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Abstract

Autonomous vehicles (AV) have the potential of not
only increasing the safety, comfort and fuel efficiency
in a vehicle but also utilising the road bandwidth more
efficiently. This, however, will require us to build an
AV control software, capable of coping with multiple
sources of uncertainty that are either preexisting or in-
troduced as a result of processing. Such uncertainty can
come from many sources like a local or a distant source,
for example, the uncertainty about the actual observation
of the sensors of the AV or the uncertainty in the environ-
ment scenario communicated by peer vehicles respec-
tively. For AV to function safely, this uncertainty needs
to be taken into account during the decision making pro-
cess. In this paper, we provide a generalised method for
making safe decisions by estimating and integrating the
Model and the Data uncertainties.

1 Introduction

In an AV’s software pipeline, the uncertainty arising
from various sources is critical for safe decision mak-
ing. Due to the recent advancement in Machine Learn-
ing (ML) techniques, especially Neural Networks (NN),
the software pipeline of an AV is heavily dependent
on data related to its environment and this data comes
from the sensors. The key data sources in the software
pipeline of an AV are the LIDAR, RADAR, GPS, cam-
era, etc. As these sources are prone to measurement
fluctuations, there is always some uncertainty or noise
in the data which they provide, for example, uncertainty
due to variation in sensor resolution, internal sensor
noise, measurement fluctuations caused by changes in
the weather like rain, dust, etc. This gives rise to un-
certainty about how the sensor data corresponds to the
ground truth. Although recent advancements in sensor
technology have greatly reduced such inaccuracies, they
still remain of significant concern (Schwarting, Alonso-
Mora, and Rus 2018) (McAllister et al. 2017).

In the software pipeline of a typical AV, the percep-
tion task is heavily dependent on data and advanced ML
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model techniques, both of which are prone to uncer-
tainty. This uncertainty can lead to incorrect predictions
and therefore, jeopardize the safety of the AV. Hence,
for the safety of an AV, it becomes imperative that we
incorporate these uncertainties in the decision making
process. (Macfarlane and Stroila 2016)

One recent ML technique, known as the Convolu-
tional Neural Network (CNN), has been widely adopted
across both the industry and the research, primarily be-
cause of its at par human level accuracy in dealing with
various image recognition challenges and for providing
robustness to the Data and Model Uncertainty. (CNN
are robust to large variation in input data). The percep-
tion task of an AV also utilises CNN techniques for vari-
ous classification and object detection tasks. (Stallkamp
et al. 2012)

For a safety critical application like an AV, it becomes
imperative that in perception tasks, such CNN models
not only have high accuracy but are also able to es-
timate and utilise the Data and Model Uncertainty for
decision making. Recent advances in the area of Prob-
abilistic Convolutional Neural Networks (PCNN) have
provided a way to estimate the Data and Model Uncer-
tainty for object classification. (McAllister et al. 2017)

Data Uncertainty arises from sensor noise or mea-
surement fluctuations caused by changes in weather
conditions like rain, dust, etc., whereas, Model Uncer-
tainty arises because the ML models learn from data
and are not explicitly programmed to perform certain
tasks (Kendall and Gal 2017). Like any other ML tech-
nique, CNN are also inherently uncertain because the
model they have learned is always an imperfect repre-
sentation of the complex world (Gauerhof, Munk, and
Burton 2018).

Bayesian Networks (BN) are an effective technique
for decision making under uncertainty, and are utilised
heavily for such tasks across domains (Koller and Fried-
man 2009). However, it has not yet been shown how
to use BN to estimate and utilise uncertainties arising
specifically from tasks like classification or object de-
tection.

In this paper, we present a method that addresses the
challenge of managing the uncertainty from PCNN by
using BN for decision-making. Our method links the



outputs from a PCNN to a predefined BN. At runtime,
the output from the PCNN is used as evidence for nodes
of the BN. This allows us to estimate the probability of
being in a certain state while taking into account uncer-
tainties arising at runtime. These state probabilities can
be used to ensure that safe decisions are taken.

