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Equation discovery for nonlinear dynamical systems:

a Bayesian viewpoint

R. Fuentes, R. Nayek, P. Gardner, N. Dervilis, T. Rogers, K. Worden, E.J. Cross

Dynamics Research Group, Department of Mechanical Engineering, University of Sheffield

Mappin Street, Sheffield S1 3JD, UK

Abstract

This paper presents a new Bayesian approach to equation discovery – combined structure detection

and parameter estimation – for system identification (SI) in nonlinear structural dynamics. The

structure detection is accomplished via a sparsity-inducing prior within a Relevance Vector Machine

(RVM) framework; the prior ensures that terms making no contribution to the model are driven

to zero coefficient values. Motivated by the idea of compressive sensing (CS) and recent results

from the machine learning community on sparse linear regression, the paper adopts the use of an

over-complete dictionary to represent a large number of candidate terms for the equation describing

the system. Unlike other sparse learners, like the Lasso and its derivatives, which are potentially

sensitive to hyperparameter selection, the proposed method exploits the principled means of fixing

priors and hyperpriors that are available via a hierarchical Bayesian approach. The approach is

successfully demonstrated and validated via a number of simulated case studies of common Single-

Degree-of-Freedom (SDOF) nonlinear dynamic systems, and on two challenging experimental data

sets.

Keywords: Equation discovery; nonlinear system identification; sparse Bayesian learning;

Relevance Vector Machine (RVM).

1. Introduction

The task of identifying equations that correctly describe an observed system’s dynamics has been

of fundamental interest to the scientific and engineering communities for many years. Historically,

this task has involved the combination of empirical observations with a great deal of scientific

wit. However, modern problems increasingly call for predictive capability (precision and accuracy)

of models beyond what can usually be achieved by human inference alone. Recently, increased

attention has been drawn to the use of statistical and machine learning models for the problem of

system identification (SI), which refers to the task of correctly identifying the model forms, and the
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parameters of such models that best describe the system dynamics. The field was driven forward

largely by the electrical engineering and control systems communities [1], where accurate predictive

models are central to the design of successful control strategies and algorithms. The field of system

identification, however, spans applications within the physical sciences [2], biological systems [3–6],

mechanical and mechatronic systems [7–9] and fluid dynamics [10].

As one might expect, terminology differs across the different application domains. Within the

mechanical and civil engineering communities, system identification has sometimes been referred to

as model updating [11], in the statistical community (with its associated application domains), SI is

referred to as model calibration [12]. The problem is often discussed in terms of two sub-problems:

the problem of determining the functional form of the equations of motion is often termed structure

detection, while the problem of estimating any undetermined parameters within that form is called

parameter estimation [13]. Another name for the problem of addressing both issues at the same time

– and the term of choice in the current paper – is equation discovery. In all cases, the methods make

use of measured data from the system of interest, and are, therefore machine learning methods [14].

The key question under investigation in this paper is of how to accurately and simultaneously recover

the correct equations of motion of a dynamical system together with the associated parameters, at

the same time. Naturally, combined model selection and parameter estimation is significantly more

challenging, with selection of model complexity a particular issue. Bayesian inference has emerged

as a powerful tool to address exactly this type of problem; it has been studied in the field of system

identification owing to its natural ability to quantify uncertainty in parameter estimates [9, 15].

This uncertainty quantification leads directly to the idea of Bayesian model comparison [16, 17],

where one seeks to compare the quality of fit of different models according to posterior probability

distributions (after observing evidence) over them. In general, the inference over entire probability

distributions that the Bayesian approach allows, brings the advantage that one is able to quantify

the uncertainty in the parameter estimates, and potentially propagate this into confidence intervals

on predictions [9]. Furthermore, Bayesian estimation methods offer some natural protection from

overfitting, which is a common problem in engineering contexts where data may be scarce. Bayesian

methods generally implement a form of ‘Occam’s razor’ which controls model complexity [16]. The

current paper is concerned with methods which amplify the ‘Occam’ capability in promoting sparse

solutions.

This paper provides an approach for equation discovery of parametric models based on Bayesian

inference; structure detection will be achieved by selecting terms from a predetermined dictionary.

This dictionary could include for example, a constant offset, linear and polynomial terms, as well
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as trigonometric and discontinuous functions. Upon selection of a dictionary, the learning problem

requires the solution of the linear problem,

y = Dβ + ǫ (1)

where y is the target of interest, D is a matrix with each column corresponding to the inputs

transformed by an element of the dictionary, β, collects the weights corresponding to each dictionary

element, and ǫ is a residual error1. This form will be reintroduced with more rigour in the main body

of the paper. Naturally, this problem is computationally nontrivial, as the dictionary may contain

a very large candidate pool. The problem is one of subset selection in combinatorial optimisation

terms and is NP -hard; further, the multiplying parameter for each term must be estimated.

Classical approaches to system identification make heavy use of techniques derived from linear least-

squares regression to solve problems of the type posed in equation (1) [1], where the assumed model

form is implicit in the design matrix used, and the algorithm returns the vector of parameters β.

