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Bearing-Only Formation Control with Pre-Specified

Convergence Time
Zhenhong Li, Hilton Tnunay, Shiyu Zhao, Wei Meng, Sheng Q. Xie, Senior Member, IEEE

and Zhengtao Ding, Senior Member, IEEE

Abstract—This paper considers the bearing-only formation
control problem, where the control of each agent only relies
on relative bearings of their neighbors. A new control law is
proposed to achieve target formations in finite time. Different
from the existing results, the control law is based on a time-
varying scaling gain. Hence the convergence time can be arbi-
trarily chosen by users, and the derivative of the control input
is continuous. Furthermore, sufficient conditions are given to
guarantee almost global convergence and interagent collision
avoidance. Then a leader-follower control structure is proposed
to achieve global convergence. By exploring the properties of the
bearing Laplacian matrix, the collision avoidance and smooth
control input are preserved. A multi-robot hardware platform is
designed to validate the theoretical results. Both simulation and
experimental results demonstrate the effectiveness of our design.

Index Terms—Bearing-only formation control, finite-time for-
mation control, prescribed-time consensus.

I. INTRODUCTION

Formation control, as an important realm of multi-agent

cooperative control, has been extensively studied in recent

decades [1]. In the literature (see, [2]–[9]), numerous control

laws have been designed to achieve target formations with

the assumption that relative positions or distances between

agents are measurable. However, this assumption is not always

easy to satisfy, especially when agents have no access to an

external localization system [10]. Recently, the bearing-only

control laws have been proposed and attracted much attention

(see, [11]–[18]). Instead of relative positions and distances,

target formations of bearing-only control laws are defined by
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relative bearings that can be obtained by vision sensors [19] or

wireless sensor arrays [20]. Due to the accessibility of relative

bearings, bearing-only control laws provide potential solutions

to achieve formation control merely using onboard sensing.

In two-dimensional space, some early results on bearing-

constrained formation control can be found in [11], [12]. Based

on the parallel rigidity theory, the authors in [11] introduce the

bearing constrained rigidity matrix and propose a control law

with locally asymptotic stability. Although the target formation

is defined by relative bearings, the measurements of relative

positions are still required. This requirement is then removed

by introducing a decentralised position estimator [12]. To

achieve bearing-only formation control in high-dimensional

space, the authors in [13] extend the bearing rigidity theory to

arbitrary dimensions and propose a control law for infinitesi-

mally bearing rigid formations with almost global asymptotic

stability. To further characterize the algebraic properties of

bearing rigid formations, the bearing Laplacian matrix is

proposed in [14]. This matrix can be used to examine the

uniqueness of target formations in arbitrary dimensions. Based

on this powerful tool, a new bearing-only control law is

designed in the recent work [15], and global exponential

convergence is guaranteed.

Due to the time requirement of many formation control

tasks, convergence time is regarded as an important perfor-

mance indicator. To achieve faster convergence rate, finite-time

control has been wildly studied in multi-agent systems (see,

[8], [21]–[26]). However, the intrinsic nonlinearity of bearing

vectors makes the finite-time convergence analysis of bearing-

only control nontrivial. A few works have been done for

the finite-time bearing-only formation control (see, [16]–[18]).

The authors in [16] use signum functions to suppress relative

bearing errors and hence achieve finite-time convergence.

However, the results can only be applied to cyclic formations.

Instead of signum functions, the controllers in [17], [18] use

fractional power bearing feedback and achieve alomost global

convergence for infinitesimally bearing rigid formations. How-

ever, the convergence time of aforementioned results are all

determined by initial conditions, and hence cannot be pre-

specified by users. Moreover, the use of signum functions

and fractional power feedback will lead to nonsmooth control

input. In other words, bearing-only formation control in pre-

specified finite time remains an open problem.

In this paper, we investigate bearing-only formation control

with pre-specified convergence time. A new control law is

proposed for leaderless formation control by introducing a

time-varying gain to the regular feedback of relative bearings.
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Sufficient conditions are derived to achieve almost global

finite-time convergence while avoiding collisions. Different

from the results in [16]–[18], the convergence time can be pre-

specified and arbitrarily chosen by users. Furthermore, since

no fractional power feedback is used, the control input is C1

smooth everywhere. The design of time-varying gain is partly

inspired by the work on finite-time regulation of nonlinear

systems [27]. However, different from relative position based

formation control, for bearing-only formation control, relative

bearing vectors are unit vectors, i.e., a smaller position error

does not imply a smaller bearing error. This phenomenon

makes it difficult to establish the boundedness of control input

especially when the time-varying gain is unbounded, which

implies the stability analysis method in [27] can not be directly

applied to our case. Then we design a leader-follower control

structure for our proposed control law. By further exploring

the properties of bearing Laplacian matrix, we prove that, with

the leader-follower control structure, the global convergence

can be achieved in pre-specified finite time while avoiding the

collisions (rather than the almost global convergence in [13]).

Finally, a multi-robots hardware platform is designed, and both

simulation and experimental results verify the effectiveness of

the proposed control laws.

The remainder of the paper is organized as follows. Section

II introduces some necessary preliminaries and problem setup.

Sections III and IV presents the main results on the control

law design and stability analysis for leaderless case and leader-

follower case, respectively. Simulation results and experiment

validation are given in Sections V and VI. Conclusions are

drawn in Section VII.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notations

Let R>0 denote the set of positive real numbers. In ∈ R
n×n

denotes the identity matrix, and 1n denotes a n-dimensional

column vector with all elements equal to one. For a series

of column vectors x1, · · · , xn, col(x1, · · · , xn) represents a

column vector by stacking them together; span{x1, · · · , xn}
represents the linear span of the vectors. For a matrix A, A >
0 (or A ≥ 0) means that A is positive definite(or positive

semi-definite); λi(A) is the ith eigenvalue of A; null(A) and

range(A) are the null and range spaces of A, respectively.

