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Title  1 

Landscape resistance affects individual habitat selection but not genetic relatedness in a reintroduced desert 2 

ungulate 3 

Abstract  4 

The long-term success of species reintroductions is strongly dependent on the availability of large areas of 5 

suitable habitat and the genetic make-up of the population. If available habitat is poorly connected this can 6 

hinder gene flow and lead to genetic fragmentation of the population, potentially increasing its extinction risk. 7 

We employed a conservation genomics approach in which we combined analyses of genetic structure with 8 

testing for potential landscape effects on habitat selection and gene flow in reintroduced Asiatic wild ass Equus 9 

hemionus ssp. in the Israeli Negev desert. Genetic structure and pairwise relatedness were first investigated 10 

followed by examination of landscape effects on individual habitat selection using records of GPS collared 11 

individuals. We then built habitat resistance surfaces and used electrical circuit theory to test for landscape 12 

effects on genetic relatedness. We detected weak genetic structuring, yet low spatial coherence among 13 

individuals from the same genetic cluster. Landscape variables had a significant impact on individual habitat 14 

selection, with wild ass avoiding steep slopes and habitats of low suitability as predicted by a species 15 

distribution model. However, the landscape genetic analysis revealed no effect of habitat resistance on genetic 16 

relatedness. These results suggest that gene flow in the reintroduced population is not impacted by landscape 17 

resistance. Indeed, the high mobility of the species may increase its resistance to the genetic effects of habitat 18 

fragmentation, at least over a small number of generations. We discuss other potential causes for the observed 19 

genetic structure including a behavioural effect. Our study highlights the importance of understanding species-20 

habitat interactions for the long-term success of reintroductions.  21 

Keywords 22 

 Landscape resistance, habitat selection, genetic structure, reintroduction, Equus hemionus, circuit theory 23 

1. Introduction 24 

Reintroductions are one of the most powerful conservation tools for reinforcing and re-establishing populations 25 

of threatened species, but success rates are often low. The most important determinants of the long-term success 26 

of a reintroduction are i) the availability of large areas of suitable habitat and ii) the genetic makeup of the 27 

reintroduced population (Wolf et al. 1998; Armstrong & Seddon 2008; Baguette et al. 2013). Genetic makeup is 28 

important since many reintroductions are based on a small number of founders. The resulting small population 29 

size during the early stages of the reintroduction can lead to increased genetic drift and inbreeding, causing the 30 

loss of genetic diversity and adaptive flexibility in the established population (Frankham et al. 2002; Templeton 31 

2017). These negative effects are further exacerbated if the reintroduced population is fragmented. Resulting 32 

genetic isolation of subpopulations can make these population fragments more vulnerable to extinction due to 33 

inbreeding and stochastic genetic and demographic processes (Saccheri et al. 1998; Bozzuto et al. 2019).  34 

Large connected areas of suitable habitat are also crucial to facilitate sufficient demographic growth of the 35 

reintroduced population (Armstrong & Seddon 2008). In contrast, habitats with low functional connectivity 36 

(whereby the landscape impedes individual movement) can hinder range expansion and prevent reintroduced 37 

populations from successfully colonising the available habitat (Templeton et al. 2011; Neuwald & Templeton 38 

2013; Ziółkowska et al. 2016). Furthermore, low connectivity can also limit gene flow between occupied 39 

patches, resulting in spatial sub-structuring of the population (Manel et al. 2003; Bergl & Vigilant 2007). This 40 

may explain observations of within-population genetic structure in reintroduced populations, with genetic 41 

clusters centring around release sites (Howell et al. 2016; Grauer et al. 2017; Moraes et al. 2017). In order to 42 

avoid the problem of genetic isolation, individuals must be able to disperse between occupied patches into new 43 

suitable territory at a rate that facilitates sufficient gene flow (Mills & Allendorf 1996).  44 

Gene flow is limited by factors restricting individual dispersal, here defined as the movement between habitat 45 

patches or subpopulations (Benton & Bowler 2012). In terrestrial mammals, dispersal ability is usually affected 46 

by landscape structure, climatic and anthropogenic factors, or specific combinations of these (Howell et al. 47 

2016). Major landscape features (e.g., roads, mountain ridges) may act as physical barriers completely 48 
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preventing movement across them, but areas of less preferred habitat may also reduce gene flow (Storfer et al. 49 

2007). For example, in female-philopatric mountain goats, male habitat selection best predicted gene flow and 50 

relatedness across the landscape (Shafer et al. 2012). However, for many reintroduced populations, information 51 

on habitat use and preference is limited, especially when the species has been absent from the area for a long 52 

time or when it is replaced by a closely-related group (e.g., a different subspecies) which makes prediction of 53 

resource use and dispersal more difficult (Seddon & Soorae 1999). Therefore, directly assessing habitat 54 

connectivity and gene flow and the factors impacting them is an important measure to optimise population 55 

management to enhance chances of long-term population persistence.  56 

The Asiatic wild ass Equus hemionus ssp. (Pallas, 1775) reintroduced to Israel, presents an ideal opportunity for 57 

furthering our understanding of the environmental effects on the dispersal and genetic structure in small, 58 

reintroduced populations. Equus hemionus ssp. was reintroduced in Israel after the local subspecies (Syrian wild 59 

ass E.h.hemippus) became extinct (Saltz & Rubenstein 1995). A captive breeding facility was established by the 60 

Israeli Nature and Parks Authority (INPA) in 1968 from individuals of two subspecies; Iranian onager 61 

E.h.onager and Turkmen kulan E.h.kulan (Saltz et al. 2000). From this breeding facility, 38 individuals were 62 

released into the Negev desert between 1982 and 1993 at two release sites (Fig. 1) (Saltz & Rubenstein 1995). 63 

The population has since expanded its spatial distribution across the highly heterogenous landscape and is 64 

currently estimated at >250 individuals (Gueta et al. 2014; Renan et al. 2018).  65 

Asiatic wild ass have a highly flexible fission-fusion social structure and a resource defence polygyny mating 66 

system (Boyd et al. 2016; Renan et al. 2018). Dominant males defend territories near permanent water sources, 67 

while females form unstable social groups with individual associations based on reproductive status rather than 68 

relatedness (Rubenstein 1994; Saltz et al. 2000; Wallach et al. 2007; Altman 2016). Previous analyses based on 69 

mitochondrial DNA haplotypes and nuclear microsatellite markers identified a weak spatial genetic structure in 70 

the established population (Gueta et al. 2014; Renan 2014). The authors suggested a combined effect of range 71 

expansion and low habitat connectivity between colonised areas to be the underlying cause (Gueta et al. 2014). 72 

This possibility is supported by previous studies which identified resource distribution and topography as the 73 

main predictors for wild ass presence and pathway usage (Davidson et al. 2013; Nezer et al. 2017). In the 74 

Negev, patches of suitable habitat appear to be separated by areas of low resource availability and challenging 75 

topography such as steep cliffs and canyons that could act as barriers to wild ass movement, hence limiting gene 76 

flow between patches. Since the recently established population in Israel is geographically isolated with no 77 

opportunity for external migrants from neighbouring countries, it is particularly vulnerable to the negative 78 

effects of genetic drift (Frankham et al. 2002). Further spatial subdivision would be a severe threat to this 79 

recently established population and could jeopardise the long-term success of the reintroduction (With & King 80 

1999; Wang et al. 2017; Pelletier et al. 2019).  81 

The aim of the present study was to investigate potential landscape effects that may cause genetic structuring of 82 

the reintroduced population. First, we assessed genetic clustering of the population using a panel of 1645 83 

genome-wide single nucleotide polymorphisms (SNPs). Then, we analysed individual GPS collar data and 84 

investigated habitat selection with respect to slope and habitat suitability based on a species distribution model 85 

(SDM). Finally, we created landscape resistance surfaces from habitat selection data and applied electrical 86 

circuit theory to test for an effect of habitat resistance on genetic relatedness. Based on wild ass ecology and 87 

previous studies of the population, we predict: i) the population in Israel is genetically structured into spatially 88 

distinct clusters ii) individuals avoid areas of low habitat suitability (based on the SDM) and steep slope, as 89 

reported for wild ass in other populations (e.g. Sharma et al., 2004), and iii) steep cliffs form a complete barrier 90 

to wild ass movement and hence we predict a stronger effect of slope-based landscape resistance than 91 

suitability-based landscape resistance on genetic relatedness in the population.  92 

