are some decoys with
better correlation and only marginally worse RMSD scores than
the experimental structure, suggesting that they are actually more
accurate. Figure 3b compares the experimental structure and best

scoring decoy. Immediately obvious (and reassuring) is that at
backbone level, both structures are very similar. We note that the
experimental structure has a relatively poor correlation score. It is
therefore possible that some of the refined decoys genuinely are
more accurate: such behavior has been noted before35. Inspection
of the full dataset in Supplementary Fig. 1 suggests that this is not
uncommon. NMR structure refinement is a joint optimization
against NMR restraints and known properties of proteins. The
observation that some decoys have better scores than NMR
structures implies that in some NMR structure calculations, the
balance is not yet optimal, and more weight needs to be given to
packing and hydrogen bonding for example. We therefore feel
that this finding is not a problem with the method: on the
contrary, it shows that the method is useful for identifying
incompletely refined structures and improving them.

Comparison between ANSURR and conventional predictors of
accuracy. Conventional predictors of accuracy include the
number of restraints per residue used to generate a structure, the
number of restraint violations, and the total energy of the
structure. The RMSD between models in an ensemble is often
used to gauge precision, and by proxy to provide a guide to
accuracy. Whilst these measures are expected to be related to
accuracy, they do not explicitly determine it. Here we compare
these measures to the average RMSD score (Fig. 4a) and corre-
lation score (Fig. 4b) for each ensemble in the CNW75 dataset.
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Overall the correlations are much stronger for RMSD score
than correlation score. This is not surprising. These predictors
largely assess local accuracy, and thus relate to RMSD score better
than correlation score.

There is a moderate positive correlation between the number of
distance restraints per residue and RMSD score. This is reason-
able: a structure with a higher density of distance restraints is
expected to be more tightly defined and therefore more (correctly)
rigid overall36. Categorizing distance restraints according whether
they are sequential, medium or long-range reveals a slightly better
correlation for medium/long-range restraints than for sequential
restraints. This is again expected, as medium/long-range restraints
provide more information on protein fold, and for this reason are
considered a better predictor of accuracy37.

The number of distance restraint violations per residue does
not correlate with either validation score. Roughly two thirds of
structures do not have any violations at all, because structures are
normally refined until there are no, or no significant, violations. It
is fairly common practice that restraints that are routinely
violated during a structure calculation will be discarded along the

way. In fact, programs which automate NMR structure calcula-
tion do exactly that. For this reason, restraint violations are
clearly not a good predictor of accuracy8,13,38.

The number of dihedral restraints per residue does not
correlate with either validation score, but dihedral restraint
violations do. This is probably because the restraints themselves
are relatively weak, so that they do not particularly guide the
structure to become more accurate. However, weak negative
correlation to dihedral restraint violations suggests that these
kinds of restraints successfully flag major issues.

There is a moderate negative correlation to the total energy of
the structure. Typically, the selection of the final set of structures
to represent the ensemble is based on total energy, and the
correlation seen here suggests that this is a reasonable way of
identifying good structures.

Both RMSD score and correlation score are negatively
correlated with ensemble RMSD suggesting that more precise
ensembles do also tend to be more accurate. However, if those
ensembles with RMSD larger than 2.5 Å are excluded (blue fit
lines) then the gradient becomes almost zero, suggesting that for
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better structures, ensemble RMSD is a poor guide to accuracy.
Similar comments have been made previously14–17,39.

In summary, our measures of accuracy match reasonably well
to expectations: the number of distance restraints per residue is a
fairly good predictor of accuracy, while dihedral restraints, and
distance and angle violations, are not. Precision (ensemble
RMSD) is a poor predictor of accuracy, while overall energy is
surprisingly good as a predictor of accuracy.

Comparison between ANSURR and geometry-based validation
measures. It is unclear whether a correlation should be expected
between geometrical quality and accuracy. However, given that
NMR structure calculation is to a large extent an optimization of
models, using both NMR-derived restraints and knowledge-
derived geometrical factors simultaneously, it is reasonable to
expect that an accurate structure should also have good

geometrical quality. We therefore compared our validation scores
with two widely used indicators of geometrical quality: Rama-
chandran outliers and clashscore40. The program ramalyze (part
of the Molprobity suite of validation tools) was used to compute
the φ/ψ angles for each residue in the CNW75 dataset
and categorize them as either favorable, allowed or outlier. The
program clashscore (also part of Molprobity) was used to com-
pute the average number of clashes per 1000 atoms for each
ensemble in the CNW75 dataset. In Fig. 5a, b, the results for each
ensemble are plotted against RMSD score and correlation score,
respectively.