For a series of matrices A1, · · · , An, diag(Ai) denotes the

block diagonal matrix with diagonal blocks A1, · · · , An. ‖·‖
represents the Euclidean norm of a vector or the spectral norm

of a matrix. ⊗ denotes the Kronecker product of matrices.

B. Preliminaries

Consider a group of n mobile agents in R
d (n ≥ 2

and d ≥ 2). Let pi(t) ∈ R
d be the position of the agent

i at time t. The configuration of the agents is denoted as

p = col(p1, · · · , pn) ∈ R
dn. The interaction among agents

is described by an undirected graph G = {V, E}, where

V = {1, · · · , n} is the set of vertices and E ⊆ V × V
is the set of edges. The edge (i, j) ∈ E if agent i can

measure the relative bearing of agent j. Since the graph is

undirected, we have (i, j) ∈ E ⇔ (j, i) ∈ E . The formation,

Fig. 1. Geometric relationship between gij , ġij , eij and ėij .

denoted as (G, p), is G with each vertex i ∈ V mapped to

the point pi. The set of neighbours of agent i is denoted as

Ni = {j ∈ V : (i, j) ∈ E}. An orientation of an undirected

graph is the assignment of a direction to each edge. An

oriented graph is an undirected graph with an orientation. Let

m be the number of undirected edges. Then the oriented graph

has m directed edges. The incidence matrix of the oriented

graph is denoted as H ∈ R
m×n, where [H]ki = −1 if vertex

i is the tail of edge k; [H]ki = 1 if vertex i is the head of

edge k; and [H]ki = 0 otherwise. For an undirected connected

graph, it holds that H1n = 0 and rank(H) = n− 1 [28].

For edge (i, j), we define the edge vector and the bearing

vector respectively as

eij := pj − pi, gij :=
eij
‖eij‖

,

where gij represents the relative bearing of pj with respect to

pi. Obviously, we have eij = −eji, gij = −gji and ‖gij‖ = 1.

For any nonzero vector x ∈ R
d, define the operator P : Rd →

R
d×d as

Px := Id −
xxT

xTx
,

where Px is an orthogonal projection matrix that can geomet-

rically projects any vector onto the orthogonal complement

of x. Note that Px is positive semi-definite, P 2
x = Px and

null(Px) = span(x). It follows that Pxy = 0, ∀y ∈ R
d ⇔

y is parallel to x. Since Px can be used to check whether two

bearing are parallel, it is widely used in bearing-based control

[14], [29]. Direct evaluation gives

ġij =
Pgij

‖eij‖
ėij .

Together with gTijPgij = 0, we have that gTij ġij = 0 and

eTij ġij = 0. Fig. 1 shows the geometric relationship between

gij , ġij , eij and ėij when ‖eij‖ < 1.

Suppose (i, j) corresponds to the kth directed edge in the

oriented graph where k ∈ {1, · · · ,m}. The edge and bearing

vectors of kth directed edge is defined as

ek := eij = pj − pi, gk :=
ek
‖ek‖

.

Similarly we have gTk ġk = 0 and eTk ġk = 0. It follows from

the definition of H that e = H̄p, where e = col(e1, · · · , em)
and H̄ = H ⊗ Id.
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To characterize the properties of a formation, we introduce

the bearing Laplacian matrix B(G, p) ∈ R
dn×dn with the

(i, j)th block of submatrix as [14]

[B(G, p)]ij =







0d×d, i 6= j, (i, j) /∈ E ,
−Pgij , i 6= j, (i, j) ∈ E ,
∑

j∈Ni
Pgij , i = j, i ∈ V.

To simplify the notation, we use B instead of B(G, p). Ac-

cording to the definition of bearing Laplacian matrix, we have

that B ≥ 0, Bp = 0, B1dn = 0 and B = H̄Tdiag(Pgk)H̄ .

Letting (G, p) and (G, p′) be two formations with the same

bearing Laplacian matrix, we give the following definition.

Definition 1 (Infinitesimal Bearing Rigidity [13]). A formation

(G, p) is infinitesimally bearing rigid if p′ − p corresponds to

translational and scaling motions ⇔ B(p′ − p) = 0.

The above definition implies that an infinitesimally bearing

rigid formation is uniquely determined up to a translation and

a scaling. Note that the definition of Infinitesimal Bearing

Rigidity in [13] is based on bearing rigidity matrix. In this

paper, Definition 1 is based on the bearing Laplacian matrix

B.

Lemma 1 ( [14]). For an infinitesimally bearing rigid forma-

tion, the following properties hold

(i) null(B) = span{1⊗ Id, p}.

(ii) rank(B) = dn− d− 1, i.e., the eigenvalues of B repre-

sented as λ1(B) = · · · = λd+1(B) = 0 < λd+2(B) ≤
· · · ≤ λdn(B).

(iii) Partition B as

B =

[Bll Blf

BT
lf Bff

]

, (1)

where Bll ∈ R
dnl , Blf ∈ R

dnf , nl and nf ∈ R>0

satisfying nl + nf = n. Then Bff > 0 if nl ≥ 2.

The above lemma bridges the gap between rigidity of a

formation and algebraic properties of the bearing Laplacian

matrix, which plays an important role in the stability analysis.

Lemma 1 (iii) implies that if more than two points of an

infinitesimally bearing rigid formation are fixed then the

configuration p is uniquely determined. More results on the

uniqueness of infinitesimally bearing rigid formation are given

in [14].