2. Materials and Methods 93 

2.1 Study site  94 

The Negev is a hyper-arid desert that extends throughout Southern Israel. The landscape is defined by a steep 95 

gradient in elevation ranging from the Negev Highlands in the Northwest (>1000m above sea level) decreasing 96 

towards the Arava valley and the Dead Sea in the East (<300m below sea level) (Stern et al. 1986). This 97 

elevation gradient coincides with a gradient in mean maximum annual temperature and precipitation, ranging 98 

from 22.6°C and 150mm in the Negev Highlands to 31.1°C and 30mm in the hotter and more arid Arava (Israel 99 

Meteorological Service). This climatic gradient also causes differences in vegetation, with shrub-steppes in the 100 
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Negev highlands giving way to sand and desert savannoid vegetation types in the Arava (Danin 1999). The 101 

topography of the Negev is complex and characterised by steep cliffs and levelled floodplains. Vegetation is 102 

mostly limited to ephemeral streambeds and floodplains. Permanent water sources are scarce, however, flash 103 

floods occurring after heavy rainfall in the winter fill up natural rock pools which retain water for several 104 

months (Nezer et al. 2017). In addition, there are three artificial water sources which are maintained throughout 105 

the year by the INPA to provide wildlife with water, which have also become activity centres of the wild ass 106 

population (Gueta et al. 2014; Nezer et al. 2017).    107 

2.2 DNA sample collection and sequencing  108 

DNA samples were collected opportunistically by rangers and veterinarians of the INPA across seasons, 109 

between 2010 and 2017. Blood or tissue samples were taken from individuals that were killed in road traffic 110 

accidents, from injured individuals receiving veterinary treatment or during the fitting of global positioning 111 

system (GPS) collars. Precise geographical locations were available for all samples (Fig. 1). Whole blood 112 

samples were stored in EDTA tubes (not heparinized; BD Vacutainer K2E 18.0mg, Vacuette K3E 3mg), tissue 113 

samples were either stored in 70% ethanol or untreated in paper envelopes. All blood and tissue samples were 114 

stored frozen (at -20°C or -80°C). We purified DNA from samples using commercial silica spin column-based 115 

extraction kits (QIAGEN DNeasy Blood and Tissue Kit, Thermo Scientific GeneJET Genomic DNA 116 

Purification Kit), following manufacturers protocol. We sequenced samples using double digest restriction-site 117 

associated DNA marker sequencing (ddRADseq) methods and the high-fidelity versions of the enzymes EcoRI 118 

and SbfI (R3101S and R3642L, respectively; New England Biolabs). We prepared libraries following a protocol 119 

adapted from Peterson et al. (2012) and sequenced them on a single flow cell lane of an Illumina HiSeq 4000 120 

system. Over 400 million raw paired-end sequence reads were produced with a mean read length of 300bp. We 121 

assessed the quality of raw reads using the FastQC tool (Andrews 2010). A mean Phred+33 quality score >30 122 

was recorded for all bases. We processed raw sequences in the STACKS 2.0 pipeline (Catchen et al. 2013) and 123 

assembled loci de novo using the denovo_map wrapper program in STACKS and identified optimal parameter 124 

settings using an approach adapted from Paris et al. (2017) and SNP error rates, calculated using seven replicate 125 

pairs of individuals included in the data set. To avoid linkage between markers we retained only the first SNP on 126 

a locus using the --write-single-snp function in the population program in STACKS. Subsequently, we filtered 127 

called SNPs in 3 steps in the vcftools programme (Danecek et al. 2011) using site and individual filtering 128 

options (minimum mean individual coverage ≥35x, minor allele count ≥3, SNPs present in minimum of 80% of 129 

individuals). Finally, SNPs that deviated from Hardy‐Weinberg equilibrium as defined by p‐value threshold 130 

>0.05 were removed.  131 

2.3 Genetic structure analysis  132 

Initially, we explored the data using Principal Component Analysis (PCA), which fits orthogonal Principal 133 

Components (PCs) that summarise overall variability between individuals. Subsequently, we investigated 134 

genetic structure in more detail using two different approaches: A discriminant analysis of principal components 135 

(DAPC; Jombart, 2008) and a Bayesian cluster analysis implemented in the program STRUCTURE (Pritchard et 136 

al. 2000).   137 

DAPC is a multivariate approach which performs a PCA in a first step and then subjects the PC scores to a 138 

discriminant function analysis (DFA). Unlike PCA, DFA fits orthogonal discriminant functions that maximise 139 

between group relative to within-group variation. Therefore, it is suited to differentiating between genetic 140 

groups (Jombart et al. 2010). A K-means clustering approach can be applied to assess the number and 141 

composition of genetic clusters (K) in the data. The best supported model is identified using the Bayesian 142 

Information Criterion (BIC), where the lowest BIC, which is often indicated by an elbow in the curve, is 143 

preferred. We performed PCA and DAPC in the ‘adegenet’ package (Jombart 2008) in R (R 3.5.3, R core team 144 

2020). In both analyses we retained the first 10 PCs, which explained 54.96% of the total variance.  145 

We ran the program STRUCTURE with the admixture model and correlated allele frequencies, for K=1-10, with 146 

10 repetitions for each K. The runs were performed with 1x106 iterations of the Markov Chain Monte Carlo 147 

(MCMC) chain preceded by 1x105 burn-in iterations. We assessed STRUCTURE outputs for the optimal value of 148 

K using the log likelihood (Pritchard et al. 2000) and the Evanno method (Evanno et al. 2005) in the web-based 149 

version of STRUCTURE HARVESTER (Earl & vonHoldt 2012). Pritchard et al. (2000) suggest that a value of K 150 

which maximizes the model log likelihood Ln(PD) is optimal. However, Ln(PD) often plateaus or continues to 151 

increase after reaching the optimal K-value and so Evanno et al. (2005) proposed an improved method to 152 

estimating optimal K, based on the second order rate of change of the likelihood function. We produced ancestry 153 
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bar plots in STRUCTURE HARVESTER. As GPS data from collared individuals suggested fidelity to a smaller range 154 

during the breeding season (Supplementary material, Fig. A1), population genetic differentiation may be easier 155 

to detect at this time. We therefore repeated our analyses on the 15 individuals sampled during the breeding 156 

season. 157 

2.4 Individual habitat selection 158 

To investigate a potential effect of landscape characteristics on gene flow we used individual movement as a 159 

proxy for gene flow and investigated factors that restrict individual movement using high resolution movement 160 

data from GPS collars. Previous studies have highlighted two habitat characteristics impacting wild ass 161 

distribution: Species-specific habitat suitability and topography (Davidson et al. 2013; Gueta et al. 2014; Nezer 162 

et al. 2017). To verify the impact of these characteristics on wild ass movement, we first performed a 163 

compositional analysis of habitat selection (Aebischer et al. 1993). The analysis compares the relative 164 

abundance of a specific habitat type with its relative use by individuals. This way, habitat types that are avoided 165 

by individuals and potentially represent barrier to movement can be identified.  166 

We investigated habitat selection with respect to habitat suitability, based on a previously developed species 167 

distribution model (SDM, Nezer et al., 2017). The model, which covered most of the area of the present study 168 

(Fig.1), was created using indirect observations and a data set of nine habitat variables from different categories 169 

relevant to wild ass biology (water, topography, biotic conditions, climate, anthropogenic disturbance). Since 170 

the model was based on faecal mount surveys rather than direct observations of wild ass, we tested the 171 

predictive power of the model using the high resolutions GPS-collar data. We used the model output, a 172 

probabilistic distribution map that represents the probability of wild ass distribution in the area with values 173 

ranging from 0 (low probability) to 99 (high probability), as an indicator for habitat suitability (habitat 174 

suitability index). Specifically, low probability values indicate low habitat suitability and high probability values 175 

indicate high habitat suitability. Since the SDM from which habitat suitability was derived did not cover the 176 

entire study area, the analysis was restricted to the part of the study area covered by the SDM. The SDM did not 177 

consider seasonal differences in habitat suitability, and potential seasonal patterns in wild ass natal dispersal are 178 

unknown. Hence, the analysis did not account for seasonality.  179 

Previous studies have reported topography as one of the most important physical constraints to wild ass 180 

movement, with steep slopes (> 30°) being avoided entirely (Sharma et al. 2004; Henley et al. 2007; Davidson 181 

et al. 2013; Nezer et al. 2017). Therefore, we decided to also investigate habitat selection with respect to 182 

topography as a habitat measure directly linked to movement ability. The same slope layer from the SDM was 183 

used, which was generated from a contour dataset retrieved from the Survey of Israel (MAPI; for further details 184 

see Nezer et al. 2017).  185 

To investigate individual habitat selection with respect to habitat suitability and slope, we used movement 186 

records from 7 GPS collared individuals. Between 2012 and 2013, five individuals (4 males, 1 female) of the 187 

reintroduced population were fitted with GPS collars (African Wildlife Tracking company) (Giotto et al. 2015) 188 

and an additional 2 females were collared in 2015. Collars were set to record the location every hour and 189 

animals wore collars between 10–25 months resulting in a minimum of 2937 records per individual within the 190 

reduced study area (Supplementary material, Table A1).  191 

Slope and habitat suitability raster layers had a resolution of 100m and we extracted the grid cell values for each 192 