The correlation between Ramachandran distribution and
RMSD score is the best for any of the measures presented here.
In other words, an ensemble with good Ramachandran distribu-
tion (high percentage in the favored category, low percentage in
the additionally allowed category, small percentage in the outlier
category) is likely to have good accuracy. It seems reasonable to
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find that the most accurate structures are in general those with
the best backbone geometry, as was proposed many years ago41.

Geometrical measures have previously been combined together
into a consensus quality indicator called Resolution-by-proxy or
ResProx, which combines 25 geometrical measures, and has
excellent agreement (R= 0.92) with X-ray structure resolution42.
In Fig. 5c we take one PDB structure (1cfc) and generate 300
decoys (i.e., structures with good protein quality, but spanning a
range of similarity to the 1cfc structure as assessed by the Global
Distance Test), and show that there is a reasonable match
between ResProx score and GDT. In other words, structures that
are closer to the NMR structure are in general of better
geometrical quality. However, we also show that the match is
much better for ANSURR: in other words, ANSURR performs
much better than a consensus goodness measure based simply on
geometrical features. Supplementary Fig. 2 includes results for a
range of other proteins, with similar results in all cases.

We have also carried out a similar comparison, but against the
consensus measure PROSESS, which combines a wide range of
both geometry-based and restraint-based measures, and is thus
the closest available consensus test for ANSURR43. The PROSESS
scores are critically dependent on NOE restraint violations, and
are thus subject to the same problems as discussed in the previous
section. A more detailed discussion can be found in Supplemen-
tary Information.

Comparison of NMR and X-ray crystal structures. An obvious
first test for this method is to compare NMR and X-ray crystal
structures. It is important to stress here that because we compare
the structures to time-averaged chemical shifts obtained using
solution NMR, we are explicitly testing how well the structures
compare to the average state of the protein in solution. Crystal
structures are almost always based on many more experimental
values, and more precisely measured values, than NMR struc-
tures. One would therefore inherently expect them to be more
accurate, except that crystal structures represent the structure of
the protein in a crystalline environment, whereas the NMR
chemical shifts measure structural rigidity in solution. We are
therefore here making a somewhat unfair, but important, com-
parison, namely how well X-ray structures represent the structure
of a protein in solution.

Here we compare X-ray structures for 68 proteins taken from
the set used to train the SHIFTX2 program for predicting
chemical shifts44 with corresponding NMR structures taken from
the PDB (see “Methods” section for details). We validated each
structure using our method and averaged the validation scores
over each chain for X-ray structures, and each model for NMR
ensembles. The results are shown in Fig. 6. The correlation scores
for X-ray and NMR structures are very similar. In other words,
the locations of rigid and flexible regions, generally representing
regular secondary structure in solution, are calculated similarly
well by both methods. The slightly lower correlation score for X-
ray structures originates from some loops seeming to be too rigid.
That is, X-ray structures are missing some peaks in flexibility that
should be there according to RCI. Crystal structures are obtained
from crystalline arrays, and are usually obtained at cryo-
temperatures, both of which will tend to reduce the observed
flexibility. There is a large body of evidence45–47 that crystal
structures obtained at room temperature show much more local
variability than do structures obtained at cryo-temperatures, and
calculations on lysozyme confirm that the room temperature
structures have flexibility that matches the RCI data much better
than cryo-temperature structures (Supplementary Note 1 and
Supplementary Figs. 3–6). By contrast, in the RMSD score
comparison, on average crystal structures are significantly better.

When one inspects the data for individual proteins, it is clear that
NMR structures are in general much too flexible, particularly in
loop regions. This is not unexpected, as NMR structures often
have few restraints in loops.

Discussion
We present a method for determining the accuracy of NMR
structures. A range of methods have been proposed
previously10,13,41,48, including various attempts at an NMR R
factor18,19,49–51. Our method has the merits of being simple,
rapid, and in agreement with intuitive expectations. Considering
that the first NMR structure of a globular protein was published
in 198552, it is remarkable that it has taken this long to come up
with a workable measure. The lack of a good measure of accuracy
has inhibited researchers from using NMR structures; it is hoped
that this method will give users more confidence in the use of
structural data from NMR. ANSURR is not a reliable measure of
accuracy on its own: as is done for X-ray crystallography, it needs
to be combined with other measures, typically geometrical tests.

Because there are no general methods for measuring accuracy,
and thus no agreed sets of “good” or “bad” NMR structures, we
have been forced to create our own comparisons. Similarly, there
are a range of measures that have been proposed for measuring
accuracy. In particular, the PDB NMR validation task force5 has
recommended a set of measures, combining geometrical com-
parisons and comparisons to input data. These measures are
investigated here. We find that the best current indicator of
accuracy is a Ramachandran analysis, using either the proportion
of residues in the favored region or the proportion of outliers. We
find that the RMSD between models in an ensemble is a poor
measure of accuracy (though an excellent measure of precision,
reinforcing the concept that accuracy and precision are largely
independent). Other common restraint-based measures of accu-
racy, such as restraints per residue8 or restraint violations, are also
poor measures of accuracy53. We suspect that part of the problem
is that the route from NOE spectrum to distance restraint con-
tains a large number of user-defined decisions (many of which are
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increasingly being made by the programs, and are thus becoming
even more opaque), so that the link between spectrum and
restraint is ill defined.