C. Problem Statement

The dynamics of mobile agents are

ṗi = ui, i ∈ V,
where ui ∈ R

d is the velocity input of agent i. The main

objective of this paper is given below.

Problem 1. Design control input for agent i ∈ V based on the

bearing vectors {gij(t)}j∈Ni
such that p → p∗ for t → t0+T ,

and p = p∗ for t ≥ t0 +T , where p∗ is a target configuration

and T ∈ R>0 is a pre-specified convergence time.

The following assumption holds throughout this paper.

Assumption 1 (Target Formation). The target formation

(G, p∗) is infinitesimally bearing rigid.

Remark 1. Assumption 1 is commonly used to build the

connection between the target configuration p∗ and the target

bearing vectors {g∗ij}(i,j)∈E (e.g., [14], [15]). Then Problem

1 can be transferred into a stabilization problem of bearing

vectors in pre-specified finite time.

III. BEARING-ONLY LEADERLESS FORMATION CONTROL

In this section, we propose a bearing-only leaderless control

law to solve Problem 1. The control law of each mobile agent

is designed as

ui = −(a+ b
µ̇

µ
)
∑

j∈Ni

Pgijg
∗
ij , i ∈ V, (2)

where a, b ∈ R>0 are positive feedback gains, µ : R>0 → R>0

is a time-varying scaling function defined as

µ(t) =

{
Th

(t0+T−t)h
, t ∈ [t0, t0 + T ) ,

1, t ∈ [t0 + T,∞) ,
(3)

and h ∈ R>0 is a user-chosen parameter. Note that

µ̇(t) =

{
h
T
µ(1+ 1

h
), t ∈ [t0, t0 + T ) ,

0, t ∈ [t0 + T,∞) ,

where we use right-hand derivative of µ(t) at t = t0 + T
as µ̇(t0 + T ). The time-varying scaling function µ(t) plays a

key role in achieving pre-specified finite-time control. For any

c ∈ R>0, we have µ−c(t0) = 1, limt→(t0+T )− µ−c(t) = 0,

and µ(t)−c is monotonically decreasing on [t0, t0 + T ).
Since control law (2) is based on an implicit assumption

that gij , ∀(i, j) ∈ E are well defined, we make the following

assumption.

Assumption 2 (Collision Avoidance). During the formation

evolvement, no neighboring agents collide with each other.

Assumption 2 is widely used in the existing formation

control results [30], [31], since it is nontrivial to analyze

the system convergence if collision avoidance is considered.

In this paper, we first analyze system convergence under

Assumption 2. Then we will present sufficient conditions

based on initial formation such that system convergence and

collision avoidance can be simultaneously guaranteed, and

hence the assumption could be dropped.

To analyze the finite time convergence of the closed-loop

system, we introduce the following lemma.

Lemma 2. Consider a continuously differentiable function y :
R → R≥0 satisfying that

ẏ(t) ≤ −αy − β
µ̇

µ
y, t ∈ [t0,∞) , (4)

where α, β ∈ R>0. Then, it follows that

y(t)

{

≤ µ−βe−α(t−t0)y(t0), t ∈ [t0, t0 + T ) ,

≡ 0, t ∈ [t0 + T,∞) .
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Proof: Multiplying µβ on both sides of (4), we get

µβ ẏ ≤ −αµβy − βµβ−1µ̇y.

Together with
d(µβy)

dt = βµβ−1µ̇y + µβ ẏ, we have that

d(µβy)

dt
≤ −αµβy,

which further implies that

µβy(t) ≤e−α(t−t0)µ(t0)
βy(t0)

=e−α(t−t0)y(t0), t ∈ [t0, t0 + T ) . (5)

From (5), we can obtain that y(t) ≤ e−α(t−t0)µ−βy(t0), ∀t ∈
[t0, t0 + T ). By the continuity of y and limt→(t0+T )− y(t) =
0, we know that y(t0 + T ) = 0, and furthermore from ẏ ≤ 0,

∀t ∈ [t0 + T,∞), we know that 0 ≤ y(t) ≤ y(t0 + T ), ∀t ∈
[t0 + T,∞) and that y(t) ≡ 0, ∀t ∈ [t0 + T,∞).

Before analysing the convergence, we first show some use-

ful properties of (2). Define centroid and scale of a formation

as p̄ := 1
n

∑n
i=1 pi and s :=

√
1
n

∑n
i=1 ‖pi − p̄‖2.

Lemma 3. Under Assumption 2 and control law (2), p̄ and

s are invariant. Furthermore, ‖pi(t)− pj(t)‖ ≤ 2s
√
n− 1,

∀i, j ∈ V , ∀t ≥ t0.

Proof: By following the analysis in [13, Theorem 9], it

can be proved that ˙̄p ≡ 0 and ṡ ≡ 0 , which implies the

invariance of p̄ and s.

Considering that pi − p̄ = −∑

j∈V,j 6=i(pj − p̄), we can

obtain that

‖pi − p̄‖2 =

∥
∥
∥
∥
∥
∥

∑

j∈V,j 6=i

(pj − p̄)

∥
∥
∥
∥
∥
∥

2

≤ (n−1)
∑

j∈V,j 6=i

‖pj − p̄‖2 ,

which further implies that ‖pi − p̄‖ ≤ s
√
n− 1, ∀i ∈ V , and

that ‖pi − pj‖ ≤ ‖pi − p̄‖+‖pj − p̄‖ ≤ 2s
√
n− 1, ∀i, j ∈ V ,

∀t ≥ t0.