However, if a large number M , of candidate basis vectors are included in the design matrix, one

tends to encounter two problems. The first issue is that the problem is under-determined without

a large number of training samples, and may not ensure a numerically-stable solution. The second,

and perhaps more important problem, is that candidate basis vectors that may not really belong

to the model will still have a non-zero contribution to the solution. The main adverse effect from

this is that the remaining parameters for the terms that should be in the model may be biased. In

a nonparametric model, bias is not an issue; however, if the terms in the dictionary are considered

physically meaningful, they will be assigned non-physical values. Furthermore, the biased model

may not generalise well to predictions in unseen circumstances.

This paper presents an approach to solving the type of problem described by equation (1), which sets

to zero any parameters associated with basis functions that should not be in the model. The main

problem is then to determine which basis functions should be present; some condition is needed.

Various methods have arisen in the statistical learning communities that can deal with this type

of problem efficiently. Many methods adopt the principle that one should use the smallest number

of terms possible from the dictionary, i.e. M is small and the solution is sparse. One key idea

is to introduce a penalty term on the traditional least-squares cost function, which leads to an

optimisation problem,

minimise:{
1

2N
||y −Dβ||22 + λ||β||p} (2)

1Throughout this paper, vectors will be denoted by boldface symbols, while matrices will be represented by boldface
capital letters.
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which expresses the penalty over the parameter vector with a general p-norm, weighted by a hy-

perparameter λ; N is the number of training data points. The value of this norm controls how

much the weights will be driven towards smaller values. The ℓ0 (p = 0) norm is the ideal case

for sparse learning as it essentially counts the number of terms in the vector; however, this leads

to a combinatorially-hard problem and also requires non-convex optimisation to solve, making it

impractical. Setting p = 1 leads to the well-known Least absolute shrinkage and selection operator

(Lasso) [18]. This ℓ1-regularisation has become a popular choice for problems where sparse solutions

are sought, as it is effective at shrinking to zero terms that do not contribute; furthermore, it can

be solved using convex optimisation..

Sparse linear regression has recently been investigated in the specific context of equation discovery;

[19] shows that the Lasso can be used effectively for basis selection in learning parsimonious repre-

sentations of nonlinear dynamical systems. The main drawback of the approach is that the level of

sparsity (number of non-zero components) of the solution is completely dictated by the hyperparam-

eter λ, in equation (2). High (resp. low) values of λ lead to more (resp. less) sparse solutions. This

issue means that discovery of the ‘correct’ equations describing the dynamics depends critically on

a ‘correct’ choice of this hyperparameter. In [19], this issue is side-stepped by manual selection of

a threshold that yields a suitable number of basis vectors for each problem. In principle, there are

ways of automatically tuning λ that would yield optimal levels of sparsity, cross-validation being one

of the simplest and most effective [20]; however, other methods exist, such as the Bayesian Lasso

[21].

Further to the issue of having to select a sparsity level, another problem with regularised regression

from a system identification perspective, concerns the accuracy of the solution. The use of regular-

isation explicitly implies that the parameter estimates β of the model will be biased. As discussed

above, this issue does help with overfitting, but will adversely impact the physical interpretation of

the parameters.

In [22], a similar problem formulation was presented by evaluating different candidate functional

forms in a state space representation and using a combination of symbolic regression and genetic

programming to find the functional forms that best matched an observed time series, while also

respecting conservation laws. While the general idea was sound, the approach to optimisation

lacked a natural balance between complexity and predictive accuracy. A genetic program is not

guaranteed to prefer solutions that are simple or parsimonious – this is the problem of bloat in

genetic programming. This paper builds on some of the ideas of [22] and [19] in terms of problem

formulation, but deviates in terms of solution.
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The focus of this paper will be to address these key issues in equation discovery by the use of Bayesian

inference. Apart from uncertainty quantification of the estimated parameters, a Bayesian approach

offers two additional advantages over deterministic approaches: (a) the prior distributions used in a

Bayesian approach naturally allow for penalisation of the parameters and (b) the penalty parameter

is simultaneously estimated with other model parameters and does not require any additional step

such as cross-validation. The approach to Bayesian inference with sparsity investigated here will be

the Relevance Vector Machine (RVM) [23], devised originally as a sparse probabilistic alternative to

the Support Vector Machine (SVM).

The RVM was originally designed for nonparametric learning using kernels, but has proved generally

to be a powerful algorithm for problems of basis selection [24]. The principle behind the RVM is

similar to that of ℓ1-regularised regression; it yields sparse solutions as it relies on a Student-t prior

distribution that is sharply peaked around zero (the Lasso can be shown to be a special case of

Bayesian inference under the assumption of a Laplace prior [20].) The RVM is arguably a better

sparse solver than the Lasso, as it is probabilistic, and there exist efficient algorithms that solve the

basis selection problem with the RVM, without resorting to thresholds or tuning parameters. The

RVM has been already used in some SI contexts; in [25] it was used to to select sparse sets of lags

within a polynomial Nonlinear Autoregressive with eXogenous inputs (NARX) model. The RVM

has also been suggested for the specific task of equation discovery in dynamical systems in [26], on

which the current work builds. A similar approach has also been suggested for this task in [27],

where a probabilistic approach is taken, but based on ℓ1-regularisation.

