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Abstract. The electric power demand of a Fused Magnesia Smelting
Process(FMSP) is defined as the average of electric power consumed
within a fix period of time and is used for judging the electricity cost.
The power has to be turned off once the demand value exceeds one spe-
cific threshold P̄l. However, by taking advantage of the current controller
in FMSP, the demand can be reduced hence there is no need to switch
off the power supply in this case. Therefore, it is vital to forecast the
power demand and its trend such that the power supply does not have
to be turned off unnecessarily. In this paper, a hybrid model combin-
ing a linear model with an unknown high order function is proposed.
The linear model built to capture the priori information from the do-
main knowledge and historic data, while the unknown information in
FMSP and the error of the linear model are approximated with a high
order nonlinear function. The Recursive Least Square algorithm(RLS)
is used for identifying the unknown parameters in the linear model . A
Long-Short Term Memory(LSTM) trained by the Fast Recursive Algo-
rithm(FRA) is proposed to fit the unknown high-order function. Finally,
the output weights of LSTM is updated by RLS online. Comparing with
hybrid models like the linear model combined with Radial Basis Function
Neural Network(RBF), the proposed model offers the best performance
in our experimental studies.

Keywords: Demand forecasting, LSTM, FRA

1 Introduction

Fused magnesia is a key refractory matter used in many fields like the chem-
ical industry, metallurgy and aerospace industry, etc.. To produce the fused
magnesia, magnesia is smelted by a Fused Magnesium Furnace(FMF) which is
an energy intensive. The energy cost takes over 60% of the total production
cost. The electricity demand is used to judge the electric energy cost during the
Fused Magnesia Smelting Process(FMSP) and it can not exceed a certain limit
P̄l namely the maximum demand which is specified by State Grid Corporation
of China(SGCC), otherwise the factory will face huge fine. For this reason if the
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demand exceeds this limit for 4 sampling periods(28 seconds) continuously, one
or more FMFs have to be turned off to ensure the total demand is below the max-
imum limit at the 5th sampling time. But turning off the power frequently, the
product quality will reduce, leading to unexpected economic loss. Fortunately,
the current controller designed for the FMF can adjust the length of the arc to
reduce the current when the demand exceeds its limit, hence reducing the over-
all demand. But some unknown effects, such as unknown process dynamics and
external disturbances, etc, may affect the performance of the current controller,
hence the demand may necessarily not decrease. For these aforementioned rea-
sons, it is vital to have an accurate forecasting of the demand and its trend to
help the controller take appropriate control actions, and to determine if it is
necessary to turn off FMFs. The FMF uses submerged arc mode to achieve the
melting point of the raw material about 2850°C, which is much higher than 1700
°C - the temperature required by the steel-making electric arc furnace [1]. Using
this mode we can only measure the electric power and demand during the smelt-
ing process. However, some unavailable information and data like the length of
the arc, the height of the smelting pool and etc. also affect the model accuracy
of the model. But fortunately, the past demand and electric power consumption
are the major contributing factors of the model.

Over past decades time series models [2], regression models [3], Artificial
Neural Networks(ANN) [4] or some hybrid models have been used to predict
the electricity demand and its trend. Time series models are the simplest model
used for energy demand forecasting and some statistical methods are usually
used for trend analysis of the time series data. Regression models with threshold
is proved to have better performance than standard linear model and it can
be used for both long term and short term forecasting. In [5] ANN is used to
forecast peak load planning. In [6] a hybrid model with linear and non-linear
parts is proposed to forecast the electric demand and its trend. In [7] the electric
demand and its peak are predicted by a hybrid model with regression models
and (Artificial Neural Network) ANNs. To forecast the demand in FMSP, in [8]
a Radial Basis Function Neural Network(RBFNN) has been used,and in [1, 9]
the linear model with RBFNN produced by different identification methods are
used. By comparing with [1, 8, 9], we find hybrid model with linear model and
neural network is more suitable used for the demand forecasting in FMSP, but
the demand forecasting accuracy is affected by the single neural network and
the statistic method for selecting the order of the input in [1, 8, 9].

In [1,9] a mechanism model which combines with a linear model and an un-
known high-order function is proposed to help capture the dynamics of FMSP.
The linear model uses known past electric power as its inputs, the unknown
information and the error of linear model in the smelting process can be written
as an unknown high-order function with the past modelling errors and electric
power consumptions as the model inputs. The biggest challenge for forecasting
the demand and its trend is that there are overwhelmingly unknown informa-
tion during the FMSP because of the submerged arc mode. The single RBFNN
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structure also limits the accuracy of the model. So there is a need to build a
more accurate demand neural network with better forecasting performance.