GPS record from the collared individuals using the extract values to points function in ARCGIS (ESRI 2011). 193 

Subsequently, we divided extracted data for each variable into categories, to investigate proportional habitat use. 194 

For habitat suitability index we divided the range from 0–99 equally, rendering a low (0–33), intermediate (34–195 

66) and high (67–99) suitability category. Based on previous studies (Sharma et al. 2004; Davidson et al. 2013) 196 

we set a threshold for steep slopes at 30 degrees and divided the slope into low (0–15°), intermediate (16–30°) 197 

and steep slope, containing all records >30°. 198 

We performed a compositional analysis of habitat selection on the defined habitat categories using the compana 199 

function in the ‘adehabitatHS’ package in R (Calenge 2006). The analysis first tests for significance of habitat 200 

selection using Wilks lambda and subsequently produces a ranking matrix indicating whether a specific habitat 201 

type is used significantly more or less than another. P-values were estimated by randomisation tests (999 202 

permutations of the data). Aebischer et al. (1993) recommend using a minimum of 6 individuals, therefore, we 203 

pooled males and females for the analysis. We analysed habitat use relative to habitat availability within the 204 

entire habitat area, corresponding to third order selection as described by Johnson et al. (1980). We did not limit 205 
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the analysis to habitat available within an individual’s home range, since gene flow is mediated by long-distance 206 

dispersal movements extending beyond home range boundaries. Finally, compositional analysis assumes no 207 

individual variation in habitat selection, and we tested this assumption by eigenanalysis of selection ratios with 208 

the eisra function. 209 

2.5 Landscape genetic analysis  210 

2.5.1 Resistance surfaces  211 

After assessing the impact of habitat characteristics on individual movement, we created habitat resistance 212 

surfaces. This approach assigns resistance values to each cell in a habitat grid, reflecting the relative cost 213 

inflicted on an individual moving through it (Spear et al. 2010). We created three habitat resistance surfaces 214 

based on habitat suitability index, slope, and geographic distance. First, we inverted the habitat suitability map 215 

using the raster calculator in ARCGIS. To grid cells with a probability of 0 we assigned a marginally positive 216 

value 0.01 to comply with input requirements of downstream analysis. The resulting habitat resistance map 217 

based on habitat suitability ranged from 0.01 (low resistance) to 99 (high resistance). We parameterised the 218 

second resistance surface based on slope, so that grid cells with a slope of 1°–30° were assigned a resistance 219 

value of 1–30 respectively. We set a threshold by assigning grid cells with a slope >30° a resistance value of 99. 220 

Grid cells with a slope of 0° we assigned a resistance of 0.01. Additionally, we created a control resistance 221 

surface based solely on geographic distance, by assigning all grid cells of the resistance surface a value of 1. All 222 

resistance surfaces had a spatial resolution of 100m and were produced with ARCGIS (Fig. 2).  223 

2.5.2 Pairwise distances 224 

Since the landscape genetic analysis was restricted to the part of the study area covered by the SDM, we 225 

excluded three individuals which fell outside the SDM area from the analysis (Fig. 1). We used the programme 226 

CIRCUITSCAPE (version 4.0, McRae et al. 2013) to calculate pairwise resistance distances for the remaining 27 227 

individuals for the three resistance surfaces. Circuitscape applies algorithms from electronic circuit theory to 228 

estimate resistances to current flow between nodes. The program was run in pairwise mode with individuals set 229 

as nodes, connected to all eight neighbouring cells surrounding a node. Pairwise genetic distance was expressed 230 

through a relatedness coefficient, which is effectively a measure of the genetic distance between two 231 

individuals. We estimated pairwise relatedness coefficients in the ‘related’ R package (Pew et al. 2015) using the 232 

corrected Wang (2002) estimator, which has been shown to achieve high accuracy with small sample sizes 233 

(Wang, 2017).  234 

2.5.3 Distance-based redundancy analysis  235 

To test for a potential relationship between habitat resistance distance and genetic distance we performed a 236 

distance-based redundancy analysis (dbRDA) using the capsscale function in the ‘vegan’ R package (Oksanen et 237 

al. 2010). dbRDA is an extension of multivariate regression which accepts distance matrices as response 238 

variables. The response matrix is transformed into synthetic variables which are then regressed on multiple 239 

explanatory variables (Legendre et al. 1999; Buttigieg & Ramette 2014). First, we transformed the pairwise 240 

habitat resistance matrices to generate one-dimensional explanatory variables for the dbRDA. For this purpose, 241 

we performed principal coordinate analyses using the pcoa function in the ‘ape’ R package (Paradis & Schliep 242 

2018) with a Lingoes correction for negative eigenvalues to preserve all variation of the landscape resistance 243 

matrices. Subsequently, we used a Broken Stick model to estimate the number of significant principal 244 

coordinates (PCos) (MacArthur, 1957; Supplementary material, Fig. A2). For all three resistance variables only 245 

the first or first and second PCos explained more variation than expected under the Broken Stick model. 246 

However, since this accounted for only ~35% of variation in each variable, we repeated the analysis with the 247 

first 4 PCos retained which accounted for >50% of variation (Supplementary material, Table A2).   248 

We tested a total of seven models, once with the first 4 PCos and once with only the first PCo retained (Table 249 

1). We ran three models that tested for landscape resistance effects on gene flow by setting the pairwise 250 

relatedness matrix as the response variable and one of the three transformed habitat resistance matrices (based 251 

on either geographic distance, slope, SDM) as explanatory variables. Additionally, we tested four partial models 252 

that controlled for an effect of geographic distance on habitat resistance and the reciprocal. We tested for 253 

significance with permutation tests using the anova.cca function with 9999 permutations. Since GPS data from 254 

collared individuals suggested fidelity to a smaller range during the breeding season (Supplementary material, 255 

Fig. A1), a potential landscape genetic effect may be easier to detect during the breeding season. Hence, we 256 

repeated our analyses on the 14 individuals sampled during the breeding season. 257 
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3. Results 258 

3.1 Sequencing and summary statistics  259 

Illumina sequencing produced a total of 803,092,446 raw sequence reads. The de novo assembly with optimal 260 

parameter settings (m3N0M4n4) produced 2,639 polymorphic loci with an average of 2.27 SNPs per locus and a 261 

mean(±SD) SNP error rate of 1.08±0.31%. After SNP filtering the final data set contained 1496 SNPs and 30 262 

individuals. Initial population genetic analysis revealed no significant difference between the mean (±SD) 263 

expected heterozygosity (He=0.344 ± 0.128) and observed heterozygosity (Ho=0.345 ±0.144; Paired Student's t-264 

test: t(1495)=-0.440, p-value=0.660) of the population. The inbreeding coefficient indicated no population level 265 

inbreeding (Fis=-0.002).    266 

3.2 Genetic structure analyses  267 

The variation explained by the first two principle components of the PCA was low (PC1 9.86%, PC2 7.65%) 268 

and no prominent genetic clusters could be identified (Fig. 3a). Also, the BIC plot of the DAPC indicated K=1 269 

as optimal (Fig. 3c). This suggested no meaningful genetic clustering in the population. In contrast, for the 270 

STRUCTURE analysis, the Evanno method identified a clear peak of delta(K) for K=4 (delta(K)=57.07; Fig. 3d). 271 

However, the Evanno method cannot identify an optimum of K=1 and may indicate peaks at higher values of K 272 

even in the absence of any genetic structure (Evanno et al. 2005). The mean Ln P(D) across different values of 273 

K remains consistent with no distinct maximum value or plateau (Fig. 3d), suggesting that there may be only a 274 

very weak signal of genetic structure. The STRUCTURE ancestry plot highlights 4 clusters with high admixture 275 

levels in some individuals (Fig. 4b). 276 

Since the two approaches gave slightly different results, we assessed their robustness by comparing the 277 

individual assignments to the four clusters between the multivariate and the Bayesian approach. Based on the 278 

results of the Evanno method, we ran the DAPC with predefined K=4. Three out of the four described clusters 279 

were differentiated along the first PC while the fourth cluster was differentiated more strongly by the second PC 280 