The case studies presented here are restricted to Single-Degree-of-freedom (SDOF) systems, and

this is sufficient to introduce and discuss the main aspects of the new approach. Moving to Multi-

Degree-of-Freedom (MDOF) systems would only increase the size of the dictionaries somewhat and

introduce some additional correlations between terms. As the sizes of the dictionaries used in this

paper are already quite substantial, one would not expect a move to MDOF systems to introduce

any new qualitative technical difficulties.

The layout of the paper is as follows: Section 2 will outline the key elements of sparse Bayesian

computation. Section 3 presents a series of numerical experiments on several systems that are of

interest in nonlinear dynamics, and Section 4 will present analysis of two real experimental systems.

Section 5 provides a critical discussion of the main results, focussing on the practical limitations of

the proposed approach. Finally, Section 6 presents the conclusions of the paper.
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2. Sparse Bayesian Equation Discovery

The introductory section briefly stated that the learning problem reduces to the solution of the

matrix equation (1). This result is introduced more rigorously here, before continuing to discuss the

sparse solver proposed for use here.

2.1. Problem formulation

The problem at hand is system identification of a dynamical system. In order to constrain the

problem somewhat, a state-space (first-order) representation of systems will be adopted of the form,

ẋ(t) = f(x(t)) + u(t) + ǫ(t) (3)

where x(t) is the state vector of system response variables, u(t) is an external forcing function, and

ǫ(t) is a residual (error) term which can take into account measurement noise etc. Overdots denote

differentiations with respect to time. From this point onwards, the explicit time dependence of x

will generally be omitted for notational simplicity.

The form in equation (3) assumes that the forcing enters linearly, which is usually the case in struc-

tural dynamics. A completely general form of the equation would replace the RHS with f(x(t),u(t))).

However, as with the move from SDOF to MDOF systems, accommodating the general form does

not require a change in the approach presented here; again, one would only expect an increased size

for the dictionary in order to include more candidate terms involving u.

In this paper, the unknown function f will be approximated by a linear superposition over a set of

functions from a pre-specified dictionary, so that,

ẋ(t) = β1d1(x) + β2d2(x) + . . .+ βMdM (x) + u(t) + ǫ(t) (4)

where the βi are the parameters for estimation and the functions di(x) are the entries in the dictio-

nary D = {d1(x), . . . , dM (x)}.

To further simplify the analysis and to explain how the problem can be reduced to a linear regression

problem, it will be assumed that the systems of interest can be represented by Single-Degree-of-

Freedom (SDOF) oscillators of the form,

mÿ + cẏ + g(y, ẏ) = u(t) (5)

where {m, c} are the usual mass and damping coefficients, and g is an arbitrary nonlinear function

of displacement y and velocity ẏ. The state-space equations for this system are simply,
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ẋ1 = x2 (6)

ẋ2 =
1

m
(u(t)− kx1 − cx2 − g(x1, x2)) (7)

on identifying x1 with displacement y. As the first equation is simply the definition of velocity, the

equation discovery problem in equation (4) has been reduced to the problem of identifying,

ẋ2 = β1d1(x1, x2) + β2d2(x1, x2) + . . .+ βMdM (x1, x2) + u(t) + ǫ(t) (8)

Simply adding the function u(t) to the dictionary as an element d0 = u(t), produces,

ẋ2 = β0d0 + β1d1(x1, x2) + β2d2(x1, x2) + . . .+ βMdM (x1, x2) + ǫ(t) (9)

This is now a completely standard linear regression problem, given measurements of the specified

variables. A training set of sampled time data will be assumed of the form T = {x1,i, x2,i, ui; i =

1, . . . , N}, and yields the matrix problem stated in equation (1), restated here for convenience,

y = Dβ + ǫ (10)

with y = (ẋ2,1, . . . , ẋ2,N )T , β = (β0, β1, . . . , βM )T , and the ith column of the matrix D is the vector

of values (di(x1,1, x2,1), . . . , di(x1,N , x2,N ))T . In this case, ǫ is the vector of model residuals per

sample point. Note that this can be adapted if the target of interest is multivariate.

2.2. Inducing Sparsity

The problem formulation here requires the use of a sparse solver which selects only the columns of

D in equation (1) which make significant contributions to the overall model. The sparse Bayesian

learning approach adopted here is specifically designed for this type of ill-posed linear estimation

problem [23].

This main idea is illustrated in Figure 1, which shows the solution to equation (1) using sparse

Bayesian learning, where the problem of interest has the true nonlinear function g(y, ẏ) = ky+ k3y
3

(Duffing’s equation), where k and k3 are the linear and cubic stiffness coefficients respectively. The

measured data in this illustration are from a free-decay of the system (u(t) = 0) and the dictionary

adopted has many more terms than those present in the ‘true’ equation. The figure shows how each

column of the design matrix D would contribute to the model, and shows the magnitudes of the

parameters determined by the sparse solver (which will be described in detail in the next section).
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Figure 1: Illustration of the problem formulation on a free-decaying Duffing oscillator. The second state derivative
(acceleration) is given in terms of candidate polynomial, trigonometric and discontinuous functions of x, and a sparse
Bayesian solution to β is shown, indicating which terms of the dictionary are active (non-zero).