In this paper we propose a hybrid model with a linear model and an unknown
high order function to forecast the demand value and its trend. The parameters
of the linear model will be identified by Recursive Least Squares(RLS) [12], and
the Long-Short Term Memory(LSTM) [10] is chosen to fit the unknown high
order function. A Fast Recursive Algorithm(FRA) [11] is used to build LSTM for
identifying the output weights. The RLS is used for updating the output weights
online. Comparing with some ANNs like RBFNN, the hybrid model with LSTM
proposed in this paper has the best performance in our experimental studies
using the real data from the FMSP.

2 Demand forecasting model

2.1 Introduction to FMSP

Figure 1 gives a brief illustration of the FMSP, which comprises a power supply
system, current control systems, power systems, multiple FMFs and a demand
monitoring system. Due to the high melting point of the raw materials, the
FMF has to use the submerged arc mode (the electrodes are embedded into
the raw material). The current control system will adjust the distance between
the three-phase electrodes and the surface of the molten pool for generating the
arc to melt the raw material and form a magnesium oxide bath. The smelting
process is with adding raw material until the furnace is full.

There are a number of uncertainties associated with the FMSP which stop
the current controller acting appropriately to adjust the current to the set point
timely. For the cases when the current controller does not perform, we can turn
off the FMF manually to stop the demand exceeding its limit. The power con-
sumptions of FMFs can be collected by the power transducer and the demand
will be calculated by a demand calculation device which calculates the current
demand every seven seconds. With these information, the demand and its predic-
tive value can be obtained. If the demand exceeds its limitation for 4 successive
sampling points, the power of one or more FMFs will be cut off. Vice versa, the
FMFs can be turned on when the demand is below the limit.

However if the power of FMFs are switched off and on frequently, the quality
of the fused magnesia will be significantly decreased, and the energy waste can
be huge as well.Therefore it is necessary to to model the demand accurately
for the current controller such that it can action properly to avoid unnecessary
power cut-off and economic losses.

2.2 Demand forecasting model

In FMSP, each FMF may have different current, smelting state and other state
values, therefore ideally the demand of each FMF is modelled separately. But
there exist numerous unavailable information in FMSP like the length of arc,
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Fig. 1: A sketch of demand monitoring for FMSP.

distance between the three-phase electrodes and the surface of the molten pool
and the height of the pool , etc., therefore a practical approach is to assume that
all the FMFs have same state and we only need to predict the total demand
of all FMFs. The demand P̄ (k) of all FMFs at time instant k is defined as the
average value of electric power consumptions p(k), p(k − 1), · · · , p(k − n+ 1) in
equation(1).

P̄ (k) =
1

n

n
∑

i=1

p(k − i+ 1) (1)

where p(k) =
∑m

i=1

√
3UIi(k) cosϕ is the electric power of m FMFs at time

instant k, U is the voltage of each FMF, Ii is the current of ith FMF, and cosϕ
is the power factor. According to [1], the electric power forecasting model can
be formulated as in equation (2),

p(k + 1) = ψ(k)θ + v(k) (2)

whereψ(k) = (p(k), p(k − 1), p(k − 2), p∗),p∗ = m
√
3UI∗ cosϕ,θ = (θ1, θ2, θ3, θ4)

T

, I∗ is the set value of current and v(k) is an unknown high order function which
will be fitted by LSTM trained with FRA. We can rewrite equation (1) as follows

P̄ (k + 1) = P̄ (k) +
p(k + 1)− p(k + 1− n)

n
(3)

We can see that if we want to predict the demand P̄ (k+1) at k+1, we have
to predict the electric power p(k + 1) at k + 1. So our target in this paper is
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to forecast the electric power p̂(k + 1) firstly and then calculate the forecasting

demand ˆ̄P (k + 1) using equation (3).

3 Demand forecasting algorithm

In this section we use Recursive Least Square(RLS) algorithm to identify the pa-
rameters θ of linear model in (2) and the unknown high order nonlinear function
v(k) is fitted by LSTM trained with FRA. The initial value of θ is can be iden-
tified by the Least Square(LS) algorithm. According to equation (2), we write
linear model as equation (4) and we set v(k) = 0 for k = 1, 2, · · · at first. Then
the parameter θ will be identified by RLS until it is convergent and then it will
be fixed as θ̂. Afterwards, we fit v(k), k = 1, 2, · · · by LSTM trained with FRA
and its value can be calculated by equation (5). Finally, an online parameter
update algorithm will be given.