Let δi = pi − p∗i , δ = col(δ1, · · · , δn), r = p − (1n ⊗ p̄),

r∗ = p∗−(1n⊗p̄∗) and s∗ =
√

1
n

∑n
i=1 ‖p∗i − p̄∗‖2. With the

control law (2), the dynamics of δ can be written in a compact

form as

δ̇ = (a+ b
µ̇

µ
)H̄Tdiag(Pgk)g

∗. (6)

Lemma 3 implies that the target centroid and the target scale

can be achieved by setting p̄(t0) = p̄∗ and s(t0) = s∗. To

further analyze the equilibriums of the closed-loop system (6),

we present the following lemma.

Lemma 4. Under Assumptions 1 and 2 and control law (2),

setting p̄(t0) = p̄∗ and s(t0) = s∗, the trajectory of δ evolves

on the surface of the sphere S = {δ ∈ R
dn : ‖δ + r∗‖ =

‖r∗‖}, and the closed-loop system (6) has two equilibriums

δ = 0 and δ = −2r∗. Moreover the equilibrium δ = −2r∗ is

unstable.

Proof: By Lemma 3, we can know that ‖r‖ =
√
ns(t0) =√

ns∗ = ‖r∗‖ . Since p̄ = p̄∗, we have δ = p − (1n ⊗ p̄) −
(p∗ − (1n ⊗ p̄∗)), and consequently ‖δ + r∗‖ = ‖r‖ = ‖r∗‖.

Hence the trajectory of δ evolves on the surface S .

Fig. 2. Geometric relationship between δ and the surface S.

Let δ̇i = (a + b µ̇
µ
)fi(δi) = −(a + b µ̇

µ
)
∑

j∈Ni
Pgijg

∗
ij

and f(δ) = col(f1(δ1), · · · , fn(δn)) = H̄Tdiag(Pgk)g
∗. The

equilibriums of (6) belong to S and satisfy f(δ) = 0. Then it

follows that

(p∗)Tf(δ) = (p∗H̄)Tdiag(Pgk)g
∗

=
m∑

k=1

‖e∗k‖ (g∗k)TPgkg
∗
k = 0.

Due to the fact that Pgk ≥ 0, we have gk = ±g∗k, ∀k =
1, · · · ,m. For the case gk = g∗k, by Assumption 1, the

formation with bearing constraints {g∗k}k=1,··· ,m is uniquely

determined up to a translation and a scaling. Together with the

centroid p̄ = p̄∗ and the scale s = s∗, the formation is uniquely

determined, i.e., we have p = p∗ and δ = 0. For the case

gk = −g∗k, similarly, we know that the formation with bearing

constraints {−g∗k}k=1,··· ,m, p̄ = p̄∗ and s = s∗, is uniquely

determined and has the same centroid, scale and shape with

(G, p∗). Furthermore, since ‖p− 1n ⊗ p̄∗‖ = ‖p∗ − 1n ⊗ p̄∗‖,

we can conclude that p = 1n ⊗ 2p̄∗ − p∗ and δ = −2r∗,

which further implies that the formation with δ = −2r∗ is

geometrically a point reflection of (G, p∗).
For the reason that (a + b µ̇

µ
) > 0, the stability of the

equilibrium δ = −2r∗ is determined by the Jacobian matrix

of f(δ). Let F = ∂f(δ)
∂δ

be the Jacobian matrix of f(δ) with

(i, j)th block of submatrix defined as

[F ]ij =







0d×d, i 6= j, (i, j) /∈ E ,
∂fi(δ)
∂δj

, i 6= j, (i, j) ∈ E ,
∂fi(δ)
∂δi

, i = j, i ∈ V.

Following the similar analysis in [13, Theorem 9], it can be

proved that F |δ=−2r∗ ≥ 0 and F has at least one positive

eigenvalue. Hence the equilibrium δ = −2r∗ is unstable.

Remark 2. The geometric relationship between δ and the

surface S is shown in Fig. 2. The angle between δ and

−r∗ is denoted as θ. Note that δ can always be decoupled

as δ = δ‖ + δ⊥, where δ‖ is parallel to −r∗ and δ⊥ is

perpendicular to −r∗.

Note that Lemmas 3 and 4 all based on the assumption that

gij , ∀(i, j) ∈ E is well defined. The following result will show

that the inter-agent distances are lower bounded by γ if some

initial conditions are satisfied.
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Theorem 5. Under Assumption 1 and control law (2), for

a constant 0 < γ < mini,j∈V,i 6=j‖p∗i − p∗j‖, the inter-agent

distances are lower bounded by γ, i.e., ‖pi(t) − pj(t)‖ > γ,

∀i, j ∈ V , ∀t > t0 if

‖δ(t0)‖ <
mini,j∈V,i 6=j‖p∗i − p∗j‖ − γ√

n
. (7)

Proof: Before analysing the inter-agent distances, we first

show that ‖δ(t)‖ is upper bounded by ‖δ(t0)‖ for t ≥ t0.

Consider the following Lyapunov function candidate

V =
1

2
δTδ.

By (6), the time derivative of V is obtained as

V̇ = (a+ b
µ̇

µ
)(p− p∗)TH̄Tdiag(Pgk)g

∗

= −(a+ b
µ̇

µ
)e∗Tdiag(Pgk)g

∗

= −(a+ b
µ̇

µ
)

m∑

k=1

‖e∗k‖(g∗k)TPgkg
∗
k ≤ 0. (8)

It follows that ‖δ(t)‖ ≤ ‖δ(t0)‖, ∀t ≥ t0.