Recall that the variables x1 and x2 in the dictionary terms correspond to the system displacement and

velocity respectively. The solver has estimated only three non-zero parameters, those corresponding

to x1 (displacement – linear stiffness term), x2 (velocity – linear viscous damping term) and x3
1

(cubic stiffness term), exactly as required.

Sparse learning is used here to provide a solution to the problem of equation (1), that switches off

any columns of D that do not significantly contribute to the observed dynamics. The Bayesian

approach adopted here can also derive posterior probability distributions over the model parameters

β and predictive outputs. The particular algorithm used here is the Relevance Vector Machine

(RVM) [23], outlined in the next section.

2.2.1. Formulation of the RVM

The presentation here essentially follows that of Tipping [23]. The RVM is required to select only a

sufficient and necessary number of columns in D in equation (1) (relevance vectors in this context),

that explain the observed data well. The observations of the model are assumed to be corrupted

with noise and are modelled by a target vector, t,

t = y + ǫ (11)
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where ǫ is the residual/noise term.

The key ingredient in the formulation of the RVM is the prior distribution of the parameter vector,

p(β|α), (where α is a hyperparameter); it is this prior which enforces sparsity. The prior is given as

a hierarchical Gaussian distribution, which is a conjugate prior to a Gaussian distribution and thus

yields tractable analysis [14]. The hierarchical prior is,

p(β|α) =

M∏

i=1

N (βi|0, α
−1
i ) (12)

The hyperparameter vector α = {α1, ..., αM} defines the precision in the prior distribution of the

parameters. This hyperparameter vector is what will yield the information about which model

terms are significant. However, the values of α are not known a priori and must be estimated. In a

Bayesian approach the elements in α will need their own hyperpriors with hyper-hyperparameters.

Furthermore a prior distribution is needed for the variance of ǫ. Assuming a zero-mean Gaussian

distribution for the errors, it transpires that it is more convenient to work with the precision ρ,

which is the reciprocal of the variance σ2. The overall prescription adopted here is that both α and

ρ are Gamma distributed,

p(α) =

M∏

i=1

Γ(a)−1baαa−1e−bα (13)

p(ρ) = Γ(c)−1dcαc−1e−dρ (14)

where Γ is the Gamma function and a, b and c, d are the necessary hyper-hyperparameters of the

prior and noise precisions respectively. These hyper-hyperparameters control the sparsity of the

model; in practice they need to be set such that p(β|α) becomes peaked around zero, to within

numerical precision. For a more detailed description of the role of these hierarchical hyper-priors

see [23].

Assuming a Gaussian likelihood function, the posterior distribution over the parameters can be

written using Bayes’ rule as,

p(β|t,α, σ2) =
p(t|β, σ2)p(β|α)

p(t|α, σ2)
(15)

Because of the conjugacy, one can use standard Gaussian identities [14], and this yields a posterior

Gaussian,
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p(β|t,α, σ2) = N (µ,Σ) (16)

where the posterior mean and variance are given by,

µ = σ−2ΣD⊤t (17)

Σ = A+ σ−2D⊤D−1 (18)

where A is a diagonal matrix with the elements of α along its diagonal. At the risk of repetition,

equations (17) and (18) define the mean and covariance of the coefficient vector β. Both of these

equations represent the classic action of a Bayesian algorithm in that prior estimates of the quantities

are updated based on observed data, in this case represented by D and t.

In order to make predictions with this model, one would wish to evaluate the distribution p(t⋆|t,α, σ2)

(where t⋆ is a set of previously unseen testing data points); this can be shown to be a multivariate

Gaussian with mean and covariance [23],

y⋆ = Dµ (19)

V⋆ = σ2I+D⊤ΣD (20)

The predictive variance in equation (20) is the sum of two terms: the signal noise, σ2 and the

predictive uncertainty arising from the term D⊤ΣD.

For sparse Bayesian learning to be effectively realised, one has to optimise the hyperparameter

vector α that encodes the sparsity level and determine the parameter σ2 that estimates the signal

noise; this can be achieved using a type-II maximum-likelihood procedure based on the Expectation

Maximisation (EM) [28] algorithm. In the original RVM paper [23], the EM steps are clearly

described and these lead to efficient pruning of ‘irrelevant’ vectors. However, in [29] a more efficient

version2 of the EM algorithm is described, and this is the version used in the current work for

the hyperparameter optimisation. More details on the hyperparameter optimisation procedure are

provided in Appendix A.

As it is with any EM optimisation procedure, the RVM may become stuck in local optima and

yield suboptimal solutions. From an equation discovery point of view, a locally optimum solution

could correspond to a variable selection scenario where the RVM algorithm incorrectly includes a

2The accompanying MATLAB software can be downloaded from http://www.miketipping.com/downloads.htm
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correlated variable in the model instead of the true variable. Such scenarios can happen when the

measurements are highly noisy and/or the dictionary matrix is severely ill-conditioned.

In the case studies following, no issues with local minima were encountered. Multiple runs of the

RVM were conducted with different initial values of the measurement noise variance, the results

were very similar each time, indicating that a global optimum had been found.

