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Abstract. This paper discusses optimum design approaches for a novel tuned-inerter-hysteretic-

damper (TIhD) which is a passive vibration suppression device for building structures subject

to earthquake base excitations. The TIhD has a linear hysteretic damping element connected

in series with an inerter. This device exploits the advantage of linear hysteretic damping which

can reduce the structural response amplification at frequencies above resonance, due to the

frequency dependent damping. In the present study, the effectiveness of this device in reducing

seismic response of building structures is assessed and the optimum tuning of the device param-

eters is explored. In particular, eight different earthquakes are selected for a case study. The

optimum parameters of the TIhD are obtained numerically by using the Self-Adaptive Differen-

tial Evolution (SADE) algorithm. The optimisation criterion is the minimum root-mean-square

(RMS) value of the top-storey displacement response of the structure. The performance of this

tuning configuration is then compared to that of a classically tuned device. The tuning perfor-

mance is also compared across a range of simulated earthquakes, giving new insight into the

challenges of optimising inerter designs that involve hysteretic damping.
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1 INTRODUCTION

In earthquake engineering practice, the use of inerters for suppressing structural vibration

due to earthquakes has received a significant attention recently. An inerter is a two terminal

mechanical device that generates forces proportional to the relative acceleration between its

two terminals. In most studies, the inerter is combined with a spring and dashpot to form an

inerter-based-damper (IBD). Several IBD concepts have been proposed in literature. Three of

the most popular ones are the tuned-inerter-damper (TID), tuned-mass-damper-inerter (TMDI)

and tuned-viscous-mass-damper (TVMD).

The TID was first introduced by Lazar et al. [1] in 2014. The layout of the TID is very similar

to a classical tuned mass damper (TMD), but the mass md is replaced by an inerter element with

inertance constant bd. It has been shown to have a similar behavior with TMD. For example,

the optimum tuning of the TID shows two equal peaks in the host structure frequency response

assuming harmonic case. However, the presence of an inerter makes it possible to achieve a

large mass ratio with a small physical mass. Furthermore it has been proven that the optimum

location of the TID in a multi-storey building structure is on the base [1]. This is another benefit

of the TID compared to the TMD, whose optimum location is on the top storey of a structure.

A study to enhance the TMD performance by employing an inerter led to a concept called

tuned-mass-damper-inerter (TMDI) [2]. It is basically a TMD with an inerter connected in

series. The TMDI can be considered as an ideal TID with the TMDI mass element md repre-

senting the physical mass of the inerter. When the inerter mass is zero (md = 0), the TMDI

becomes a TID.

The first IBD introduced in the literature was the TVMD [3]. It consists of a parallel con-

nected inerter and dashpot in series with a spring. A simple design method of the TVMD for

MDOF structures can be found in [4]. The TVMD proposed in [4] combines a device called

viscous-mass-damper (VMD) with a chevron bracing. The VMD is a combined inerter and

dashpot in parallel. The inerter is given by a flywheel driven by a ball-screw mechanism and

the dashpot is given by fluid flow. Another reaslisation of the TVMD can be found in [5], where

a rack-and-pinion type of inerter was combined with an viscous damper in parallel. The spring

element is given by a chevron bracing.

Recently, research on the IBD has been focused on three main areas: (1) The application and

optimisation of IBD for different systems and condition, for examples see [6–8]; (2) Experi-

mental validation, for examples see [9–11]; (3) studies of the IBD considering different layout

or different type of inerter, stiffness and damping, for examples see [12–15]. From these three

areas of research, one common discussion is about the IBD optimisation. Mostly, the optimi-

sations of the IBD are based on the fixed-point theory (FPT) of Den Hartog [16]. However

this is limited to the harmonic excitation case. For random and nonstationary signals such as

earthquakes, often numerical approaches are used, for example see [8].

In this paper, an optimisation of a novel tuned-inerter-hysteretic-damper (TIhD) is discussed.

The TIhD is the case when a material damper is connected in series with an inerter. In this case

the material damper is represented by a linear hysteretic damping or complex stiffness. An ex-

tensive discussion about this concept has been discussed by the authors in a separate paper [17].