An interesting conclusion to come from this comparison is that
the most common measure of structural similarity, backbone
RMSD, misses many of the interesting differences. Structures can
look very similar when superimposed on the backbone, but contain
large variability in sidechain position and hydrogen bond geometry,
which has major impact on docking algorithms and on functional
aspects such as allostery, enzyme catalysis54, and dynamics.

Now that we have a reliable measure of accuracy, it can be
applied to some key problems, for example: (1) how good are the
NMR ensembles in the PDB? (2) Can we determine which
structures in an ensemble are good, and which are not, and can
we therefore improve the ensemble? (3) Is it possible to use
experimental NMR data to validate or refine protein structure
prediction methods? (4) Can one use these methods to identify
local errors in NMR structures? We plan to address these ques-
tions in the future.

Methods
Random coil index (RCI). RCI quantifies local (i.e., per residue) protein flexibility
by calculating an inverse weighted average of backbone secondary chemical shifts.
We calculate RCI essentially as done by Berjanskii and Wishart22, though with a
few differences. In the originally published method, the weighting coefficients were
not normalized. That is, the sum of the weights for different combinations of shifts
did not add up to the same value and therefore the baseline rigidity measure could
vary when comparing RCI values calculated with different combinations of shifts.
We addressed this by simply dividing the sum of weighted secondary shifts by the
sum of the weighting coefficients. We therefore compute RCI as:

RCI ¼
A ΔδCαj j þ B ΔδCOj j þ C ΔδCβ

�

�

�

�

�

�þ D ΔδNj j þ E ΔδNHj j þ F ΔδHαj j

Aþ Bþ C þ Dþ E þ F

0

@

1

A

�1

;

ð1Þ

where the ΔδI are secondary chemical shifts and A–F are weighting coefficients.
Some nuclei (Cα, Cβ) are more descriptive than others (HN, NH) and so have
larger weighting coefficients. Missing chemical shifts have a weighting coefficient of
zero. Another difference is that we use random coil values and nearest neighbor
sequence corrections using data obtained from intrinsically disordered proteins55,
rather than data based on unfolded peptides or proteins (see e.g., 56). A result of
these differences is that our approach outputs a value between 0 and 0.2, rather
than between 0 and 0.6 as in the originally published method.

We use the set of optimized weighting coefficients for each of the 63 different
combinations of backbone chemical shifts as found in the downloadable Python
version of RCI http://www.randomcoilindex.com/. For some combinations, we found
the similarity between flexibility predicted by RCI and FIRST is significantly decreased
suggesting that, in these instances, RCI is a poor predictor of flexibility. Ultimately, the
most reliable validation scores are obtained when a full complement of backbone
chemical shifts are provided. Our method will allow validation with any combination/
completeness of shifts, but the resulting validation score is flagged as less reliable if
total chemical shift completeness drops below 75%. For proteins with sufficient
chemical shift completeness (≥75%), we assume that residues with completely missing
backbone chemical shift assignments are missing because the residues are highly
mobile. We assign such residues a secondary chemical shift of zero (i.e., they are
assumed to be entirely random coil-like) prior to 3-residue smoothing. However,
these data points are not used when calculating validation scores. We note that
artificially reducing chemical shift completeness by randomly removing some
assignments resulted in worse RMSD and correlation scores, indicating that RCI is
more accurate with a greater shift completeness (Supplementary Fig. 7).

Floppy inclusions and rigid substructure topography (FIRST). Given a protein
structure, FIRST25 generates a graph (constraint network) composed of vertices
(nodes), which represent atoms; and edges, which represent constraints imposed by
the local geometry. Single covalent bonds are modeled by five edges between
bonded atoms; double bonds by six; hydrophobic interactions, which are less
geometrically constraining, by two; and hydrogen bonds by between one and five,
depending on how one chooses to model them. Overall this multigraph represents
a generic realization of a molecular body-bar framework in rigidity theory26.
Typically, rigidity analysis is performed at a range of hydrogen bond energy cut-off
values, where hydrogen bonds that meet the cut-off threshold are assigned five
edges while weaker interactions are ignored.