2 Background and related works

The challenges of decision making in an AV, which
is safety critical in nature, is that they require ro-
bust guarantees to assure safety, security, assurance
and other dependable characteristics (Burton, Gauer-
hof, and Heinzemann 2017) (Gauerhof, Munk, and Bur-
ton 2018). Some of the recent work which tries to
bridge various decision making techniques with the
safety of an AV have shown promising results, for
example, Papadoulis et al. (Papadoulis, Quddus, and
Imprialou 2019) proposed a runtime decision mak-
ing control algorithm for AV. The algorithm supported
both lateral and longitudinal decision making and was
shown to improve road safety by reducing road con-
flicts. For safer decision making in an AV, Furda et al.
(Furda and Vlacic 2011) used Petri net for choosing
a safe manoeuvre and Multi Criteria Decision Making
(MCDM) model for improving comfort and efficiency
under multiple criteria. Katrakazas et al. (Katrakazas,
Quddus, and Chen 2019) proposed the usage of Dy-
namic Bayesian Networks (DBN) to enhance the risk
assessment for AV. In order to increase the safety of au-
tomated driving, DBN were used to estimate the risk
of collision by providing comprehensive reasoning for
unsafe driving behaviour.

Though these techniques yield good results, none of
these solutions address how to estimate uncertainties
arising from perception tasks, or how to take these un-
certainties into account during the decision making pro-
cess.

Work done by (Kabir et al. 2019) tries to utilise un-
certainties during runtime in an AV by proposing a con-
ceptual framework for runtime safety analysis using BN
and State Machines (SM) in a Platooning Scenario. BN
proposed in this architecture are used to address issues
of uncertainty in data and to produce runtime proba-
bilistic confidence of being in a certain state. However,
the authors do not discuss the methods used for complex
tasks like object detection. For example, in their frame-
work, for detecting speed from road signs, they depend
on external sources such as roadside infrastructure. It is
therefore not clear how various uncertainties can be cap-
tured. In our work, we extend this framework to show
how these uncertainties can be estimated at runtime and
integrated into a BN for safe decision making.

3 Proposed Method

Using (Kabir et al. 2019) work as a reference for our
proposed method, at design-time, we model the failure
behaviour of the system as a SM. The states of the SM
are based on a detailed study of both the environment

in which the AV system needs to function and the pos-
sible hazards and failures that the AV may encounter.
SM have been extensively used to model the failures
and faults of a complex system into a chain of simpler
states.

Like (Kabir et al. 2019), we use an executable BN,
which can be used at runtime to produce the probability
of being in a certain state. BN provide a very powerful
way to infer the relationship between a large number of
random variables which are represented in the form of
a Directed Acyclic Graph (DAG). BN also allow us to
factor large joint probability distributions by capturing
the independence among various random variables.

In (Kabir et al. 2019) framework, any safety failure
in the system is defined using a SM and then an exe-
cutable BN is used to generate the probability of being
in certain state. We extend on this framework by propos-
ing a method for estimating both the Data and the Model
Uncertainties from the classification task and utilizing
them for decision making using the BN. We use PCNN
to provide estimates of the Data and the Model Uncer-
tainty along with the Label Prediction for the classifica-
tion task.

PCNN produces probabilistic understanding of Deep
Learning models by inferring the distribution over NN
parameters, i.e., Weights and Biases. This distribution
over NN parameters allows us to estimate the Model
and Data Uncertainty. This estimate of Model and Data
Uncertainty are added to get a single value for Total
Uncertainty, which is then normalised using logistic
regression to present probability of correct classifica-
tion (Gal and Ghahramani 2015). This probability be-
comes the runtime evidence for the nodes of the BN.
In the next section, we discuss in detail, how PCNN is
used to estimate the Model and the Data Uncertainty.

3.1 Estimating Model Uncertainty

Model Uncertainty tells our ignorance about which
model parameter best fits the underlying data. In the
case of NN, where the model training (learning) pro-
cess is stochastic in nature, there can be different values
for model parameters leading to similar prediction accu-
racy. Therefore, using PCNN, we can estimate our igno-
rance regarding which model parameters generated our
underlying data (Kendall and Gal 2017). Owing to their
large parameter space, estimating Model Uncertainty is
a non-trivial task, especially in case of NN (Hinton and
van Camp 1993). In addition, as discussed in the pre-
vious section, similar to other ML techniques, any NN
based technique is also inherently uncertainty. Hence,
for safety critical applications, we need methods to es-
timate this uncertainty and use it for safe decision mak-
ing.