(Supplementary material, Fig. A3). Subsequently, we compared individual assignments from DAPC and 281 

STRUCTURE. In the DAPC analysis all individuals had assignment probabilities of 1, whereas in STRUCTURE, 12 282 

individuals could not be assigned clearly to a single ancestral population (q-values <0.7) and these individuals 283 

were excluded from the comparison. Of the 18 remaining individuals, 16 clustered together in groups consistent 284 

between STRUCTURE and DAPC analyses (Fig. 4). However, these clusters were geographically dispersed. Six 285 

individuals assigned to the same cluster were located in close proximity near an artificial water source (Fig. 4). 286 

However, most individuals were dispersed across the study area with no clear spatial segregation between 287 

genetic clusters. Repeating the genetic structure analysis using only samples collected during the breeding 288 

season did not impact these findings (Supplementary material, B1).  289 

3.3 Individual habitat selection 290 

Compositional analysis of habitat categories revealed that individual habitat selection differed significantly from 291 

random with respect to habitat suitability index (Lambda=0.013, p=0.012, by randomisation) and slope 292 

(Lambda=0.064, p=0.021, by randomisation). The ranking matrix highlighted a clear preference for low slope 293 

and high suitability habitats (Supplementary material, Table A3). Wild ass used more low slope and more 294 

intermediate and high suitability habitat than proportionally available (Fig. 5). The analysis using GPS-collar 295 

data therefore indicated that both habitat suitability index and slope are relevant variables affecting habitat 296 

selection in wild ass. Eigenanalysis of selection ratios indicated no difference in habitat selection between 297 

individuals (Supplementary material, Fig. A4).  298 

3.4 Landscape genetic analysis  299 

None of the tested models of the distance-based redundancy analysis returned significant results and the 300 

explained variance was close to zero for all predictor variables (Table 1). Habitat suitability and slope explained 301 

negligible variation in genetic relatedness between individuals of the population. This was also true for models 302 

controlling for geographic distance and resistance distances, respectively (Table 1). The results were consistent 303 

across models that retained only the first PCo or the first 4 PCos of the explanatory variables, hence, the models 304 

appear to be insensitive to these minor variations, indicating robustness of the results. Repeating the landscape 305 

genetic analysis using only samples collected during the breeding season did not affect the results 306 

(Supplementary material, B2).  307 
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4. Discussion  308 

The analysis revealed some genetic structuring in the reintroduced population of wild ass in Israel. However, 309 

inconsistencies in the optimal number of clusters and individual assignment between the different methods 310 

highlight that the genetic differentiation is weak. These results are consistent with a previous study on the same 311 

population using lower resolution genetic data (eight microsatellite markers) which demonstrated weak yet 312 

significant genetic differentiation between four a priori defined subpopulations (Renan 2014). Taken together, 313 

these results suggest a weak genetic structure within the reintroduced population. Nevertheless, our new 314 

analyses of landscape resistance to individual movement does not support this as being a cause. The analysis of 315 

GPS data showed that landscape resistance affected wild ass habitat selection, with individuals clearly avoiding 316 

low suitability habitats and steep slopes. However, the landscape genetic analysis gave no support for an effect 317 

of landscape resistance on genetic relatedness. 318 

The present study demonstrates that the Asiatic wild ass clearly avoid certain habitats, yet functional 319 

connectivity across the study area appears to be retained. Although large proportions of the habitat have low 320 

suitability, these are interwoven by a network of low resistance paths, which likely facilitate individual 321 

movement across the study area (Fig. 2). In contrast to our expectations, habitat resistance based on slope was 322 

found to have no negative association with relatedness. Slopes above 30° account for only a very small 323 

proportion of the habitat in the Negev, nonetheless, they occur in the form of steep cliffs extending over large 324 

geographical areas and are expected to form true barriers to wild ass movement. However, wild ass are large-325 

bodied, highly mobile mammals which have been reported to range long distances, and it is likely that even if 326 

individuals are unable to climb these cliffs, they can circumvent them (Nandintsetseg et al. 2016; Nezer et al. 327 

2017). In fact, the GPS data showed some long-distance movements by two females, which support the findings 328 

that even high resistance habitat does not prevent movement across the landscape in the Negev population 329 

(Supplementary material, Fig. A1). Therefore, despite being important for individual habitat selection, it 330 

currently appears that slope and habitat suitability have no to little effect on gene flow. These are promising 331 

findings for the reintroduced population of wild ass in Israel and potentially for other equid populations in 332 

heterogenous habitats.    333 

The results contradict our expectations and underlines the importance of testing believed landscape barriers to 334 

gene flow, as assumptions based on movement behaviour or habitat selection may be misleading. Similarly, 335 

other studies have reported differential effects of roads on gene flow, even in cooccurring mammals of similar 336 

size and mobility (Frantz et al. 2012). In this study we investigated generic movement from GPS records and 337 

found that wild ass appeared to avoid low suitability habitats. However, we did not detect any dispersal 338 

movements and it is possible that dispersing individuals may be willing to cross low suitability habitats which 339 

are otherwise avoided during routine movements (Fey et al. 2016; Keeley et al. 2017). Other studies have found 340 

such patterns, for example radio-tracking of red squirrels identified that dispersing individuals frequently 341 

crossed roads, which were otherwise avoided during routine movements (Fey et al. 2016). Finally, little is 342 

known about the natal dispersal of Asiatic wild ass with regard to seasonality or sex bias. Consequently, in our 343 

habitat selection analysis we did not differentiate between sexes nor test for seasonal effects. However, if such a 344 

bias in natal dispersal existed, it is possible that an existing landscape genetic effect was obscured (Shafer et al. 345 

2012). Long-term data sets from GPS movement records could provide information on wild ass natal dispersal, 346 

which could be used to parameterise dispersal-specific resistance layers and improve landscape genetic analysis.  347 

Despite the apparent lack of a landscape effect on gene flow, the present study identified a weak genetic 348 

structure in the population, which is likely caused by factors that have not been measured here. Three potential 349 

causes for genetic structuring are related to the population’s demographic history. First, at the onset of the 350 

reintroduction, a captive breeding core was created from individuals of two different subspecies (Saltz & 351 

Rubenstein 1995). Differences in the effective niche of these two subspecies may result in divergent habitat 352 

preferences and lead to spatial separation and limited interbreeding, ultimately promoting the rise of genetic 353 

substructure (McDonald et al. 2019). However, an analysis investigating spatial autocorrelation based on 354 

individual hybrid indices found no support for spatial segregation based on subspecies ancestry (unpublished 355 

results). A second possible reason for genetic structuring in our study population is that it could be the signature 356 

of the multiple release events during establishment of the wild population. Individuals were released at two 357 

reintroduction sites, from which they dispersed across the habitat. Founder effects and genetic drift experienced 358 

by the population during early stages of establishment could have resulted in the weak genetic differentiation. 359 

Other studies have described a genetic signature of release events in translocated populations (Williams et al. 360 
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2000; Biebach & Keller 2009; Puckett et al. 2014; Moraes et al. 2017). For example, Grauer et al. (2017) 361 

reported unique patterns of genetic structure caused by serial release events of individuals from different 362 

sources, in a reintroduced population of American Marten. Finally, a behavioural effect related to the resource-363 

defence-polygyny of the Asiatic wild ass could be the cause for the observed genetic clustering (Renan 2014). 364 

Male wild ass defend territories around permanent water sources. Increased resource requirements restrict 365 

females to the vicinity of these permanent water sources during the foaling and breeding season in the summer 366 

(Saltz et al. 2000; Wallach et al. 2007; Boyd et al. 2016). The GPS records of radio collared individuals 367 

reflected these behavioural patterns: Males remained close to a water source all year round, while females 368 

extended their movement range in the winter, yet returned to the same area of the permanent water source in the 369 

summer when mating occurs (Supplementary material, Fig. A1). This seasonal range contraction and the 370 

resulting highly localised breeding activity could result in a genetic differentiation between individuals from 371 

different activity centres (Renan 2014; Giotto et al. 2015). This could explain the presence of a fine-scale weak 372 

genetic structure despite high mobility of the species. A similar effect has been observed in feral horses in 373 