Atoms are considered to be rigid bodies each with six degrees of freedom (three
position and three orientation). These degrees of freedom are removed as

constraints are added between them. One edge removes up to one degree of
freedom e.g., a single covalent bond can remove up to five degrees of freedom
between the two bonded atoms. FIRST then uses the combinatorial pebble game
algorithm (which checks the counting condition prescribed by rigidity theory57) to
rapidly decompose the graph into maximum rigid clusters and flexible regions, a
process known as rigid cluster decomposition. We consider a residue to be rigid if
the Cα atom belongs to a rigid cluster that contains at least 15 atoms: this is a useful
caveat because it prevents prolines and aromatic residues automatically showing up
as rigid.

Relative flexibility is quantified using a process termed hydrogen bond dilution,
which is analogous to the thermal denaturation of a protein. Dilution involves
incrementally removing edges associated with hydrogen bonds in the graph
(weakest to strongest), repeating rigid cluster decomposition and noting the
hydrogen bond energy at which the Cα atom of each residue is no longer part of a
rigid cluster i.e., becomes flexible. An important benefit of the dilution plot is that
the exact energy of each hydrogen bond is not critical to the analysis. We have
adapted this slightly, choosing to convert the energies to a Boltzmann population
ratio at 298.15 K to represent the probability that a residue is flexible.

Comparing RCI and FIRST. A simple comparison of RCI and FIRST is not ideal,
because the frequency distributions of RCI and FIRST output values are different
(Supplementary Fig. 8a, b). The main difference is that RCI is calculated as the
inverse of averaged secondary chemical shifts and therefore it is not possible to
achieve a RCI value of zero. We decided to rescale RCI values so that the mode RCI
value (0.024) becomes “zero” and round up any subsequent negative values. At the
other end of the scale, particularly noticeable is a large spike in RCI values at 0.2
which is comprised of terminal residues. A similar spike, also comprised of
terminal residues, is present in the frequency distribution of FIRST at Boltzmann
population ratio equal to one (i.e., completely flexible at 298.15 K). We therefore
decided to scale RCI values so that these spikes align. Subsequent values above one
(i.e., apparently more flexible than terminal residues) are rounded down, although
such instances are very rare. The equation below outlines how we compute rescaled
RCI R0

RCI

� �

from the original RCI values (RRCI):

R0
RCI ¼ min

maxðRRCI � 0:024; 0Þ
0:2� 0:024

; 1

� �

: ð2Þ

Comparing the frequency distribution of the rescaled RCI and FIRST output
values shows good agreement (Supplementary Fig. 8c, d).

Validation scores. RCI and FIRST are compared using two different measures.
One is the correlation, calculated using a Spearman rank correlation coefficient.
The other is the root mean square deviation (RMSD), calculated as:

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

R0
RCI � RFIRST

� �2

N

s

;

ð3Þ

where N is the number of residues in the protein, R0
RCI is the local rigidity com-

puted with RCI and rescaled as described above, and RFIRST is the local rigidity
computed with FIRST. The numerical values of correlation score and RMSD score
are reported as the percentiles relative to a reference dataset formed of structures
from the CNS and CNW datasets from the RECOORD recalculated structure
database, which provide a representative selection of different fold types, before
and after explicit solvent refinement.

Dataset of comparable X-ray and NMR structures. To build a dataset of
comparable X-ray and NMR structures, we made use of the set of X-ray structures
that were used to train the SHIFTX2 program for predicting chemical shifts44. This
set comprises 197 high-resolution and high-quality structures, which are repre-
sentative of different fold types. We extracted structures which had corresponding
NMR structures in the PDB, and backbone chemical shift completeness of at least
75%. Our final dataset consisted of 80 X-ray structures and 121 corresponding
NMR structures for 68 different proteins. PDB and BMRB IDs are provided in
Supplementary Table 3.

X-ray structures required some processing. If the structure contained multiple
conformations (typical in high resolution X-ray structures), then we only
considered the first of these as they appeared in the PDB file. Missing atoms and
small breaks in the protein structure were identified using an in-house program
and fixed using MODELLER58. MODELLER was also used to replace non-standard
residues related to conditions required for crystallization (e.g., selenomethionine
was replaced with methionine). Structures were protonated using REDUCE with
the option to optimize adjustable groups59.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are listed in Supplementary Information and are from publicly available
databases: specifically, the Protein Data Bank (www.rcsb/org), Biological Magnetic
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Resonance Bank (BMRB: www.bmrb.io) and RECOORD (www.ebi.ac.uk/pdbe/
recalculated-nmr-data). The accession codes of PDB and BMRB entries used in this study
are listed in the Supplementary Information file. Data supporting the findings of this
work are available within the paper and its Supplementary Information. The datasets
generated and analysed during the current study are available from the corresponding
author (MPW) upon request.

Code availability
The program and associated documentation can be downloaded from github.com/nickjf/
ANSURR, https://doi.org/10.5281/zenodo.416158660. A typical calculation on an
ensemble of 20 models for a 150-residue protein takes less than a minute.
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