Since pi−pj = (pi−p∗i )− (pj −p∗j )+(p∗i −p∗j ), we obtain

that

‖pi − pj‖ ≥ ‖p∗i − p∗j‖ − ‖pi − p∗i ‖ − ‖pj − p∗j‖

≥ ‖p∗i − p∗j‖ −
n∑

i=1

‖pi − p∗i ‖

≥ ‖p∗i − p∗j‖ −
√
n‖p− p∗‖

≥ ‖p∗i − p∗j‖ −
√
nδ(t),

where we have used the fact that n‖p − p∗‖2 ≥ ∑n
i=1 ‖pi −

p∗i ‖2. Together with (7) and ‖δ(t)‖ ≤ ‖δ(t0)‖, we can

conclude that ‖pi(t)− pj(t)‖ > γ, ∀i, j ∈ V , ∀t > t0.

Remark 3. From (7), we can observe that the upper bound

of ‖δ(t0)‖ is proportional to mini,j∈V‖p∗i − p∗j‖ and 1√
n

.

The intuitive explanation of condition (7) is that, for a large

group of agents with a small target configuration, to avoid the

collisions, the initial error δ(t0) has to be small.

Now we are in the position to give the first main result of

this paper.

Theorem 6. Under Assumption 1, Problem 1 is solved by

control law (2) if the condition (7) is satisfied, δ(t0) 6= −2r∗,

p̄(t0) = p̄∗, s(t0) = s∗, and

bhλd+2(B∗)(sin2θ(t0))mini,j∈V,i 6=j‖p∗i − p∗j‖
> 8(n− 1)(s∗)2. (9)

Furthermore, ‖pi(t)− pj(t)‖ > γ, ∀i, j ∈ V , and the control

input u = col(u1, · · · , un) remains C1 smooth and uniformly

bounded over the time interval [t0,∞).

Proof: It follows from (8) that

V̇ = −(a+ b
µ̇

µ
)

m∑

k=1

‖e∗k‖(gk)TPg∗

k
gk

= −(a+ b
µ̇

µ
)

m∑

k=1

‖e∗k‖
‖ek‖2

eTk Pg∗

k
ek

≤ −(a+ b
µ̇

µ
)
mini,j∈V,i 6=j‖p∗i − p∗j‖
maxi,j∈V,i 6=j‖pi − pj‖2

pTH̄Tdiag(Pg∗

k
)H̄p

= −(a+ b
µ̇

µ
)
mini,j∈V,i 6=j‖p∗i − p∗j‖
maxi,j∈V,i 6=j‖pi − pj‖2

δTH̄Tdiag(Pg∗

k
)H̄δ,

(10)

where we have used the facts that (gk)
TPg∗

k
gk = (g∗k)

TPgkg
∗
k

and Pg∗

k
e∗ = 0 to get the first and last equalities, respectively.

Since s(t) = s(t0) = s∗, in light of Lemma 3, we obtain that

maxi,j∈V‖pi − pj‖2 ≤ 4(n− 1)(s∗)2, and furthermore that

V̇ ≤ −(a+ b
µ̇

µ
)
mini,j∈V,i 6=j‖p∗i − p∗j‖

4(n− 1)(s∗)2
δTB∗δ,

where B∗ = B(G, p∗). By Lemma 1, we know that null(B∗) =
span{1 ⊗ Id, p

∗} = span{1 ⊗ Id, r
∗}. Since p̄ = p̄(t0) = p̄∗

according to Lemma 3, we have (1⊗Id)
Tδ = 0. Together with

the facts that δ = δ‖+δ⊥, (1⊗Id)
Tδ‖ = (1⊗Id)

Tr∗ = 0 and

δT⊥r
∗ = 0, we can conclude that δ⊥ ⊥ null(B∗), which further

implies that δTB∗δ = δT⊥B∗δ⊥ ≥ λd+2(B∗)δT⊥δ⊥. From

Lemma 4, we have δ evolves on S and δT⊥δ⊥ = sin2θδTδ
(see Fig. 2). It can be observed from Fig. 2 that θ ∈ [0, π

2 ).
Since ‖δ(t)‖ ≤ ‖δ(t0)‖, ∀t > t0, we know that θ(t) ≥ θ(t0).

Based on the above analysis, we obtain that

V̇ ≤−
aλd+2(B∗)(sin2θ(t0))mini,j∈V,i 6=j‖p∗i − p∗j‖

4(n− 1)(s∗)2
︸ ︷︷ ︸

ᾱ1

‖δ(t)‖2

−
bλd+2(B∗)(sin2θ(t0))mini,j∈V,i 6=j‖p∗i − p∗j‖

4(n− 1)(s∗)2
︸ ︷︷ ︸

β̄1

µ̇

µ
‖δ(t)‖2

=− 2ᾱ1V − 2β̄1
µ̇

µ
V.

Then we can conclude from Lemma 2 that

‖δ(t)‖
{

≤ µ−β̄1e−ᾱ1(t−t0)‖δ(t0)‖, t ∈ [t0, t0 + T ) ,

≡ 0, t ∈ [t0 + T,∞) ,
(11)

which implies that p converges to p∗ in user pre-specified

finite time T . In the following, we will show that u remains

C1 smooth and uniformly bounded.

By (2), we obtain that

‖u‖ ≤ (a+ b
µ̇

µ
)‖H̄‖‖diag(Pgk)g

∗‖.