In a PCNN, exact inference of posterior distributions
over a large parameter space, like a Kernel in PCNN, is
intractable. Possible methods which exist consist of the
Sampling Methods, the Variational Inference Methods
or the Ensemble Methods (Graves 2011) (Osband et al.
2016). Sampling Methods and Ensemble methods, both



suffer from very high latency in real time usage, for ex-
ample, when used in an AV. A recent work proposed
(Gal and Ghahramani 2015) Random Neuron Dropout
during runtime as a method for Approximate Varia-
tional Inference. This method only requires dropouts in
Forward Passes at runtime. The average stochastic For-
ward Passes are then interpreted as Bernoulli Approxi-
mate Variational Inference. Additionally, to handle any
latency issues, PCNN can be deployed for runtime in a
distributed manner.

In a given dataset, the input feature space is defined
by X = [x1, .., xn], and the output to be predicted is de-
fined as Y = [y1, .., yn]. The usage of dropouts at run-
time allows us to use the distribution over Weights and
Biases which can later be used to calculate the Mean of
the Predictive Posterior Distribution (y∗) for any new
data (x∗) by taking the Mean of the SoftMax output
Score for N number of Forward Passes. Finally, the
Model Uncertainty can be captured in the form of Shan-
non Entropy (SE) (Feng, Rosenbaum, and Dietmayer
2018).

3.2 Estimating Data Uncertainty

Data Uncertainty captures the noise which is inherently
present in the sensor data. PCNN help us to quantify
the noise in the data as it can be trained to learn this
noise in an unsupervised manner. This uncertainty in the
data, which is learned by modifying the loss function of
PCNN, tells us the noise inherently present in the data
(Leung and Bovy 2019) (Kendall and Gal 2017). For
classification tasks, in the output layer, in addition to
the number of neurons corresponding to the number of
classes, an extra neuron is added and the loss function is
modified to incorporate for this additional neuron. This
allows us to train the extra neuron in an unsupervised
manner to learn the uncertainty in the data.

Unlike Model Uncertainty, we do not need to run
multiple Forward Passes to capture Data Uncertainty.
Also, in case of the latter, uncertainty cannot be reduced
using additional data.

3.3 Decision Making using BN

Figure 2, represents the BN for the runtime decision
making of the Platooning System. The inference is
based on several parameters and inputs, i.e., the distance
between the Follower and the Leader, the safe distance,
the threshold (proximity in terms of distance), allowed
error in distance, the current speed, the speed limit, the
validity of speed values, and the detection quality of the
Leader and the Follower. The system state is estimated
based on the values of the previous parameters and in-
puts.

For the “Speed Limit” and the “Valid Speed Limit”
nodes of the BN, evidence comes for the PCNN. For
all other nodes we have generated data artificially. We
generated various test case scenario and checked the
working of the BN when using the Data and Model Un-
certainty from the PCNN. As a simple rule, the state
with the highest probability is selected, however, in

cases where the probabilities of two or more different
states are equal, to avoid a deadlock, the system de-
signer can define a set of rules. In cases where two
states have highest and approximately equal probability,
safety goals can be ensured by using predefined rules to
choose a particular state. For instance, the more safety-
critical state can be chosen in the case of a tie.

4 Experiments

In this section, we describe the implementation of our
proposed method by using a conceptual platooning case
study used by (Kabir et al. 2019). We extend the case
study by using PCNN for capturing the Data and Model
Uncertainty. We also perform an experiment to test
whether or not the safety of our system is ensured when
we utilise the uncertainty arising from both the Data and
the Modeling tasks.

4.1 Platooning Case Study

The case study we use is a Platooning Scenario consist-
ing of two vehicles, the Follower and the Leader. These
vehicles operate in Cooperative Adaptive Cruise Con-
trol (CACC), tasked to ensure that a Safe Distance is
maintained between the two vehicles. For the Platoon-
ing Scenario, the following conditions (Reich 2016)
must be ensured and verified at runtime:

– Condition 1: d ≥ ds, where d and ds are the dis-
tance between the two vehicles and the minimum safety
distance respectively.

– Condition 2: Current Vehicle Speed ≤ Speed
Limit, where former is the current speed of the vehicles
and the latter is the speed limit on the road.