In the present work, a particular emphasis is given to the TIhD optimisation for building struc-

tures subject to earthquake base excitations. Specifically, a self-adaptive-differential-evolution

(SADE) algorithm [18] is used to obtain the TIhD optimum parameters.
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2 STRUCTURAL SYSTEM

To assess the structural performance with an optimized TIhD, a SDOF structure is selected as

shown in Figure 1. Here m and k are the structural mass and stiffness respectively, and bd is the

m x

k bd
kd

sh y

r
Figure 1: SDOF structure with a TIhD

TIhD inertance. For a numerical example in this paper, m and k are assumed to be 1tonne and

10kN/m. The hysteretic damping of the TIhD is represented by a complex stiffness kd(1 + jη),
where j =

√
−1. kd and sh are the real and imaginary stiffness terms so that the loss factor is

η = sh/kd. The structure is subjected to earthquake base displacement r(t). The equation of

motion of the structure is given by

(

mẍ(t) + k(x(t)− r(t)) + bd(ẍ(t)− ÿ(t)) = 0

bd(ẍ(t)− ÿ(t)) = kd(1 + jη)(y(t)− r(t))
(1)

where x(t) and y(t) are the displacement response of the lumped mass, m, and the TIhD dis-

placement repectively.

It is important to note that the complex stiffness kd(1 + jη) is a noncausal model meaning

physically it is not realisable. However, this model has been widely accepted in analysis [19]

to accurately represent a class of nonlinear damping [20], as well as the phenomena of energy

dissipation in a variety of materials such as rubber and viscoelastic polymers [21–24]. Due to

its noncausality, it is common in practice to simplify the damping as a viscous damping via an

equivalent viscous damping. This is in fact not accurate, especially at frequencies away from

the resonance. Therefore a special time domain method is required to analyze such structure in

the time domain as has been extensively discussed by the authors in [17].

3 OPTIMISATION PROCEDURE

In this paper, the time domain technique was adopted to optimize the TIhD parameters for a

seismic application. Firstly, the TIhD was optimized based on an extended FPT adopted from

Hu et al. [25] with an additional fine tuning procedure as discussed in [17]. For a given mass

ratio, µ = bd

m
= 0.9, the result is shown in Figure 2. In earthquake engineering practice this

approach is not appropriate due to the broad band nature of the earthquakes, but it is often used

for a preliminary design due to its simplicity.

Secondly, a SADE algorithm [18] was adopted to find the TIhD optimum parameters for

some different earthquakes. The objective function is the minimum root-mean-square (RMS)

value of the structural response x(t). For one specific earthquake it is expressed by

bdmin
≤ bd ≤ bdmax

; kdmin
≤ kd ≤ kdmax

; ηmin ≤ η ≤ ηmax

min|RMS(x(t))| (2)
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It is important to set a feasible limitation for bd, kd and η as shown in Eq.2 to reduce the

computational cost. In this study, the limitations are 0.1 ≤ bd ≤ 0.9; 0.1 ≤ kd ≤ 10; 0.1 ≤ η ≤
2. Another important note is that the use of the SADE algorithm to obtain the RMS value of

the structural response requires a time domain analysis. In this case, it has been made possible

because of the time domain analysis proposed by the authors [17] for structures with linear

hysteretic damping.

Figure 2: Maximum absolute displacement for µ = 0.9, kd = 3.47kN/m and η = 1.26

4 RESULTS AND DISCUSSION

In order to asses the effectiveness of the SADE algorithm against the FPT for minimizing a

structural response subject to seismic excitations, eight different earthquakes were selected as

shown in Figure 3.
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Figure 3: Fourier spectrum of the considered earthquakes ground motion

Figure 4 shows the RMS of the structural displacement response comparison between the
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optimised TIhD obtained by the FPT and by the SADE algorithm given by the Eq. 2. In this