Since

‖diag(Pgk)g
∗‖2 = gTdiag(Pg∗

k
)g =

m∑

k=1

1

‖ek‖2
eTk Pg∗

k
ek,

(12)
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and ‖ek‖ ≥ γ (from Theorem 5), and we have

‖diag(Pgk)g
∗‖ ≤ 1

γ

√

δTH̄Tdiag(Pg∗

k
)H̄δ. (13)

Incorporating this with (11), we have

‖diag(Pgk)g
∗‖ ≤ 1

γ
‖B∗‖ 1

2µ−β̄1e−ᾱ1(t−t0)‖δ(t0)‖, (14)

∀t ∈ [t0, t0 + T ) and ‖diag(Pgk)g
∗‖ ≡ 0, ∀t ∈ [t0 + T,∞).

Hence we have

‖ µ̇
µ
diag(Pgk)g

∗‖ ≤ 1

γ
‖B∗‖ 1

2

h

T
µ−(β̄1− 1

h
)e−ᾱ1(t−t0)‖δ(t0)‖,

(15)

∀t ∈ [t0, t0 + T ), and further by β̄1 − 1
h

> 0 (from

(9)), we have that limt→(t0+T )− ‖ µ̇
µ
diag(Pgk)g

∗‖ = 0 and

that ‖ µ̇
µ
diag(Pgk)g

∗‖ ≡ 0, ∀t ∈ [t0 + T,∞). Noting that

u = (a+ b µ̇
µ
)H̄Tdiag(Pgk)g

∗ and gk is continuous respect to

t, we can conclude that u is continuous and uniformly bounded

on [t0,∞).
Next we will show du

dt is continuous on [t0,∞). Since

du

dt
=− (a+ b

µ̇

µ
)H̄T d(diag(Pgk))

dt
g∗

− bh

T 2
µ

2

h H̄Tdiag(Pgk)g
∗, (16)

it is clear that du
dt is continuous on [t0, t0+T ) and (t0+T,∞).

From (14), it can be obtained that

‖µ 2

h H̄Tdiag(Pgk)g
∗‖ ≤ 1

γ
‖B∗‖ 1

2µ−(β̄1− 2

h
)e−ᾱ1(t−t0)‖δ(t0)‖,

(17)

∀t ∈ [t0, t0 + T ), and further by β̄1 − 2
h

> 0 (from (9)),

we have that limt→(t0+T )− ‖µ 2

h diag(Pgk)g
∗‖ = 0 and that

‖µ 2

h diag(Pgk)g
∗‖ ≡ 0, ∀t ∈ [t0 + T,∞).

For the first term in (16), we have

(a+ b
µ̇

µ
)H̄T d(diag(Pgk))

dt
g∗

=(a+ b
µ̇

µ
)
∂f(δ)

∂δ
δ̇ = (a+

bh

T
µ

1

h )2FH̄Tdiag(Pgk)g
∗,

where F is the Jacobian matrix defined in the proof of Lemma

4. From Theorem 5, we have ‖eij‖ ≥ γ, and further due to the

definition of Gij and Pgij , we know that ‖[F ]ij |δ‖, ∀i, j ∈ V
is bounded for δ ∈ [0, δ(t0)]. Thus we can always define a

positive constant κ such that κ = maxδ∈[0,δ(t0)] ‖F |δ‖.

It then follows that

‖(a+
bh

T
µ

1

h )2FH̄Tdiag(Pgk)g
∗‖

≤κ‖H̄‖(a2 + 2abh

T
µ

1

h +
b2h2

T 2
µ

2

h )‖diag(Pgk)g
∗‖.

By using the fact β̄1 − 2
h

> 0, following similar analysis

for (15) and (17), it is clear that limt→(t0+T )− ‖du
dt ‖ = 0,

∀t ∈ [t0, t0 + T ) and ‖du
dt ‖ ≡ 0, ∀t ∈ [t0 + T,∞). Hence we

can conclude that du
dt is continuous on [t0,∞), and furthermore

the control input u is C1 smooth and uniformly bounded over

the time interval [t0,∞).

Remark 4. Noting that δ = −2r∗ is an unstable equilibrium

of closed-loop system (6), Theorem 6 guarantees almost global

formation stabilization excepting the case δ(t0) = −2r∗.

Furthermore, the invariance of scale and centroid is used such

that the formation control problem can be transferred into a

bearing stabilization problem.

Remark 5. It is worth noting that the time-varying gain
µ̇
µ

plays an important role in achieving the formation control in

finite time. From (15), we can see that the control gain
µ̇
µ

goes to infinite when t → t0 + T . However, the control input

u remains bounded and C1 smooth. The equations (12) and

(13) build the connection between ‖u‖ and ‖δ‖. Intuitively,

the condition (9) guarantees a sufficiently large b such that the

decrease of ‖δ‖ is faster than the increase of
µ̇
µ

. Different from

the fractional power based finite time control law in [8], [21],

[32], the converge time of control law (2) does not depend on

the initial condition and can be any value specified by users.

IV. BEARING-ONLY LEADER-FOLLOWER FORMATION

CONTROL

To guarantee the convergence, Theorem 6 requires p̄(t0) =
p̄∗ and s(t0) = s∗, which may not be easily satisfied when

system has a large number of agents. In this section, we will

show that these requirements can be relaxed and the global

stabilization can be achieved by using a leader-follower control

structure.

Without loss of generality, suppose the first nl ≥ 2 agents

are leaders and the rest nf = n − nl agents are followers.

Let Vl = {1, · · · , nl} and Vf = {nl + 1, · · · , n} be the set

of leaders and followers, respectively. The positions of agents

are denoted as p = col(pl, pf ), where pl = col(p1, · · · , pnl
)

and pf = col(pnl+1, · · · , pn) are the positions of leaders and

followers respectively. The leader-follower formation control

problem is given below.