– Condition 3: Any ambiguity arising while check-
ing the validity of the input data, is modeled to ensure
the safety of the system and the system utilises only cor-
rect input data for decision making.

A SM is used to model the failure behaviour (Machin
et al. 2016) of the Platooning System. Based upon the
three conditions above, the States and corresponding
Actions, to ensure the safety of the system, have been
summarised in Table 1 and the SM diagram in Figure 1.

An executable BN can be created to produce the sys-
tem’s probability of being in a certain SM state. The
BN model and the PCNN used, as shown in Figure 2,
contain both the quantitative and the probabilistic safety
parameters for inferring the system’s state at runtime.
The BN nodes of “Speed”, “Speed Limit”, “Distance
from Follower”, “Safe Distance”, are all quantitative
parameters. These quantitative parameters are used for
checking the safety condition related to Speed and Dis-
tance, as mentioned in the SM. The “Leader detected by
Follower”, “Follower detected by Leader” and “Valid
Speed Limit”, are all probabilistic parameters used for
checking the validity of the input data.
The safety of the Platooning Scenario, as defined in the
SM in Figure 1, is based on three conditions, i.e., Safe
Speed, Safe Distance and Ambiguity. These condition
are also represented in the BN. The “Speed Check”



Figure 1: State Machine for the Platooning case study (Kabir et al. 2019)

State Description Action

S0 The safety condition of
safe distance is fulfilled
and the Follower is
driving within the speed
limit of the road.

The state is safe,
therefore, continue
driving.

S1 The safety condition of
safe distance is fulfilled
but the Follower is
driving above the speed
limit of the road.

Decelerate to fall within
the speed limit.

S2 The safety condition of
safe distance is not
fulfilled and the Follower
is driving within the
speed limit of the road.

Decelerate to increase
the distance with the
Leader until safety
condition is fulfilled.

S3 The safety condition of
safe distance is not
fulfilled and the Follower
is driving above the
speed limit of the road.

Decelerate to achieve a
safe distance with the
Leader and fall within
the speed limit.

S4 The safety condition of
safe distance is not
fulfilled, the Follower is
driving above the speed
limit of the road, and is
driving too close to the
Leader.

Brake to stop driving.

S5 Safety condition of safe
distance and/or speed
limit cannot be verified.

Switch to ACC mode.

Table 1: Various States and corresponding Actions in
the Platooning Scenario (Kabir et al. 2019)

node is responsible for producing probabilistic guar-
antees of maintaining a safe speed. This is achieved
through two child nodes, namely, “Valid Speed Limit”,
representing a certificate about the validity of the speed
limit and “Speed Within Limit”, monitoring the legality
of the vehicle’s current speed by comparing it with the
current speed limit. Similarly, “IsSafe” is responsible
for producing probabilistic guarantees of maintaining
Safe Distance between the Leader and the Follower. The
condition for Ambiguity is monitored by the “Detection
Quality” node, which provides a guarantee about the de-
tection by both the Leader and the Follower vehicles.
In (Kabir et al. 2019) the validity of the estimate of
the speed limit is determined by getting a “certificate”
of the speed limit from the external infrastructure. In-
stead, in our method, we assess the validity of the de-
tected speed limit by using uncertainty estimates from
the PCNN.

4.2 Implementation of PCNN

In this section we discuss the implementation of the
PCNN for the Platooning Case Study. For the platoon-
ing working example, we provide evidence of speed de-
tected from the speed sign board, which is used in the
“Speed Limit” node of the BN. Also, the probabilis-
tic confidence of this prediction is used in the “Valid
Speed Limit” node of the BN. The PCNN used was
trained using a Traffic Sign Dataset where traffic signs
were detected from images and uncertainty in the results
was quantified using PCNN discussed earlier. The Ger-
man Traffic Sign Recognition Benchmark Dataset (Stal-
lkamp et al. 2012) (Houben et al. 2013) is a well estab-