p(k + 1)− v̂(k) = ψ(k)θ (4)

v(k) = p(k + 1)−ψ(k)θ̂ (5)

3.1 Offline parameter identification for linear model by RLS

We need to identify linear model parameter θ in equation (4) with Least Square(LS)
[12] algorithm firstly and update it by Recursive Least Square(RLS) [12] until
it is convergent. For offline training, we rewrite equation (4) in matrix form as

equation (6), where t is training time, Yp = (p(1), p(5), · · · , p(ntrain))
T
, Ψ =

(ψ(0);ψ(1); · · · ;ψ(ntrain − 1)) and ntrain is number of training data, p(k) = 0

for k 6 0. Y (t) = (v(1), v(2), · · · , v(ntrain))
T
can be calculated by equation (7).

Yp − Y (t) = Ψθ(t) (6)

Y (t) = Yp − Ψ θ̂(t) (7)

The offline identification algorithm for parameter θ is given as follows:
(1)Set t = 0, Y (0) = 0;

(2)Calculate the initial value of parameter θ by LS algorithm θ̂(0) =
(

ΨTΨ
)

−1
ΨTYp;

(3)Calculate Y (t) by equation (7). Update the parameter θ̂(t) using equation (8)

θ̂(t) = θ̂(t− 1) + Y (t)G (8)

where

G =
(

ΨTΨ
)−1

Ψ
[

I + Ψ
(

ΨTΨ
)−1

Ψ
]

−1

and I is an identity matrix;
(4) If θ̂(t)−θ̂(t−1) = ξ, ξ → 0 end the training for linear model, else set t = t+1
and return to step (3).

We choose θ̂(t) as the parameter of linear model and calculate new error v(k)
by equation (7) as the target values for LSTM training .
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3.2 LSTM trained with FRA for unknown high order nonlinear
function

Traditional Recurrent Neural Network(RNN)(figure 2, left) in equation (9),(10)
usually used for short-term time series trained by backpropagation through
time(BPTT) [10], but error signals flowing backward in time tend to blow up or
vanish with long-term time series.

ht = g (Wxhxt +Whhht−1 + bh) (9)

zt = g (Whzht + bz) (10)

where xt is input.
The LSTM (figure 2, right) is a variant of RNN with gates can be used for

both long-term and short-term time series [10]. The LSTM updates for timestep
t given inputs xt, ht, ct−1 are :

it = σ (Wxixt +Whiht−1 + bi) (11)

ft = σ (Wxfxt +Whfht−1 + bf ) (12)

ot = σ (Wxoxt +Whoht−1 + bo) (13)

gt = φ (Wxcxt +Whcht−1 + bc) (14)

ct = ft ⊙ ct−1 + it ⊙ gt (15)

ht = ot ⊙ φ (ct) (16)

where σ(x) = 1

1+e−x is a sigmoid function in range [0, 1] , φ(x) = ex−e−x

ex+e−x is a
tanh function in range [−1, 1].

Fig. 2: A diagram of a basic RNN cell (left) and an LSTM memory cell (right)
[13].

The LSTM with gates can avoid gradient blow up or vanish with over 1000
time steps, therefore the LSTM is chosen for fit unknown high order nonlinear



Title Suppressed Due to Excessive Length 7

function. The electric demand and electric power updates ever 7 seconds, so
we can’t update all parameters in LSTM online. To solve this, weights link the
hidden notes of the last layer and the output trained by FRA is proposed in
this paper and the weights can be updated by RLS online, so that the electric
demand can be forecast in 7 seconds.

The inputs at k of the unknown high order nonlinear function is x(k) =
(p(k), · · · , p(k − np), v(k − 1), · · · , v(k − nv)), the output v(k) can be written as

v(k) = βht(k) + b (17)

where β = (β1, · · · , βm) is trained by FRA, ht(k) =
(

h1
t (k), · · · , hm

t (k)
)T

,

hi
t(k) = tanh

(

hi
t−1(k)

)

, for i = 1, · · · ,m, m is the number of the hidden notes
of the last layer, t is the number of the hidden layers. The hidden notes in
1, · · · , t− 1 layers are LSTM units.

3.3 A Fast Recursive Algorithm(FRA)

A Fast Recursive Algorithm(FRA) designed in [11] is an alternative algorithm
for orthogonal least square(OLS) algorithm to avoid Gram–Schmidt process in
nonlinear system identification. We use FRA instead of LS to avoid calculating
the pseudo inverse of the information matrix and FRA is described as follows.

Assume that there are m hidden nodes in the last hidden layer, define Rh

as equation (18), where φ = (φ1, · · · , φm) is the information matrix and I is an
identity matrix.