3. Numerical Case Studies

In order to investigate the proposed approach to equation discovery (i.e. combined model selection

and parameter estimation), several numerical experiments are carried out. The class of systems being

investigated here is the single degree-of-freedom oscillator of equation (5) with general nonlinearity

g(ẏ, y). As before, the system is converted into a state-space representation with variables x1 = y

(displacement) and x2 = ẏ, yielding the regression problem expressed via equation (9).

Different forms of the nonlinearity g(x1, x2) yield various systems of engineering interest, and five

different representative cases are investigated here, as summarised in Table 1. The linear case,

although simple, is included in order to establish that the proposed algorithm is capable of ruling

out any nonlinearities when necessary. In all cases, the parameters used for the underlying linear

model were m = 1, k = 1 × 104 and c = 20, which places the natural frequency of the underlying

linear oscillator at 15.9Hz.

System Name g(x1, x2)
1 Linear 0
2 Quadratic Damping k2x2|x2| k2 = 2
3 Duffing k3x

3
1 k3 = 109

4 Coulomb Friction kcsgn(x1) kc = 1
5 Bouc-Wen x3 (equation (21)) A = 6800, n = 3, a = 1.5, b = −1.5

Table 1: Summary of nonlinearities in simulated systems considered

.

The second system considered includes a quadratic damping term. This is representative of sys-

tems that operate in fluids, where the drag force is non-negligible and contributes significantly to

the damping. The third system is a classic Duffing oscillator, with a cubic stiffness nonlinearity

g(x1, x2) = k3x
3
1. The Duffing oscillator often appears in studies in SI; this is because of the com-

plex behaviours it can generate, but also because it is representative of geometric nonlinearities found

in real systems, such as beams undergoing large displacements. The fourth system of interest here

possesses a Coulomb friction nonlinearity; this model assumes that the frictional force is constant

(proportional to the normal load), but depends on the direction of the velocity. This nonlinearity is

compactly represented by g(x1, x2) = kcsgn(x2) (where sgn denotes the signum function). This type
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of system is of general interest in nonlinear SI [7, 30, 31], as it represents a wide range of practical

structures where dry sliding occurs; for example, systems with bolted joints.

The fifth and final system investigated here is the Bouc-Wen model [32], which represents a hysteretic

nonlinear restoring force through a third state variable, g(x1, x2) = x3(x1, x2). The dynamics of the

restoring force are then described by the following nonlinear first-order differential equation,

ẋ3 =







−a|x2|x
n
3 − bx2|x

n
3 |+Ax2 for n odd

−a|x2|x
n−1
3 |x3| − bx2|x

n
3 |+Ax2 for n even

(21)

where the parameters A, a, b, n control the smoothness of the process, and allow a versatile pre-

scription for the hysteresis loop [32]. Note that the restoring force x3, is not only nonlinear, but

also discontinuous, because of the modulus terms. The Bouc-Wen system has proven to be a useful

model in the identification and control of a large number of processes with nonlinear restoring forces

[33]; thus, identifying the parameters of this model is of fundamental interest in structural dynamics.

Previous studies have focussed on both parametric [9, 34–37], and nonparametric identification [38].

From the point of view of equation discovery, the Bouc-Wen model presents a stronger challenge,

as the nonlinear restoring force x3 is usually an unobserved variable and must be estimated. In this

paper, this issue is sidestepped in order to focus on the problem at hand, of identifying the correct

terms in the nonlinear differential equation. It is noted however, that this restoring force can some-

times be measured in laboratory environments (see for example [39]). While the focus here is not

placed on the identification of the latent forcing term, it should be noted that approaches based on

Approximate Bayesian Computation (ABC) [37] and evolutionary approaches [40] have been shown

to cope well with the joint model-parameter selection problem in this setting, albeit with a reduced

number of candidate terms.

Each of the systems of interest here was simulated using a fourth-order Runge-Kutta numerical

integration scheme, with a sample rate of 32768Hz. This sample rate is significantly higher than the

natural frequency of the linear system; this is to properly accommodate harmonics in the data that

might otherwise cause aliasing and also to minimise the error in any numerical differentiation and

minimise any artefacts of the numerical integration, which might confuse the sparse Bayesian learner.

The state vector x, collected from the simulation provides displacement and velocity; the derivatives,

ẋ, are obtained by numerical differentiation with respect to time. Although the derivatives are also

available from the Runge-Kutta scheme, numerical differentiation was used to introduce an element of

reality into the exercise here, reflecting the fact that one does not regularly measure all state variables,

and recognising that the operation is likely to introduce some high-frequency noise. The simulation
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variables from the Runge-Kutta scheme were corrupted with white Gaussian noise with a variance

of 0.4%, relative to the standard deviation of the observations. Note that this noise propagates

through the numerical differentiation, again leading to a higher variance in ẋ. The addition of

noise is realistic here in terms of the nonlinear nature of the problem. Adding white Gaussian

noise to the state variables – which might be safely assumed for the measurement instrumentation

– would not be expected to bias any coefficients of linear model terms [41]. However, numerical

differentiation introduces coloured noise, weighted towards the high frequencies, and Gaussian noise

on state variables will manifest as coloured and correlated noise on nonlinear dictionary terms e.g.

(x1 + ǫ)3 = x3
1 + 3ǫx2

1 + 3ǫ2x1 + ǫ3. Furthermore, while ǫ and ǫ3 would be zero-mean, ǫ2 would

not, and would thus generate a non-zero expectation for an x2
1 term that could potentially confuse

equation discovery. The case studies will show that this latter effect does not appear to be an issue

when the state noise level is low.