Problem 2. With leader positions {p∗i }i∈Vl
, design control

input for agent i ∈ Vf based on the bearing vectors

{gij(t)}j∈Ni
such that p → p∗ for t → t0+T , and p = p∗ for

t ≥ t0 + T , where p∗ is a target configuration and T ∈ R>0

is the convergence time pre-specified by users.

Since the leaders are stationary, we have ṗi = 0, i ∈ Vl.

The control law of each following mobile agent is designed

as

ui = −(a+ b
µ̇

µ
)
∑

j∈Ni

Pgijg
∗
ij , i ∈ Vf , (18)

Note that control law (18) is same as (2). In the following, we

will show that control law (18) can achieve global formation

stabilization.

Since δi = pi−p∗i , we have δ = col(δl, δf ) = col(0dnl
, δf ),

where δl = pl − p∗l and δf = pf − p∗f . By (18), the dynamics

of δ can be written in a compact form as

δ̇ = (a+ b
µ̇

µ
)

[
0dnl×dnl

0dnl×dnf

0dnf×dnl
Idnf

]

H̄Tdiag(Pgk)g
∗.

Theorem 7. Under Assumption 1 and control law (18), the

inter-agent distances are also lower bounded by γ, if condition

(7) is satisfied.



7

Proof: Here we just need to proof that ‖δ‖ is upper

bounded by ‖δ(t0)‖, for t > t0 and the rest of proof follows

similarly as in Theorem 5. Noting that V = 1
2δ

Tδ, the time

derivative of V is given as

V̇ = (a+ b
µ̇

µ
)δT

[
0dnl×dnl

0dnl×dnf

0dnf×dnl
Idnf

]

H̄Tdiag(Pgk)g
∗

= −(a+ b
µ̇

µ
)δTH̄Tdiag(Pgk)g

∗

= −(a+ b
µ̇

µ
)

m∑

k=1

‖e∗k‖(g∗k)TPgkg
∗
k ≤ 0, (19)

where we have used the fact that δl = 0. It follows that

‖δ(t)‖ ≤ ‖δ(t0)‖, ∀t ≥ t0.

Remark 6. Theorem 7 implies that although the state tra-

jectory in leader-follower case is different with leaderless

case, the conditions for collision avoidance are same. Fixing

arbitrary number of agents on the target position will not

change V̇ , hence the condition for the collision avoidance is

not related to the number of leaders.

Theorem 8. Under Assumption 1, Problem 2 is solved by

control law (18) if the condition (7) is satisfied and

bhλmin(B∗
ff )mini,j∈V,i 6=j‖p∗i − p∗j‖

> 2‖H̄‖2(‖δ(t0)‖+
√
ns∗)2, (20)

where λmin(B∗
ff ) is the smallest eigenvalue of B∗

ff . Further-

more, ‖pi(t) − pj(t)‖ > γ, ∀i, j ∈ V , and the control input

uf = col(unl+1, · · · , un) remains C1 smooth and uniformly

bounded over the time interval [t0,∞).

Proof: By (18) and following the analysis for (10), we

have

V̇ ≤− (a+ b
µ̇

µ
)
mini,j∈V,i 6=j‖p∗i − p∗j‖
maxi,j∈V,i 6=j‖pi − pj‖2

δTH̄Tdiag(Pg∗

k
)H̄δ

=− (a+ b
µ̇

µ
)
mini,j∈V,i 6=j‖p∗i − p∗j‖
maxi,j∈V,i 6=j‖pi − pj‖2

δTB∗δ. (21)

Due to the fact that

δTB∗δ = [0T δTf ]

[ B∗
ll B∗

lf

(B∗
lf )

T B∗
ff

]

[0T δTf ]
T,

and in light of Lemma 1 (iii), we know that B∗
ff > 0 and

further that δTB∗δ ≥ λmin(B∗
ff )δ

Tδ.

Different from the leaderless case, for the leader-follower

case, the invariance of the centroid p̄ and the scale s are no

longer hold. Alternatively, the following inequalities are used

to characterize the upper bound of maxi,j∈V,i 6=j‖pi − pj‖2.

maxi,j∈V,i 6=j‖pi − pj‖2 ≤ ‖e‖2 = ‖H̄(p− p∗ + p∗)‖2
= ‖H̄(δ + r∗)‖2
≤ ‖H̄‖2(‖δ(t0)‖+

√
ns∗)2, (22)

where we have used the facts ‖δ(t)‖ ≤ ‖δ(t0)‖, H̄(p∗−(1n⊗
p̄∗)) = H̄p∗ and ‖r∗‖ =

√
ns∗ to get the last inequality. It

then follows from (21) and (22) that

V̇ ≤−
aλmin(B∗

ff )mini,j∈V,i 6=j‖p∗i − p∗j‖
‖H̄‖2(‖δ(t0)‖+

√
ns∗)2

︸ ︷︷ ︸

ᾱ2

‖δ(t)‖2

−
bλmin(B∗

ff )mini,j∈V,i 6=j‖p∗i − p∗j‖
‖H̄‖2(‖δ(t0)‖+

√
ns∗)2

︸ ︷︷ ︸

β̄2

µ̇

µ
‖δ(t)‖2

=− 2ᾱ2V − 2β̄2
µ̇

µ
V.

In light of Lemma 2, we have

‖δ(t)‖
{

≤ µ−β̄2e−ᾱ2(t−t0)‖δ(t0)‖, t ∈ [t0, t0 + T ) ,

≡ 0, t ∈ [t0 + T,∞) ,

which implies that p converges to p∗ in a user pre-specified

finite time T . Note that

‖uf‖ =

∥
∥
∥
∥

[
0dnl×dnl

0dnl×dnf

0dnf×dnl
Idnf

]

H̄Tdiag(Pgk)g
∗
∥
∥
∥
∥

≤‖H̄‖‖diag(Pgk)g
∗‖.