Figure 2: Bayesian Network from (Kabir et al. 2019) framework with PCNN input; Test scenario B3

lished benchmark in the area of automatic traffic sign
recognition. This dataset consists of about 50,000 traf-
fic sign images reflecting variations in the visual ap-
pearances of signs because of weather conditions, oc-

clusion, rotations, illumination, distance, etc. It consists
of 43 classes having unbalanced class frequencies. By
default, it is divided into a Training Dataset and a Test-
ing Dataset with 39209 training image and 12630 test-



ing images.
For easy implementation of PCNN, we used AstroNN
API, which is built on top of Keras and Tensorflow.
For estimating Model Uncertainty, the runtime dropout
is implemented by ”MCdropout” layer of the AstroNN
API (Leung and Bovy 2019). The dropout rate used was
20 percent. The Data Uncertainty is estimated in the
last layer of the architecture as shown in Table 2 and is
represented as a ”varianceoutput” layer in the AstroNN
API. Speed Sign Detection and the Total Uncertainty in
predictions is the output from PCNN and these become
the evidence for the nodes of BN, i.e., “Speed limit” and
“Validity of speed limit”.

The simple model with 20 epochs was producing a
training accuracy of above 95 percent for multiple runs.
Also, the test data accuracy was 90 percent and above.
Fig 3a) shows how we have high accuracy correspond-
ing to lower value of Total Uncertainty.

The uncertainty measures produced by PCNN are nu-
meric values and not a probability distribution as is re-
quired for probabilistic inference in BN. To address this
issue, we convert the uncertainty measure, i.e., the sum
of the Model and Data Uncertainty, into a probability of
correct classification by using a logistic regression and
it is implemented with a popular pymc3 library. The re-
sults in Figure 3b), show how low uncertainty correlates
highly with the probability of correct prediction.

Layer Output Shape Parameters

Input Layer (None,40,40,3) 0

Conv2D (None,40,40,8) 224

Activation (None,40,40,8) 0

MCDropout (None,40,40,8) 0

Conv2D (None,40,40,16) 1168

Activation (None,40,40,16) 0

MCDropout (None,40,40,16) 0

MaxPooling2D (None,10,10,16) 0

Flatten (None,1600) 0

Dense (None,256) 409856

MCDropout (None,256) 0

Dense (None,128) 32896

Activation (None,128) 0

Dense (None,43) 5547

Dense (None,43) 5547

varianceoutput(Dense) (None,43) 5547

Table 2: Probabilistic Neural Network Architecture
used in the Experiment

The remaining setup and assumptions for the experi-
ment remain the same as used by (Kabir et al. 2019).

In the next section, we discuss the results we per-
formed to show how our approach can incorporate data
and model uncertainties to ensure the overall safety of

the Platooning System.

5 Results

To test the working of the proposed method, we gener-
ated two Test Scenarios. Scenario A, where the evidence
provided to “Validity of speed limit” is considered to
be 100% for each test case, and Scenario B, where the
the probabilistic uncertainty output from PCNN is used.
The results for the tests performed for each scenario are
summarised in Table 3 and Table 4.

Parameter A1 A2 A3 A4

Distance by Follower(m) 5.0 3.0 3.0 2.0

Distance by Leader (m) 5.5 3.5 3.5 2.5

Safe distance (m) 4.0 4.0 4.0 4.0

Too close distance (m) 2.0 2.0 2.0 2.0

Allowed error in distances (m) 2.0 2.0 2.0 2.0

Speed (miles/h) 55 45 55 55

Speed limit (miles/h) 50 50 50 50

Validity of speed limit 100% 100% 100% 100%

Leader detected by follower 100% 100% 100% 100%

Follower detected by leader 100% 100% 100% 100%

State Estimated S1 S2 S3 S4

100% 100% 100% 100%

Table 3: Test Cases in Scenario A and corresponding
results

Firstly, we discuss the results obtained for test cases
in Scenario A, where the evidence provided to “Validity
of speed limit” is considered to be 100% for each of the
following test case:

– Test Case A1: the “Speed” of the Follower is more
than the “Speed Limit” and all other safety conditions
are met, therefore, State S1 (Decelerate to fall within
the speed limit) is selected with 100% probability.

– Test Case A2: the “Distance detected by Leader”
and “Distance detected by Follower” is less than the
“Safe distance”, and all other safety conditions are met,
therefore, State S2 (Decelerate to increase the distance
with the Leader until safety condition is fulfilled) is se-
lected with 100% probability.

– Test Case A3: the “Distance detected by Leader
and “Distance detected by Follower” is less than the
“Safe distance” and “Speed of the Follower” is more
than the “Speed Limit”, therefore, State S3 (Decelerate
to achieve a safe distance with the Leader and fall within
the speed limit) is selected with 100% probability.