The equation discovery problem was addressed using the sparse learner approach presented in sec-

tion 2. The success of the algorithm depends critically on the dictionary D. In this paper, a

dictionary was assembled using candidate functions that include multinomial expansion terms as

well as trigonometric functions,

D(x) = {u(t), P 1(x), ..., Pn(x), sin(x), cos(x), tan(x), sgn(x)} (22)

where Pn(x) is a convenient shorthand here for the terms present in the expansion (x1 + x2)
n;

polynomial orders up to n = 6 were used here. For the Bouc-Wen case, the dictionary was augmented

with the state x3 and multinomials containing the terms |x1|, |x2| and |x3|. For this case, the force

u(t) is also included in the dictionary; to simplify matters, linearity in u(t) is assumed, although

this condition could be relaxed in more complicated cases, as in fluid-structure interaction problems

for example [42].

The inference over model and system parameters is given in terms of the regression on ẋ2, for the

first four systems (i.e. ẋ2 are the targets), and in terms of the hysteretic restoring force state ẋ3 for

the Bouc-Wen system.

Appropriate scaling of the observed data x is important for the success of the procedure. All states

and columns of D have been scaled to unit standard deviation in order to optimise the conditioning

of the numerics; this is critical when high powers of the variables are included.

The overall results are presented in Figure 2 for each of the systems excited with a single sine wave
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of 10Hz at an amplitude of 100N3 The first column in Figure 2 shows the phase-space represen-

tation in terms of the simulation variables x1 and x2. The second column shows the target and

predicted responses in the time domain (for one excitation cycle), where the shaded area illustrates

the predictive uncertainty via the 3σ confidence interval. The third column shows the absolute

values of the coefficient vector β resulting from sparse Bayesian inference (on a logarithmic scale).

For clarity, only coefficients that yielded non-zero values are shown. The posterior variances and

optimised prior variance hyperparameters are shown alongside the coefficient, on the right axis. The

posterior variance quantifies the posterior uncertainty around each coefficient vector. The optimised

hyper-prior variance, αi for each term is also called a ‘sparsity factor’ as this quantifies the degree

to which any given column in the dictionary contributes to the solution. If α is low, this means that

the solution is concentrated tightly around the parameter, thus deeming it ‘relevant’. If α is high,

this implies that the vector does not contribute to a sparse solution.

Terms that form part of a likely solution are those that have a low variance in both the posterior

and the optimised hyper-prior. These two variances, which result from the Bayesian treatment of

the sparse solution, provide one with tools to assess how likely it is that suspected ‘spurious’ terms

are truly part of the dynamics, or have crept in from elsewhere (such as analogue or digital filtering).

The results for the basic linear oscillator (System One) are shown in Figure 2a. The only non-zero

coefficients arising from the sparse Bayesian regression on ẋ2 are the driving force u(t) and the

linear terms in displacement and velocity, x1 and x2. The predicted response time series is not

only accurate in terms of its mean, but the predicted uncertainty correctly captures the additive

measurement noise.

Figure 2b shows the solution for System Two, which contains the quadratic damping term. The

system is identified correctly, with the addition of a quadratic term in the velocity to the linear

terms correctly selected. The change of shape that this nonlinearity introduces in the phase-space is

very slight, but is evident in both the time-history and the phase portrait in the asymmetry between

3A good question here – raised by one of the anonymous reviewers – is whether a sine wave is an effective excitation
for system identification. In general, the question of optimal excitation for nonlinear SI is quite nuanced. In linear
system identification, the question of optimality is related to whether the excitation is persistently exciting. This is
a quite subtle technical condition; however, a simple view is provided by Definition 14.2 in [41], which essentially
asserts that an input signal is persistently exciting if it has broadband support. Under this definition, a single sine
wave is clearly not persistently exciting. However, this is not a problem in the current work, where the objective is
simply to demonstrate the effectiveness of the approach to nonlinear identification. The input works here because
the nonlinearity produces additional frequency support in the response from the harmonics. Finally, a sine wave can
confuse acceleration terms and displacement terms at low excitation (no harmonics); however, this is not a problem
in the case studies here as acceleration terms are not included in the dictionary. Persistent excitation is discussed in
[41] in the context of informative experiments; the results shown here indicate that the synthetic experiments here
are sufficiently information that effective identification is possible.
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a)

b)

c)

d)

e)

Phase Space Measured and Predicted Response 

(1 forcing cycle)

Model Posterior mean (left),

 and variance (right)

Figure 2: Sparse Bayesian solution for simulated systems One to Five. The left column shows the system phase
portrait; the middle column shows the target variable together with the predictive response, the shaded area illustrates
the predictive uncertainty through the 3σ confidence interval; the right column shows the (log absolute) weights (left
axis) of the identified non-zero terms of the sparse Bayesian learner, together with prior (solid line) and posterior
(dashed line) variances on the right hand axis. Numbers on the axes of plots including standardised variables are not
shown.
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the upper and lower parts of the cycle, since the square term has no dependency on the direction of

velocity.