Figure, the RMS value of each earthquake is normalised against the RMS value from the FPT

which is set to 100%. It is obvious that the SADE algorithm gives better reduction of the RMS

value for all of the selected earthquakes. This is however not a practical solution because it

leads to many inertance-stiffness-loss factor (ISL) configurations as shown in Table 1. For a

realistic implementation, one configuration must be chosen, without prior knowledge of the

specific earthquake excitation.
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Figure 4: Normalised root mean square of the structural displacement response, SADE - Eq. 2
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Figure 5: Cross-optimisation, SADE - Eq. 2

Figure 5 shows a cross-optimisation, meaning one configuration was selected from one par-

ticular earthquake to be used for simulation of other earthquake cases. For example, the first

group of bars shows the structural response subjected to the eight considered earthquakes using

one ISL configuration optimized for Chi Chi earthquake. The structural performance is being

compared with the FPT which is set to 0%. Hence any negative values means a reduction on the

structural response, on the other hand, any positive values means an amplification on the struc-

tural response relative to the FPT. For example, the group of bars for Landers implies that using

one ISL configuration optimised for Landers earthquake for all other considered earthquakes

makes the structural performance better than the one obtained via the FPT.

The group of bars for L’Aquila and Landers in Figure 5 in this case are the best result of this

cross-optimisation since all other groups of bars show both positive and negative values. This
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simulation also implies that a correct formulation to chose or obtain the best ISL configuration

is required. For this reason, a method that is based on the SADE algorithm was developed

to find the best ISL configuration that gives minimum average RMS values of the structural

performance subjected to a number of ground motions. It is expressed as

bdmin
≤ bd ≤ bdmax

; kdmin
≤ kd ≤ kdmax

; ηmin ≤ η ≤ ηmax

min

�

�

�

�

�

P

n

i=1
RMS(xi(t))

n

�

�

�

�

�

(3)

where n is the number of considered earthquake input signals.

Figure 6 shows the structural performance comparison between the two approaches against

the FPT. The second approach is (although not strictly better than the first approach) almost as

good and clearly still superior than the FPT. It is in fact is more practical than the first approach

because, as shown in Table 1, it has only one ISL configuration as in the case of the FPT. Two
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Figure 6: Normalised root mean square of the structural displacement response, SADE - Eq. 2 and 3

.

examples of the displacement response time history of the considered structure are given in

Figure 7.
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Figure 7: Examples of time history displacement response of the considered structure subjected to displacement

ground motions (a) Kobe (b) Mexico

.
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Table 1: TIhD optimum parameters

Earthquake

Fixed-point-theory (FPT) SADE - Eq. 2 SADE - Eq. 3

bd kd η bd kd η bd kd η

(Tonne) (kN/m) (Tonne) (kN/m) (Tonne) (kN/m)

Chi Chi

0.9 3.47 1.26

0.9 6.58 0.71

0.9 6.88 0.63

El-Centro 0.9 5.66 0.42
Kobe 0.9 8.01 0.50

Kern County 0.9 4.22 0.80
Landers 0.9 3.71 1.14
L’Aquila 0.9 4.30 1.06

Northridge 0.9 7.68 0.54
Mexico 0.9 8.16 0.39

5 CONCLUSION

This paper presents the optimum design of the TIhD for long-period structures subjected to

seismic ground motions. The optimisation method is based on the combined SADE algorithm

and the time domain method for the TIhD to obtain the best ISL configuration of the TIhD.

There are two approaches presented in this study. The first approach is to find the minimum

RMS value of the structural response for each of the considered earthquakes. Although the

results show a superior benefit compared to the fixed point theory, it is however not practical

because there is one ISL configuration obtained for one specific earthquake. As a result, there

are many ISL configurations obtained depending on the number of the considered earthquake.

The second approach is to find the best ISL configuration that gives minimum average RMS

value of the structural response for all of the considered earthquakes. The second approach

is considered to be a more practical solution and can be directly compared to the fixed point

theory.

It has been shown that numerically optimised designs of TIhD can outperform those design

using the classical fixed point theory. This is because the numerical method accommodates

frequency independency, relying on a recently developed time-domain solution algorithm for

hysteretic damping [17]. However this obviously requires a priori knowledge of the seismic

excitation. Consequently further work should extend this approach to consider more formal

earthquake design methodologies as part of the time-domain optimisation.
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