– Test Case A4: the Follower is driving above the
“Speed Limit” and is also “Too close” to the Leader
therefore, State S4 (Brake to stop driving) is selected
with 100% probability.



Figure 3: a) The plot shows Total Uncertainty vs Accuracy for the test data, b) The plot shows output of logistic
regression as Total Uncertainty vs Probability of Correct Classification

Parameter B1 B2 B3 B4

Distance by Follower(m) 5.0 5.0 5.0 5.0

Distance by Leader (m) 4.0 4.0 4.0 4.0

Safe distance (m) 2.0 2.0 2.0 2.0

Too close distance (m) 2.0 2.0 2.0 2.0

Allowed error in distances (m) 2.0 2.0 2.0 2.0

Speed (miles/h) 40 40 40 40

Speed limit (miles/h) 50 50 50 50

Validity of speed limit 100% 70% 40% 0%

Leader detected by follower 100% 100% 100% 100%

Follower detected by leader 100% 100% 100% 100%

State Estimated S0 S0 S5 S5

100% 70% 60% 100%

Table 4: Test Cases in Scenario B and corresponding
results

In Scenario B, all the safety conditions, as described
in the SM, are met, but instead of always considering
the probability of the “Valid Speed Limit” detected as
100%, the probabilistic uncertainty output from PCNN
is used. As seen below, the different test cases results in
both a change in the probability of the output state and
the output state selected:

– Test Case B1: all the safety conditions are met, and
there is 100% confidence in the validity of the speed
limit, therefore State S0 (The state is safe, therefore,
continue driving) is selected with 100% probability.

– Test Case B2: as in Test Case B1, the safety condi-
tions are met and the evidence provided to the nodes in
the BN are the same except for the “Valid Speed Limit”
node, which gets the normalised input from PCNN.
Here, the “Valid Speed Limit” node receives the prob-
ability of correct “Speed Limit” detected as 70%. We
see that the same final State S0 is selected, but with

70% probability. This result shows that with a sufficient
probability from the PCNN, even when probability is
less than the 100%, State S0 is correctly selected. This
ensures that even when some uncertainty is observed,
the car is still able to move.

– Test Case B3: as in Test Cases B1 ad B2, most
of the safety conditions are met and the evidences pro-
vided to various nodes in a BN are the same, except for
the “Valid Speed Limit” node. Here, the “Valid Speed
Limit” node receives the probability of correct “Speed
Limit” detected as 40% and therefore, we see that State
S5 (Switch to ACC mode) is selected with 60% proba-
bility as the final output. Figure 2 shows that the state
having the highest probability, i.e., State S5 (Switch to
ACC mode), is selected. This represents the safest deci-
sion for this test case. Here, the output state selected
changes because of low confidence in the validity of
the speed limit (i.e. the evidence provided to the “Valid
Speed Limit” node is below 50%, which is in this case,
the acceptable safety threshold used in the BN). This
test case shows that if blind trust is put into the “Speed
Limit” detected from road sign boards, believing it to
be always 100% accurate, then that is likely to lead to
an unsafe output state. This was seen in the original im-
plementation of the platooning case study, and would
typically be the result if using advanced ML techniques
like NN.

– Test Case B4: similar to the test cases above, most
of the safety conditions are met, however, there is ab-
solutely no confidence in the validity of the speed limit
detected (“Validity of speed limit” is 0%) and therefore,
final State S5 (Switch to ACC mode) is selected with
100% probability.

The Test Scenarios A and B show that while us-
ing BN, the Model and the Data Uncertainty (provided
as normalised/probabilistic input to “Validity of speed
limit” node) have a huge influence on the probability
of the output state selected. The results show that our
method of using a PCNN, to estimate both the Model
and the Data Uncertainty, along with BN, enables us



to make safe decisions. Unlike deterministic models,
BN are capable of handling uncertainty in the input and
therefore are an better choice for handling uncertainty
generated from PCNN for making safe decisions.

6 Conclusion

In this paper, we have described how we can utilise the
estimated uncertainty, arising from data and complex
ML models, to improve safety in decision making. The
proposed method allows designers of AV to improve the
decision making process by integrating multiple sources
of uncertainty. The efficacy of the proposed approach
has been illustrated via an experimental analysis.
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