The results for the Duffing oscillator are shown in Figure 2c. The effect of the nonlinearity is much

more evident in the time-history and in the phase-space. The cubic term in x1 is identified correctly

and the predictive distribution captures the process well.

Figure 2d shows the results for System Four, which includes a Coulomb damping (friction) term.

This term introduces a small discontinuity at the peaks and troughs of the target ẋ2, which are only

very subtly visible in the time series response. The solution correctly identifies the presence of the

term sgn(x2), but also selects one spurious polynomial term; this is likely to be an artefact of the

numerical integration scheme used to generate the simulation, which does not allow for the fact that

a trajectory might cross the discontinuity in mid-timestep. It was verified that at higher sample

rates, this effect is mitigated, and at lower sample rates more spurious terms tended to appear.

Figure 2e shows the results for the Bouc-Wen hysteresis model – System Five here. As mentioned

previously, combinations from the expansion (x1+x2+x3+ |x1|+ |x2|+ |x3|)
n were used to build the

candidate vectors in the dictionary for this system. In this case, it was assumed that the restoring

force state was ‘measured’ and therefore available for inclusion in the dictionary. The results for

equation discovery of ẋ3 are shown in Figure 2e for (the true) n = 2. The sparse Bayesian learner

correctly identifies the terms for this model form, and the predictive performance reflects this.

4. Experimental Studies

Two experimental case studies were investigated. In both cases, the data were supplied as part of

the Nonlinear System Identification Benchmarks workshops which have been held at VUB Brussels

and Eindhoven University over the last few years.4

4.1. The Silverbox Benchmark

The ‘Silverbox’ is an electronic circuit which has been designed to simulate the response of a Duffing

oscillator. As such, it was created as a second-order linear time-invariant (LTI) system with a static

cubic nonlinearity made dynamic via feedback [43]. The training data for the benchmark comprised

a response set generated from a multi-sine input, while an independent test set was generated from

a chirp input. The reader is referred to [43] for the details of the circuit and benchmark data.

For training of the sparse Bayesian algorithm, a section of data of duration 8s was used, consisting of

4www.nonlinearbenchmark.org
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a random-phase multi-sine excitation containing 1342 odd harmonics of a base frequency f0, where

f0 = fs/8192s
−1 and the sample rate fs in the experiments was 610.35Hz.

When the sparse Bayesian algorithm was applied to the Silverbox training data, the results were as

summarised in Figure 3. As in the simulated case studies, the leftmost entry in the figure shows

the phase trajectory of the data; the centre entry shows the predicted response, together with the

3σ confidence intervals on the predictions; the rightmost entry shows the (log magnitude) posterior

mean parameter estimates together with the two variance measures previously discussed.

Figure 3: Results from sparse Bayesian equation discovery on the Silverbox nonlinear benchmark: training set with
multi-sine excitation. Measured response is in blue, predicted response is in red; 3σ confidence interval for prediction
is represented by the grey region. Numbers on the axes of plots including standardised variables are not shown.

The results are good, although it is difficult to see from the rather compressed time data; Figure 4

shows a zoom on the time data. The predictions follow the mean trend of the target and the ‘true’

target values are enclosed by the confidence intervals as desired. In terms of equation discovery,

the dominant term is the forcing term (denoted by Fe in the figure), with the linear terms in x1

and x2 coming next. The nonlinear terms kept in the model include the correct x3
1, but also two

cross-terms x2
1x2 and x1x

2
2; the spurious terms are likely included as a result of ancillary circuitry

in the Silverbox, the comparatively low sampling rate for the data here may also be a contributing

factor.

Although the main question of interest in this work is in discovering the ‘correct’ equation terms,

it is interesting to understand how the complete identification with parameter estimation performs.

Indeed, the real challenge in any machine learning problem is to generalise to an independent test set.

In this case, the results for the identified model on the chirp test set are shown in Figure 5, covering

a period of 1.63s. The chirp is a ‘sweep-down’ signal; the model fidelity proves to be highest around
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Figure 4: Zoomed results from central plot in Figure 3 (training data). Measured response is in blue, predicted
response is in red; 3σ confidence interval for prediction is represented by the grey region.

resonance with some discrepancies at the higher and lower frequencies. However, it is gratifying to

note that the ‘true’ values are always captured by the model confidence intervals. As the RVM has

selected more-or-less what is believed to be the correct governing terms in the regression equation,

it is likely that the mismatch here arises due to biased parameter estimates.

4.2. Electro-Mechanical Positioning System

The second experimental case study from the Nonlinear Benchmark workshop was an electro-

mechanical positioning system [44] as illustrated in Figure 6. The system represents a standard

configuration for a prismatic joint found in robots and machine tools. The main source of nonlin-

earity in the system was expected to be friction; the expected equation of motion, as specified in

[44] is,

mẋ2 + cx2 + kcsgn(x2) + b = F (t) (23)

so that the expected restoring force includes viscous and Coulomb damping, and an offset b.