Nevada: during the hot summer, when most of the mating occurred, herds were unable to disperse from the 374 

limited water sources, which resulted in a weak genetic differentiation between subgroups from different water 375 

sources, despite their overlapping winter ranges (Ashley 2004).  376 

While the current analysis failed to identify an effect of habitat on gene flow, it is important to consider the short 377 

lag time since the initial release of individuals which was less than five generations ago (given a generation time 378 

of 7.5 years; Ransom et al. 2016). Landscape resistance may have an impact on gene flow, however, not enough 379 

time has passed for the signal to become established (Landguth et al. 2010). At this point it is not possible to 380 

determine with certainty what is causing the observed weak genetic differentiation. If it is due to the release 381 

events and range expansion combined with genetic drift during the establishment phase, it is expected to 382 

diminish over time due to continued gene flow (Short & Petren 2011). However, if it is caused by a behavioural 383 

or a (not yet detectable) landscape effect, then it is likely to persist or even intensify over time.  384 

Some restriction to gene flow can increase the potential for retaining genetic diversity and is therefore beneficial 385 

(Chesser 1991; Chesser et al. 1993). However, intensification of the genetic structure may lead to population 386 

fragmentation and genetic isolation of subpopulations, which could increase the populations extinction risk 387 

(With & King 1999; Wang et al. 2017). In an isolated population of woodland caribou, Rangifer tarandus 388 

caribou, reduced gene flow has caused the rise of genetic substructure over a short time period (15 years) 389 

(Pelletier et al. 2019). The authors believe that this fragmentation is severely threatening the populations long-390 

term persistence, as a 53% reduction in the population’s inbreeding effective size has been recorded over a 391 

timespan of only two generations. To avoid the risks of genetic isolation, management of the Asiatic wild ass 392 

population should aim to prevent any further reinforcement of the observed structure. Specifically, creating 393 

additional permanent water sources is expected to increase the number of activity centres, minimise distances 394 

between these and possibly encourage more dispersal movements. Furthermore, additional permanent water 395 

sources provide more high-quality territories for Asiatic wild ass, thereby enabling a greater number of males to 396 

contribute to the gene pool (Greenbaum et al. 2018; Renan et al. 2018). 397 

5. Conclusions 398 

Here we presented an investigation into landscape barriers to gene flow in a reintroduced population by 399 

combining GPS movement records and genetic samples. The results demonstrate the importance of genetic 400 

analysis to test presumed landscape barriers to gene flow. Particularly, large-bodied highly mobile species may 401 

likely be able to maintain gene flow even across unsuitable habitat. Further, the present study highlights the 402 

importance for long-term genetic monitoring of reintroduced populations. Genetic structure may develop even 403 

after successful establishment of a growing population (Neuwald & Templeton 2013), and in the absence of 404 

obvious landscape barriers. While this may be simply a transient phenomenon caused by a founder effect, it may 405 

have other underlying causes. If a genetic differentiation persists and intensifies, it can reduce reintroduction 406 

success even long after initial release of individuals and hence should be considered in conservation 407 

management protocols (Kramer-Schadt et al. 2004). 408 

  409 



9 

 

References 410 

Aebischer NJ, Robertson PA, Kenward RE. 1993. Compositional analysis of habitat use from animal radio-411 

tracking data. Ecology 74:1313–1325. 412 

Altman A. 2016. Female group size in Asiatic wild ass. Ben-Gurion University of the Negev, Israel. 413 

Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. Available from 414 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc. 415 

Armstrong DP, Seddon PJ. 2008. Directions in reintroduction biology. Trends in Ecology and Evolution 23:20–416 

25. 417 

Ashley MC. 2004. Population genetics of feral horses: Implications of behavioral isolation. Journal of 418 

Mammalogy 85:611–617. 419 

Baguette M, Blanchet S, Legrand D, Stevens VM, Turlure C. 2013. Individual dispersal, landscape connectivity 420 

and ecological networks. Biological Reviews 88:310–326. 421 

Benton TG, Bowler DE. 2012. Dispersal in invertebrates: influences on individual decisions. Pages 41–49 in J. 422 

Colbert, M. Baguette, T. G. Benton, and J. M. Bullock, editors. Dispersal ecology and evolution. Oxford 423 

University Press, Oxford. 424 

Bergl RA, Vigilant L. 2007. Genetic analysis reveals population structure and recent migration within the highly 425 

fragmented range of the Cross River gorilla (Gorilla gorilla diehli). Molecular Ecology 16:501–516. 426 

Biebach I, Keller LF. 2009. A strong genetic footprint of the re-introduction history of Alpine ibex ( Capra ibex 427 

ibex ). Molecular Ecology 18:5046–5058. 428 

Boyd L, Scorolli A, Nowzari H, Bouskila A. 2016. Social Organization of Wild Equids. Pages 7–22 in P. 429 

Kaczensky and J. I. Ransom, editors. Wild Equids: Ecology, Management and Conservation. Johns 430 

Hopkins University Press, Baltimore, MD. 431 

Bozzuto C, Biebach I, Muff S, Ives AR, Keller LF. 2019. Inbreeding reduces long-term growth of Alpine ibex 432 

populations. Nature Ecology & Evolution 3:1359–1364. Available from https://doi.org/10.1038/s41559-433 

019-0968-1. 434 

Buttigieg PL, Ramette A. 2014. A guide to statistical analysis in microbial ecology: a community-focused, 435 

living review of multivariate data analyses. FEMS microbiology ecology 90:543–550. 436 

Calenge C. 2006. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use 437 

by animals. Ecological Modelling 197:516–519. 438 

Catchen JM, Hohenlohe PA, Bassham S, Amores A, Cresko WA. 2013. Stacks: An analysis tool set for 439 

population genomics. Molecular Ecology 22:3124–3140. 440 

Chesser RK. 1991. Influence of gene flow and breeding tactics on gene diversity within populations. Genetics 441 

129:573–583. 442 

Chesser RK, Rhodes OE, Sugg DW, Schnabel A. 1993. Effective sizes for subdivided populations. Genetics 443 

135:1221–1232. 444 

Danecek P et al. 2011. The variant call format and VCFtools. Bioinformatics 27:2156–2158. Oxford University 445 

Press. Available from https://academic.oup.com/bioinformatics/article-446 

lookup/doi/10.1093/bioinformatics/btr330 (accessed August 15, 2018). 447 

Danin A. 1999. Desert rocks as plant refugia in the Near East. Botanical Review 65:93–170. 448 

Davidson A, Carmel Y, Bar-David S. 2013. Characterizing wild ass pathways using a non-invasive approach: 449 

Applying least-cost path modelling to guide field surveys and a model selection analysis. Landscape 450 

Ecology 28:1465–1478. 451 

Earl DA, vonHoldt BM. 2012. STRUCTURE HARVESTER: A website and program for visualizing 452 

STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4:359–453 

361. 454 



10 

 

ESRI. 2011. ArcGIS Desktop: Release 10. Environmental Systems Research Institute, Redlands, California. 455 

Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software 456 

STRUCTURE: a simulation study. Molecular ecology 14:2611–20. Available from 457 

http://www.ncbi.nlm.nih.gov/pubmed/15969739. 458 

Fey K, Hämäläinen S, Selonen V. 2016. Roads are no barrier for dispersing red squirrels in an urban 459 

environment. Behavioral Ecology 27:741–747. 460 

Frankham R, Ballou JD, Briscoe DA, McInnes KH. 2002. Effects of Population Size Reduction. Pages 225–226 461 

in D. A. Briscoe, J. D. Ballou, and R. Frankham, editors. Introduction to Conservation Genetics. 462 

Cambridge University Press, Cambridge. 463 

Frantz AC, Bertouille S, Eloy MC, Licoppe A, Chaumont F, Flamand MC. 2012. Comparative landscape 464 

genetic analyses show a Belgian motorway to be a gene flow barrier for red deer (Cervus elaphus), but not 465 

wild boars (Sus scrofa). Molecular Ecology 21:3445–3457. 466 

Giotto N, Gerard JF, Ziv A, Bouskila A, Bar-David S. 2015. Space-use patterns of the Asiatic Wild Ass (Equus 467 
hemionus): Complementary insights from displacement, recursion movement and habitat selection 468 

analyses. PLoS ONE 10:1–21. Available from http://dx.doi.org/10.1371/journal.pone.0143279. 469 

Grauer JA, Gilbert JH, Woodford JE, Eklund D, Anderson S, Pauli JN. 2017. Unexpected genetic composition 470 

of a reintroduced carnivore population. Biological Conservation 215:246–253. Elsevier. Available from 471 

http://dx.doi.org/10.1016/j.biocon.2017.09.016. 472 

Greenbaum G, Renan S, Templeton AR, Bouskila A, Saltz D, Rubenstein DI, Bar-David S. 2018. Revealing 473 

life-history traits by contrasting genetic estimations with predictions of effective population size. 474 