Following the similar analysis in Theorem 6, it can be proved

that uf is C1 smooth and uniformly bounded over the time

interval [t0,∞).

Remark 7. Any positive a and b can guarantee V̇ ≤ 0.

The conditions (9) and (20) are required to guarantee the

boundness and the smoothness of the control input.

Remark 8. In leader-follower case, the initial requirements

p̄(t0) = p̄∗ and s(t0) = s∗ are removed. Intuitively, due

to nl ≥ 2, at least two points and the edge between these

two points are fixed. Since these two points and the edge

can determine the translation and scaling of the target for-

mation, together with the fact that the target formation is

infinitesimally bearing rigid, the target formation is uniquely

determined. Furthermore, since we have δl = 0, the system

will not start from the initial condition δ(t0) = −2r∗. Hence

the global stability can be achieved.

V. SIMULATION EXAMPLE

To validate the effectiveness of control law (2), we show

an example of eight agents with a cubic target formation. The

initial positions are chosen to satisfy the conditions in Theorem

6 and the parameters are set as follows: a = 0.2, b = 5, h = 5
and T = 4 s.

The initial positions and the positions at 4 s are shown

in Figs. 3(a) and (b). The vertexes in different colour are

the agents and the solid lines are trajectories of the agents.

The dashed lines in grey and the plus sign in black represent

the relative bearing and the centroid p̄, respectively. We can

observe that the centroid is invariant. Fig. 3(c) shows that

the minimum distance between agents is larger than 0.5.

Hence there is no collision between agents. Together with

Fig. 4(a), we can see that the target formation is achieved

at 4 s. Furthermore, Fig. 4(b) shows that the control inputs ui,

∀i = 1, · · · , 8 are bounded and smooth.



8

0

1

2

4 5

3

4

4

32

5

2
1

0 0

(a)

0

1

2

4 5

3

4

4

32

5

2
1

0 0

(b)

0 1 2 3 4 5
0.5

1

1.5

2

(c)

Fig. 3. Simulation results of control law (2). (a) Initial positions pi(0),
∀i = 1, · · · , 8; (b) Trajectories and positions pi at 4 s, ∀i = 1, · · · , 8;
(c) The minimum distance between agents mini,j∈V,i 6=j‖pi − pj‖.

VI. EXPERIMENT VALIDATION

To demonstrate the performance of control law (18), we

design an experimental platform with self-fabricated mobile

robots shown in Fig. 5. In this platform, a VICON motion

capture system with 6 Vero X cameras are used to get the

position of mobile robots. A Linux-based host computer (CPU

2.7-GHz, 4-GB RAM) is used to transfer the position data

into the relative bearings, package the relative bearings into

ROS (Robot Operating System) topics, and broadcast the

topics through Wi-Fi. To simulate a distributed sensor network,

each robot only subscribes the topics of neighbouring robots.

The mobile robot is mainly composed of three levels: (1)

Mona robot [33] based on arduino mini pro (designed by the

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

3.5 4 4.5
0

5
10-3

(a)

0 1 2 3 4 5
0

5

10

15

20
Agent 1
Agent 2
Agent 3
Agent 4
Agent 5
Agent 6
Agent 7
Agent 8

(b)

Fig. 4. Simulation results of control law (2). (a) Position error ‖p− p∗‖; (b)
The norm of control input ‖ui‖, ∀i = 1, · · · , 8.

University of Manchester); (2) LiPo SHIM + Raspberry Pi

Zero (running control law (18) and subscribing ROS topics at

80 Hz); (3) 14 mm Pearl Markers (forming unique patterns

for motion capture).

In this experiment, the target formation of six robots is given

in Fig. 6 and the parameters are set as a = 0.12, b = 0.3, h = 2
and T = 35 s. It is worth noting that the noise introduced

by motion capture system is inevitable and may result in

an unbounded µ̇
µ

∑

j∈Ni
Pgijg

∗
ij (with µ̇

µ
growing unbounded,

while
∑

j∈Ni
Pgijg

∗
ij not decaying to zero). To address this

issue, inspired by [27], we set T in µ on [t0, t0 + T ) to a value

T̄ slightly larger than the user pre-specified settling time, that

is,

µ(t) =
T̄h

(t0 + T̄ − t)h
, t ∈ [t0, t0 + T ) , (23)

where T̄ = 35.4 s > T . The dynamics of robots are described

as unicycle [8]. To implement control law (18), we linearise

the dynamics of robots by following the steps in [8] (Please

refer to [8] for details).

The experiment results are shown in Fig. 7. Fig. 7(a)

is plotted against an image taken by the downward-looking

camera on the ceiling. Together with Fig. 7(b), we can see

that the target configuration is achieved at 35 s and there is

no collision between robots. Furthermore, the control inputs

ui of followers are bounded as shown in Fig. 7(c).
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Fig. 5. The experimental platform.

Fig. 6. The target formation with two leaders L1 and L2.

VII. CONCLUSION

This paper proposes new bearing-only control laws to

achieve target formations in finite time. The almost global

convergence is guaranteed. Furthermore, the convergence time

is not related to initial conditions and can be arbitrarily chosen

by users. Sufficient conditions for collision avoidance are also

given. Then the almost global convergence is extended to

global convergence by using a leader-follower control struc-

ture. Since no signum function or fractional power feedback

is used, the control action of the proposed control laws are C1

smooth. Simulation and experimental results both demonstrate

the effectiveness of our design.
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