Rh =

{

I, h = 0

I − φ
[

(φ)
T
φ
]

−1

(φ)
T
, 1 < h < Hl

(18)

According to [11] Rh can update iteratively by (19) for h = 1, 2, · · · ,m− 1 and

it avoids calculating the pseudo inverse of
[

(φ)
T
φ
]

.

Rh+1 = Rh − Rhφh+1 (Rhφh+1)
T

(φh+1)
T
Rhφh+1

(19)

In [11] there are some propositions of Rh listed as (20)-(23) and the proofs can
be found in [11].

(Rh)
T
= Rh (20)

(Rh)
2
= Rh (21)

RhRj = RjRh = Rh, h ≥ j (22)

Rhφi = 0, ∀i ∈ {1, 2, 3, · · · ,m} (23)

As for traditional LS algorithm the parameters can be obtained by (24). Time
φ on both sides of equation (24) and we will get equation (25)

β̂i =
[

(φ)
T
φ
]

−1

φY (24)
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φβ̂ = φ
[

(φ)
T
φ
]

−1

φY

= (I −Rh)Y (25)

where Y = (v(1), · · · , v(k)).
And then define an upper triangular matrix as A = [ah,p]h×Hi

as equation
(26), where h = 1, 2, · · · ,m, p = h, h+ 1, · · · ,m.

ah,p = (φh)
T
φ−

h−1
∑

j=1

aj,haj,p

aj,j
(26)

And ah,y as equation (27)

ah,y = (φh)
T
Y −

h−1
∑

j=1

aj,haj,y

aj,j
(27)

Multiply (φ)
T
to both sides of equation (25) is equation (28).

(φ)
T
φβ̂ = (φ)

T
(I −Rh)Y (28)

According to proposition (23), we can renew equation (25) as equation (29).

ah,hβh +

m
∑

p=h+1

aj,pβp = ah,y (29)

By equation (29), the output weights βh can be calculated as equation (30),
which can avoid calculating the pseudo inverse of the information matrix .

β̂h =
ah,y −

∑m

p=h+1
ah,pβ̂p

ah,h
(30)

3.4 Demand forecasting in FMSP online

The v(k) has to be written as follow for online forecasting

v(k) = β(k)ht(k) + b(k) (31)

We complex online forecasting by updating β(k), b(k) online.
When new electric power p(k) and demand P̄ (k) is measured at k, we fix

linear model parameter θ and update the output v(k− 1) of LSTM by equation
(5). Output weights β of LSTM can be updated by RLS as followings.
(1)Set a sliding window with width ntrain ;
(2)Measure a new electric power p(k) and demand P̄ (k);
(3)Renew input matrix as

X(k) = [x(k − ntrain + 1), · · · ,x(k)] , l = 1, 2, · · · , L
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output of LSTM as

Y (k) = [v(k − ntrain), · · · , v(k − 1)]
T

(4)Update the information matrix Φ(k) = (ht(k − ntrain + 1), · · · ,ht(k)) of
LSTM with X ;
(5)Update β(k) and b(k) by RLS as equation (32)

(

β̂(k), b̂(k)
)

=
(

β̂(k − 1), b̂(k − 1)
)

+ Y (k)G(k) (32)

where

G(k) = P (k − 1)Φ(k)
[

I + ΦT (k)P (k − 1)Φ(k)
]−1

P (k) = P (k − 1)−G(k)ΦT (k)P (k − 1)

and P (0) =
(

ΦT (k)Φ(k)
)

−1
;

(6)Forecasting v̂(k) by LSTM with ˆβ(k), b̂(k) as equation (31), calculate p̂(k+1)

by (2) and then calculate the predictive value of demand ˆ̄P (k + 1) by (3);
(7)Set k = k + 1 at k + 1 and return to step (2).

To sum up, we can predict the demand ˆ̄P (k + 1) in FMSP and the next
electric power p̂(k + 1) at k by the aforementioned method. Furthermore, we
can analyse the trend of demand for FMSP and evaluate the accuracy of the
prediction by next section.

4 Accuracy and trend of demand forecasting analysis

We use Root Mean Square Error(RMSE) which is used in [1] to evaluate the
accuracy of demand by our method in this paper. RMSE is described by equation
(33), where N is the number of observations.

RMSE =

√

√

√

√

1

N

N
∑

k=1

(

P̄ (k)− ˆ̄P (k + 1)
)2

(33)

We choose Mean Absolute Scaled Error(MASE) [?] in equation (34) as another
evaluation for demand forecasting accuracy.