Conservation Biology 32:817–827. Available from http://doi.wiley.com/10.1111/cobi.13068. 475 

Gueta T, Templeton AR, Bar-David S. 2014. Development of genetic structure in a heterogeneous landscape 476 

over a short time frame: the reintroduced Asiatic wild ass. Conservation Genetics 15:1231–1242. 477 

Henley SR, Ward D, Schmidt I. 2007. Habitat selection by two desert-adapted ungulates. Journal of Arid 478 

Environments 70:39–48. 479 

Howell PE, Koen EL, Williams BW, Roloff GJ, Scribner KT. 2016. Contiguity of landscape features pose 480 

barriers to gene flow among American marten (Martes americana) genetic clusters in the Upper Peninsula 481 

of Michigan. Landscape Ecology 31:1051–1062. 482 

Johnson DH. 1980. The comparison of usage and availability measurements for evaluating resource preference. 483 

Ecology 61:65–71. Wiley Online Library. 484 

Jombart T. 2008. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 485 

24:1403–1405. 486 

Jombart T, Devillard S, Balloux F. 2010. Discriminant analysis of principal components: A new method for the 487 

analysis of genetically structured populations. BMC Genetics 11:94–109. 488 

Keeley ATH, Beier P, Keeley BW, Fagan ME. 2017. Habitat suitability is a poor proxy for landscape 489 

connectivity during dispersal and mating movements. Landscape and Urban Planning 161:90–102. 490 

Elsevier B.V. Available from http://dx.doi.org/10.1016/j.landurbplan.2017.01.007. 491 

Kramer-Schadt S, Revilla E, Wiegand T, Breitenmoser U. 2004. Fragmented landscapes, road mortality and 492 

patch connectivity: Modelling influences on the dispersal of Eurasian lynx. Journal of Applied Ecology 493 

41:711–723. 494 

Landguth EL, Cushman SA, Schwartz MK, McKelvey KS, Murphy M, Luikart G. 2010. Quantifying the lag 495 

time to detect barriers in landscape genetics. Molecular Ecology 19:4179–4191. 496 

Legendre PP, Andersson MJ, Anderson M. 1999. Distance-based redundancy analysis: Testing multispecies 497 

responses in multifactorial ecological experiments. Ecological Monographs 69:1–24. 498 

MacArthur RH. 1957. On the relative abundance of bird species. Proceedings of the National Academy of 499 

Sciences of the United States of America 43:293–295. 500 

Manel S, Schwartz MK, Luikart G, Taberlet P, Manel, Stephanie, Schwartz MK, Luikart G, Taberlet P. 2003. 501 



11 

 

Landscape genetics: combining landscape ecology and population genetics. Trends in Ecology and 502 

Evolution 18:8–9. 503 

McDonald MM, Johnson SM, Henry ER, Cunneyworth PMK. 2019. Differences between ecological niches in 504 

northern and southern populations of Angolan black and white colobus monkeys ( Colobus angolensis 505 

palliatus and Colobus angolensis sharpei ) throughout Kenya and Tanzania. American Journal of 506 

Primatology:e22975. 507 

McRae B, Shah V, Mohapatra T. 2013. CIRCUITSCAPE User Guide. Available from 508 

http://www.circuitscape.org. 509 

Mills LS, Allendorf FW. 1996. The one-migrant-per-generation rule in conservation and management. 510 

Conservation Biology 10:1509–1518. Available from http://doi.wiley.com/10.1046/j.1523-511 

1739.1996.10061509.x. 512 

Moraes AM, Ruiz-Miranda CR, Ribeiro MC, Grativol AD, da S. Carvalho C, Dietz JM, Kierulff MCM, Freitas 513 

LA, Galetti PM. 2017. Temporal genetic dynamics of reintroduced and translocated populations of the 514 

endangered golden lion tamarin (Leontopithecus rosalia). Conservation Genetics 18:995–1009. 515 

Nandintsetseg D, Kaczensky P, Ganbaatar O, Leimgruber P, Mueller T. 2016. Spatiotemporal habitat dynamics 516 

of ungulates in unpredictable environments: The khulan (Equus hemionus) in the Mongolian Gobi desert 517 

as a case study. Biological Conservation 204:313–321. Elsevier Ltd. Available from 518 

http://dx.doi.org/10.1016/j.biocon.2016.10.021. 519 

Neuwald JL, Templeton AR. 2013. Genetic restoration in the eastern collared lizard under prescribed woodland 520 

burning. Molecular Ecology 22:3666–3679. 521 

Nezer O, Bar-David S, Gueta T, Carmel Y. 2017. High-resolution species-distribution model based on 522 

systematic sampling and indirect observations. Biodiversity and Conservation 26:421–437. Springer 523 

Netherlands. 524 

Oksanen J, Blanchet FG, Kindt R, Legendre P, O’hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. 525 
2010. Vegan: community ecology package. R package version 1.17-4. http://cran. r-project. org>. Acesso 526 

em 23:2010. 527 

Paradis E, Schliep K. 2018. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. 528 

Bioinformatics 35:526–528. Oxford University Press. 529 

Paris JR, Stevens JR, Catchen JM. 2017. Lost in parameter space: A road map for stacks. Methods in Ecology 530 

and Evolution 8:1360–1373. 531 

Pelletier F, Turgeon G, Bourret A, Garant D, St-Laurent MH. 2019. Genetic structure and effective size of an 532 

endangered population of woodland caribou. Conservation Genetics 20:203–213. Springer Netherlands. 533 

Available from http://dx.doi.org/10.1007/s10592-018-1124-1. 534 

Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. 2012. Double digest RADseq: An inexpensive 535 

method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7. 536 

Pew J, Muir PH, Wang J, Frasier TR. 2015. related: an R package for analysing pairwise relatedness from 537 

codominant molecular markers. Molecular Ecology Resources 15:557–561. Wiley Online Library. 538 

Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. 539 

Genetics 155:945–959. 540 

Puckett EE et al. 2014. Influence of drift and admixture on population structure of American black bears (Ursus 541 
americanus) in the Central Interior Highlands, USA, 50 years after translocation. Molecular Ecology 542 

23:2414–2427. 543 

R core team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical 544 

Computing, Vienna, Austria. Available from https://www.r-project.org/.%0A. 545 

Ransom JI, Lagos L, Hrabar H, Nowzari H, Usukhjargal D, Spasskaya N. 2016. Wild and feral equid population 546 

dynamics. Pages 87–104 in J. I. Ransom and P. Kaczensky, editors. Wild equids: Ecology, management, 547 

and conservation. Johns Hopkins University Press, Baltimore. 548 

Renan S. 2014. From behavioral patterns to genetic structure: The reintroduced Asiatic Wild Ass (Equus 549 



12 

 

hemionus) in the Negev Desert. Ben-Gurion University of the Negev, Israel. 550 

Renan S, Speyer E, Ben-Nun T, Ziv A, Greenbaum G, Templeton AR, Bar-David S, Bouskila A. 2018. Fission-551 

fusion social structure of a reintroduced ungulate: Implications for conservation. Biological Conservation 552 

222:261–267. Available from https://doi.org/10.1016/j.biocon.2018.04.013. 553 

Rubenstein DI. 1994. The Ecology of female social behaivour in Horses Zebras and Asses. Pages 13–28 Animal 554 

Societies: individuals, interactions and organization. 555 

Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I. 1998. Inbreeding and extinction in a 556 

butterfly metapopulation. Nature 392:491–494. Springer Netherlands. Available from 557 

http://dx.doi.org/10.1016/j.biocon.2011.12.034 (accessed November 19, 2018). 558 

Saltz D, Rowen M, Rubenstein DI. 2000. The effect of space-use patterns of reintroduced Asiatic wild ass on 559 

effective population size. Conservation Biology 14:1852–1861. Available from 560 

http://dx.doi.org/10.1111/j.1523-1739.2000.99227.x. 561 

Saltz D, Rubenstein DI. 1995. Population dynamics of a reintroduced Asiatic wild ass ( Equus hemionus ) herd. 562 

Ecological Applications 5:327–335. 563 

Seddon PJ, Soorae PS. 1999. Guidelines for subspecific substitutions in wildlife restoration projects. 564 

Conservation Biology 13:177–184. 565 

Shafer ABA, Northrup JM, White KS, Boyce MS, Côté SD, Coltman DW. 2012. Habitat selection predicts 566 

genetic relatedness in an alpine ungulate. Ecology 93:1317–1329. John Wiley & Sons, Ltd. Available 567 

from http://doi.wiley.com/10.1890/11-0815.1 (accessed March 8, 2019). 568 

Sharma BD, Clevers J, De Graaf R, Nawa R. 2004. Mapping Equus kiang ( Tibetan Wild Ass ) habitat in 569 

Surkhang, Upper Mustang, Nepal. International Mountain Society 24:149–156. 570 

Short KH, Petren K. 2011. Fine-scale genetic structure arises during range expansion of an invasive gecko. 571 

PLoS ONE 6. 572 

Spear SF, Balkenhol N, Fortin MMJ, McRae BH, Scribner K. 2010. Use of resistance surfaces for landscape 573 

genetic studies: Considerations for parameterization and analysis. Molecular Ecology 19:3576–3591. 574 

Stern E, Gradus Y, Meir A, Krakover S, Tsoar H. 1986. Atlas of the Negev. Keter Publishing House, Jerusalem. 575 

Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, 576 

Waits LP. 2007. Putting the “landscape” in landscape genetics. Heredity 98:128–142. 577 

Templeton AR. 2017. Measuring biodiversity and monitoring ecological and evolutionary processes with 578 

genetic and genomic tools. Pages 251–265 in J. Garson, A. Plutynski, and S. Sarkar, editors. The 579 

Routledge handbook of philosophy of biodiversity. Routledge, New York. 580 

Templeton AR, Brazeal H, Neuwald JL. 2011. The transition from isolated patches to a metapopulation in the 581 

eastern collared lizard in response to prescribed fires. Ecology 92:1736–1747. 582 

Wallach AD, Inbar M, Scantlebury M, Speakman JR, Shanas U. 2007. Water requirements as a bottleneck in the 583 

reintroduction of European roe deer to the southern edge of its range. Canadian Journal of Zoology 584 

85:1182–1192. Available from http://www.nrcresearchpress.com/doi/10.1139/Z07-098. 585 

Wang J. 2002. An estimator for pairwise relatedness using molecular markers. Genetics 160:1203–1215. 586 

Genetics. Available from http://www.ncbi.nlm.nih.gov/pubmed/10924488 (accessed August 7, 2018). 587 

Wang J. 2017. Estimating pairwise relatedness in a small sample of individuals. Heredity 119:302–313. Nature 588 

Publishing Group. Available from http://dx.doi.org/10.1038/hdy.2017.52. 589 

Wang W, Qiao Y, Li S, Pan W, Yao M. 2017. Low genetic diversity and strong population structure shaped by 590 

anthropogenic habitat fragmentation in a critically endangered primate, Trachypithecus leucocephalus. 591 

Heredity 118:542–553. 592 

Williams RN, Rhodes OE, Serfass TL. 2000. Assessment of genetic variance among source and reintroduced 593 

fisher populations. Journal of Mammalogy 81:895–907. 594 

With KA, King AW. 1999. Extinction thresholds for species in fractal landscapes. Conservation Biology 595 



13 

 

13:314–326. 596 

Wolf CM, Garland T, Griffith B. 1998. Predictors of avian and mammalian translocation success: Reanalysis 597 

with phylogenetically independent contrasts. Biological Conservation 86:243–255. 598 

Ziółkowska E, Perzanowski K, Bleyhl B, Ostapowicz K, Kuemmerle T. 2016. Understanding unexpected 599 

reintroduction outcomes: Why aren’t European bison colonizing suitable habitat in the Carpathians? 600 

Biological Conservation 195:106–117. 601 

  602 

  603 



14 

 

Tables and Figures  604 

 605 

Table 1 Distance based redundancy analysis models tested and their total variance (Inertia), the % variation 606 

explained (R2) and adjusted % variation explained (adjusted R2), the degrees of freedom (df), F-statistic (F) and 607 

p-value of the permutation tests (9999 permutations). Partial models controlling for a third variable are indicated 608 

with |. 609 

 610 

 611 

  612 

Variable Inertia %Variation 

(constrained 

Inertia or 

R2) 

Adjusted % 

variation 

explained 

(adjustedR2) 

 

df F p 

only first PCo 

retained 

SDM resistance 4.47 3.74% <1% 1 0.972 0.610 

Slope resistance 4.47 3.86% <1% 1 1.003 0.497 

Geographic distance  4.47 3.64% <1% 1 0.943 0.698 

SDM resistance | 

geographic distance 

4.47 3.96% <1% 1 1.028 0.407 

Slope resistance | 

geographic distance 

4.47 3.23% <1% 1 0.833 0.915 

Geographic distance 

| SDM resistance 

4.47 3.85% <1% 1 1.000 0.495 

Geographic distance 

| slope resistance 

4.47 3.01% <1% 1 0.776 0.961 

first 4 PCos retained 

SDM resistance 4.47 15.05% <1% 4 0.975 0.682 

Slope resistance 4.47 15.98% <1% 4 1.046 0.204 

Geographic distance  4.47 14.48% <1% 4 0.932 0.881 

SDM resistance | 

geographic distance 

4.47 15.84% <1% 4 1.023 0.415 

Slope resistance | 

geographic distance  

4.47 15.12% <1% 4 0.967 0.655 

Geographic distance 

| SDM resistance 

4.47 15.27% <1% 4 0.986 0.577 

Geographic distance 

| slope resistance  

4.47 13.63% <1% 4 0.871 0.918 
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 613 

Fig. 1 Map of the study area in Southern Israel, depicting locations of Equus hemionus ssp. DNA sample 614 

collection (n=30), release sites of the reintroduction and location of three artificial water sources. The orange 615 

outline indicates the area of the species distribution model created by Nezer et al. (2017) and the study area for 616 

the landscape genetic analysis  617 

 618 

 619 

 620 

Fig. 2 Habitat resistance surfaces for the study area in Southern Israel, based on (a) habitat suitability index and 621 

(b) slope. Shading indicates resistance value.  622 
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 623 

Fig. 3 Optimal number of genetic clusters in the reintroduced population of Equus hemionus ssp. in Southern 624 

Israel. Initial exploration using principle component analysis indicates no distinct clustering along (a) the first 625 

and second and (b) along the first and third principle components. (c) The Bayesian information criterion 626 

(DAPC analysis) is lowest for K=1 indicating no genetic clustering. (d) The Evanno method (STRUCTURE 627 

analysis) indicates a clear peak in Delta(K) for K=4, while the mean Ln P(D), in dots, does not reach a plateau. 628 

 629 
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 630 

Fig. 4 Genetic structure analysis of reintroduced Equus hemionus ssp. in Southern Israel. (a) Spatial distribution 631 

of sampling locations for individuals consistently assigned to the same cluster by both STRUCTURE and a 632 

discriminant analysis of principle components (DAPC). Only individuals with a high assignment probability 633 

(>=0.7) to a single genetic cluster are displayed. Colours indicate 4 genetic clusters (blue, green, red, orange). 634 

White points indicate individuals not assigned consistently by the two analyses. (b) Proportional ancestry of all 635 

individuals (n=30) for K=4 as estimated by STRUCTURE (top) and DAPC (bottom).  636 
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 637 

Fig. 5 Proportional habitat use by 7 E.hemionus ssp. individuals in Southern Israel between 2013-2017 based on 638 

GPS record data. Habitat is classified based on (a) slope and (b) suitability index. Dark bars indicate mean (+-639 

SD) proportional usage by individuals and light bars indicate proportional availability in the study area of each 640 
habitat class. “*” indicates significance by permutation of differences in mean proportional habitat use between 641 

categories.  642 

  643 
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Supplementary material  644 