MASE =
1

N

N
∑

k=1

2
∣

∣

∣
P̄ (k)− ˆ̄P (k + 1)

∣

∣

∣

P̄ (k) + ˆ̄P (k + 1)
(34)

The Direction Symmetry(DS) in equation (35) is used for analysing the trend
of demand.

DS =
1

N

N
∑

k=1

d(k) (35)
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where d(k) is as follows.

d(k) =











1,
[

P̄ (k)− P̄ (k − 1)
]

[

ˆ̄P (k)− ˆ̄P (k − 1)
]

≥ 0

0,
[

P̄ (k)− P̄ (k − 1)
]

[

ˆ̄P (k)− ˆ̄P (k − 1)
]

< 0

From DS we can’t figure out the upward or downhill tendency of demand in a
continuous period, and then True Positive Rate(TPR) in equation (36) and True
Negative Rate(TNR) in equation (37) are used to solve that.

TPR =
TP

TP + FN
(36)

TNR =
TN

TN + FP
(37)

The relationship among parameters in equation (36) and (37) are listed in table
1.

Table 1: Relationship table

P̄

ˆ̄
P

Up Down

Up TP FP
Down TN FN

5 Simulations

We use real data from a fused magnesia factory within a day to test the demand
forecasting algorithm in this paper. The limitation of demand is P̄l = 22100kVA
and there are 4 FMFs working together that day. U = 190V is the voltage of
each FMF, Ii = 15000A is set value of ith FMF’current and cosϕ = 0.92 is the
power factor. We choose continuous electric power p(1), · · · , p(N) and demand
P̄ (1), · · · , P̄ (N) samples for training and testing, where the total number of
samples is N = 4000, top ntrain = 2000 samples are for training offline and the
rest is for testing online.

5.1 Identify linear model parameters

As discussed above, we first set v(k) = 0 for k = 1, 2, · · · , ntrain and then iden-

tifying parameters θ = (0.0234, 0.1586,−0.4169, 1.2344)
T

by LS. Update θ by

RLS in equation (8) until θ is convergent to (−1.2082, 0.3686,−0.0702, 0.3003)
T

. Then we fix parameters θ = (−1.2082, 0.3686,−0.0702, 0.3003)
T

and fit the
unknown high order function in equation (7) by LSTM with FRA.
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5.2 Results of demand forecasting

We train LSTM by the method mentioned earlier in this paper with training
data set and then test online with test data set. In figure 3 we can see that the
error between actual demand and its prediction is in [−200, 400]kVA, and we can
forecast the accurate trend when the actual demand exceeds its limitation via
the method mentioned in this paper. Figure 4 shows the electric power prediction
results and it can be accepted. Both the errors of demand and electric power are
Gaussian white noise.
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Fig. 3: Results of demand forecasting
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Fig. 4: Results of power forecasting
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Results of RMSE, MASE, DS, TPR and TNR with LSTM and RBF as
unknown high order function are shown in table 2. From table 2 we can see that
the unknown high order function v(k) fitted by LSTM with FRA mentioned
earlier is with the best performance for demand forecasting in this paper. By
LSTM the trend forecasting accuracy is up to almost 90% and we can judge
whether it is necessary to turn off or turn on the FMF by it.

Table 2: Results of demand forecasting with LSTM and RBF

RMSE MASE DS TPR TNR

LSTM 26.1457 0.016 93.76 88.69 91.75
RBF 33.9494 0.028 89.39 84.61 85.21

In figure 5 the probability distribution for the predictive error of electric
power and auto-correlation coefficient curve of the predictive error of demand
are shown. From the probability distribution curve we can see that the error
equals to zero in proportion as 2.5% and auto-correlation coefficient curve of the
predictive error of demand shows the errors are less auto-correlation.
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Fig. 5: Results of demand forecasting

6 Conclusion

For demand and its tend forecasting the most difficulty is there is too munch
unknown information in FMSP, and we solve this by adding an unknown high
order function v(k) to a linear model. The main work in this paper is to find a
method to improve the predictive accuracy of demand and its tend, and we use
LSTM with FRA finally for 2 reasons:
(1)LSTM is a kind of deep network and it can improve the accuracy by this
structure;
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(2)FRA can accelerate the network training speed and avoid calculating the
pseudo-inverse of information matrix in network.

We can see that the method mentioned in this paper has the best perfor-
mance by comparing with RBF generally. We may need a new model which can
describe the FMSP better in the future. Maybe a multi-steps prediction model
and algorithm will be used for improving the predictive accuracy of demand and
its tend.
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