Appendix A 645 

 646 

Table A1 Location records collected for different time intervals for 7 individuals equipped with GPS collars 647 

recording at hourly intervals  648 

ID Name Sex Start date End date Total time Total 

number of 

records 

Number 

of records 

within 

reduced 

study area  

6000 Ktsoutsy Male 16.10.2012 05.12.2014 25 months 15712 5323 

6001 Short tail Male 08.06.2013 18.04.2014 10 months 7786 4011 

6002  Nahum 

Tacum 

Male 12.07.2013 31.12.2014 17 months 14101 7898 

6003 Gila Female 07.08.2013 08.02.2015 18 months 14980 5547 

6004 Idan Male 08.08.2013 18.01.2015 17 months 14901 2937 

6005 Alona Female 08.07.2015 22.06.2017 24 months 16700 10718 

6006 Ariela Female 17.07.2015 18.02.2017 19 months 14442 3827 

 649 

 650 

 651 

Table A2 Percentage of variation explained by the retained principle coordinates (PCos) of different habitat 652 

resistance variables  653 

Variable Variance explained by 

retained principle 

coordinate  

 

only first PCo retained 

Habitat suitability resistance  34.92% 

Slope resistance  37.07% 

Geographic distance  35.18% 

 

first 4 PCos retained 

Habitat suitability resistance  61.96% 

Slope resistance  63.29% 

Geographic distance  59.41% 

 654 

  655 
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Table A3 Simplified ranking matrix comparing proportional habitat use with overall habitat availability in the 656 

study area for a) different categories of habitat slope and b) different categories of habitat suitability. “+” 657 

indicates the habitat in the row is used more than the habitat in the column, “-“ indicates the opposite. “+++” 658 

and “---” indicate that the difference is significant at p<0.05.  659 

 660 

a) Habitat slope  

 0°-15° 

slope 

 16° -30° 

slope 

>30° slope Rank 

0°-15° slope 

 

 +++ +++ 2 

16°-30° slope 

 

---  +++ 1 

>30° slope 

  

--- ---  0 

 

b) 

 

Habitat suitability  

High 

suitability  

Intermediate 

suitability  

Low 

suitability  

Rank 

High 

suitability  

 +++ +++ 2 

Intermediate 

suitability 

---  +++ 1 

Low 

suitability 

--- ---  0 

 661 
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 662 

Fig. A1 Individual movement tracks for four males (left) and three females (right). Data represent hourly records obtained from GPS collars over a minimum period of 10 663 

months. Left panels indicated movements recorded during the breeding season (June-August), right panels represent movements during non-breeding season (October-May). 664 

For three individuals (Nahum Tacum, Alona, Ariela) data were obtained for two consecutive breeding seasons. Two females (Alona, Ariela) which displayed long-distance 665 

movements during the non-breeding seasons, returned to the area near the permanent water source during breeding season in two consecutive years.666 
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Fig. A2 Percentage variation explained by the principle coordinates of the pairwise resistance matrices based on 667 

a) the species distribution model, b) slope and c) geographic distance. Connected dots are indicating the 668 

variation explained as expected under a broken stick model. Only the first (b, c) or first and second (a) principle 669 

coordinates explain more variation than expected  670 

 671 

 672 

b a 

c 
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 673 

Fig. A3 DAPC plot of the reintroduced Equus hemionus ssp. population in Southern Israel for predefined K=4. 674 

Right inset shows a bar chart of eigenvalues of the PCA with dark retained eigenvalues. Left inset shows a bar 675 

chart of DA eigenvalues with dark corresponding components. 676 

 677 

  678 



24 

 

 679 

 680 

Fig. A4 Results of the eigenanalysis of selection ratios to evaluate habitat selection by 7 GPS-collared Asiatic 681 

wild ass E.h.ssp with respect to a) habitat suitability and b) habitat slope. Top figures show the habitat types, 682 

bottom figures show habitat preference of each individual.  683 

  684 
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Appendix B 685 

B1. Repeated genetic clustering analysis using only samples (N=15) collected during the breeding season (June-686 

August) 687 

The variation explained by the first two principle components of the PCA was low (PC1 7.62%, PC2 6.54%) 688 

and no prominent genetic clusters could be identified (Fig. B1.1a, B1.1b). Also, the BIC plot of the DAPC did 689 

not display a clear minimum value after which the BIC rises again, which would indicate the optimal number of 690 

clusters (Fig. B1.1c). This suggested no meaningful genetic clustering in the population. In contrast, for the 691 

STRUCTURE analysis, the Evanno method identified a clear peak of delta(K) for K=2 (delta(K)=118.78; Fig. 692 

B1.1d). However, the Evanno method cannot identify an optimum of K=1 and may indicate peaks at higher 693 

values of K even in the absence of any genetic structure (Evanno et al. 2005). The mean Ln P(D) across 694 

different values of K displays a plateau between K=2 – K=4 (Fig. B1.1d), supporting the results of the Evanno 695 

method.  696 

To conclude, the genetic structure analysis based on the reduced data set also offers support for the presence of a 697 

weak genetic structure in the populations. The genetic cluster analysis in Structure suggested that the population 698 

may be differentiated into fewer genetic clusters (Best K by Evanno, K=2). However, this is somewhat 699 

expected, given the reduced number of samples.  700 

 701 

Fig. B1.1 Optimal number of genetic clusters in the reintroduced population of Equus hemionus ssp. in Southern 702 

Israel based on the reduced data (N=15) set including only samples collected during the breeding season (June-703 

August). Initial exploration using principle component analysis indicates no distinct clustering along (a) the first 704 

and second and (b) along the first and third principle components. (c) The Bayesian information criterion 705 

(DAPC analysis) does not clearly identify an optimal number of clusters. (d) The Evanno method 706 

(STRUCTURE analysis) indicates a clear peak in Delta(K) for K=2, which is supported by the mean Ln P(D), in 707 

dots, which reaches a plateau between K=2–K=4. 708 

 709 

 710 

 711 

712 
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B2. Repeated landscape genetic analysis using only samples (N=14) collected during the breeding season (June-713 

August) 714 

 715 

For all three resistance variables only the first or first and second PCos explained more variation than expected 716 

under the Broken Stick model (Fig B2.1). However, since this accounted for only ~40% of variation in each 717 

variable, we repeated the analysis with the first 4 PCos retained which accounted for ~70% of variation (Table 718 

B2.1).  None of the tested models of the distance-based redundancy analysis returned significant results and the 719 

explained variance was very low (<3%) for all predictor variables (Table B2.2). Habitat suitability and slope 720 

explained negligible variation in genetic relatedness between individuals of the population. This was also true 721 

for models controlling for geographic distance and resistance distances, respectively (Table B2.2).  722 

 723 

 724 

 725 

 726 

 727 

Fig. B2.1 Percentage variation explained by the principle coordinates of the pairwise resistance matrices based 728 

on a) the species distribution model, b) slope and c) geographic distance. Connected dots are indicating the 729 

variation explained as expected under a broken stick model. Only the first (b, c) or first and second (a) principle 730 

coordinates explain more variation than expected  731 

  732 

a b 

c 
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Table B2.1 Percentage of variation explained by the retained principle coordinates (PCos) of different habitat 733 

resistance variables  734 

Variable Variance explained by 

retained principle 

coordinate  

 
only first PCo retained 

Habitat suitability resistance  40.88% 

Slope resistance  48.11% 

Geographic distance  39.65% 

 

first 4 PCos retained 

Habitat suitability resistance  72.01% 

Slope resistance  81.92% 

Geographic distance  69.03% 

 735 

 736 

Table B2.2 Distance based redundancy analysis models tested for samples (N=14) collected during the breeding 737 

season (June-August). Total variance (Inertia), the % variation explained (R2) and adjusted % variation 738 

explained (adjusted R2), the degrees of freedom (df), F-statistic (F) and p-value of the permutation tests (9999 739 

permutations). Partial models controlling for a third variable are indicated with |.  740 

 741 

 742 

 743 

Variable Inertia %Variation 

(constrained 

Inertia or 

R2) 

Adjusted % 

variation 

explained 

(adjustedR2) 

 

df F p 

only first PCo retained 

SDM resistance 0.74 9.58% 2.04% 1 1.271 0.175 

Slope resistance 0.74 8.71% 1.10% 1 1.145 0.290 

Geographic distance  0.74 9.53% 1.99% 1 1.264 0.179 

SDM resistance | geographic 

distance 

0.74 7.98% <1% 1 1.063 0.389 

Slope resistance | geographic 

distance 

0.74 6.01% <1% 1 0.782 0.773 

Geographic distance | SDM 

resistance 

0.74 7.93% <1% 1 1.057 0.401 

Geographic distance | slope 

resistance 

0.74 6.83% <1% 1 0.889 0.624 

first 4 PCos retained 

SDM resistance 0.74 28.87% <1% 4 0.913 0.726 

Slope resistance 0.74 31.59% 1.19% 4 1.039 0.393 

Geographic distance  0.74 29.14% <1% 4 0.926 0.690 

SDM resistance | geographic 

distance 

0.74 31.23% <1% 4 0.985 0.520 

Slope resistance | geographic 

distance  

0.74 32.47% 2.56% 4 1.058 0.407 

Geographic distance | SDM 

resistance 

0.74 31.51% <1% 4 0.994 0.514 

Geographic distance | slope 

resistance  

0.74 30.03% <1% 4 0.978 0.526 