The sampling frequency was 8192Hz and the duration of the tests was 25s (approximately, as this

was measured by an incremental encoder with resolution of 12500 counts per revolution). Outputs

were measured by a dSPACE card. To compute the velocity involved in the feedback control for the

system, the motor position was filtered with an FIR filter. For the training data, the system was

excited using ‘bang-bang’ accelerations; these excitations were augmented in the validation set by

pulses – for details see [44].
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Figure 5: Results from sparse Bayesian equation discovery on the Silverbox nonlinear benchmark: testing set with
1.6s chirp excitation. Measured response is in blue, predicted response is in red; 3σ confidence interval for prediction
is represented by the grey region.

Figure 6: Electro-mechanical positioning system benchmark [43].
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The sparse Bayesian algorithm was applied to the training data, which comprised of a subset of 3.01s

of the available data, with the results shown in Figure 7. Figure 7a shows the usual representation

of the parameter estimates together with their variance measures. The response is dominated by

the viscous and Coulomb terms as desired; however, there are other (smaller) nonlinear terms in the

velocity x2. The extra terms are not surprising; in the first case, Coulomb friction is never expected

to be a perfect description of real friction; in the second case, the signals have been subjected to

various signal processing operations, like the aforementioned digital filter. Figure 7b shows the

model predictions together with the ±3σ confidence intervals; the predictions are excellent, with the

confidence intervals clearly capturing the discrepancies due to measurement noise.

Figure 7: Results from equation discovery on electro-mechanical positioning system with ẋ2 target : a) parameter
estimates and variance measures; b) comparison between measured and predicted data – training data.

An alternative approach to regressing on ẋ2 is to regress directly on the force F (t); the results of

this exercise are presented in Figure 8. In this case, the most significant term is the inertial term

ẋ2; next in significance is ẋ1 = x2, which is, of course, the viscous damping term. As before, the

Coulomb term is considered significant and there are other small nonlinear terms in x2, which are

assumed to represent corrections to the Coulomb term for real friction as before. As in the Silverbox

case, the sampling is a little too high for one to resolve the detail of the time data comparison, so
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a zoomed version of the figure is provided in Figure 9. The zoomed figure shows that the model

predictions are excellent, with the confidence intervals appropriately capturing the uncertainty in

the output propagated through from noise in the input data.

Figure 8: Results from sparse Bayesian equation discovery on the electro-mechanical positioning system nonlinear
benchmark with F (t) target: training set. Measured response is in blue, predicted response is in red; 3σ confidence
interval for prediction is represented by the grey region.

Figure 9: Zoomed results from Figure 8. Measured response is in blue, predicted response is in red; 3σ confidence
interval for prediction is represented by the grey region.

Something interesting happens when the trained model (for ẋ2) is applied to the independent testing

set (Figure 10). As one can see, the confidence intervals are very large. A zoomed plot of the mean

prediction is shown in Figure 11.
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Figure 10: Application of ẋ2 model to independent test set. Measured response is in blue, predicted response is in
red; 3σ confidence interval for prediction is represented by the grey region.
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Figure 11: Application of ẋ2 model to independent test set - zoom of Figure 10. Measured response is in blue,
predicted response is in red, the shaded area represents the confidence intervals which exceed the limits of the plot
for this zoomed view.
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The results in Figure 10 show that the mean predictions track the measured data closely, but shows

a small constant offset. The real system is known to have a constant offset in the dynamics, and the

suspicion here is that the offset during testing was different to that during training.

Finally, as an objective measure of goodness of fit, the models were evaluated using a normalised

mean-square error of the form,

NMSE =
100

Nσ2
y

N∑

i=1

(yi − ŷi)
2 (24)

where yi is the sampled variable of interest, and ŷi is the corresponding model prediction; σ2
y is the

variance of the measured displacements. This error function has the following useful property; if the

mean of the output signal is used as the model i.e. ŷi = y for all i, the error is 100.0 (and can be

thought of as a percentage). The errors for the models fitted here are given in Table 2.

Training Validation
Force 3.83% 20.8%
Acceleration 16.5% 19.53%

Table 2: Relative errors for the training and validation sets.

5. Discussion

The results of performing equation discovery – combined model selection and parameter identification

– with sparse Bayesian learning, as presented here are very encouraging. The algorithm is able to

identify individual terms of various dynamical systems which are known to present challenges for

SI, and this is a positive result. However, it is important to note that this investigation has been

restricted in some respects. In the first case, no simulation results are shown here for different types

of forcing, something which will clearly have an influence on the identified system.

While the simulation results that have been presented show the procedure working almost at its

best, it is important to highlight that the outcome can depend strongly on the simulation settings,

data pre-processing and noise levels. The fact that the algorithm is sensitive to the simulation

parameters makes sense given that the simulation algorithm is a dynamical system itself. Also,

any amount of digital filtering of the displacements, velocities or accelerations tended to generate a

solution with significantly more polynomial terms than those of the pure system of interest. This

makes sense, given that most pre-processing tasks could be described as dynamical systems also.

This effect may have also made itself evident for the experimental data here, where hardware filters

were applied as well as closed-loop control. Another factor that significantly influences the outcome

of the identification is the scheme for numerical differentiation required to estimate ẋ. Tools are
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available to perform complex numerical differentiation operations [45]; however, it was found that

these would also have an effect on the identified system. In the end, a simple point-difference yielded

the most consistent and robust results.

Another interesting discussion point concerns the use of sparsity-inducing priors. The primary

drawback of strong sparsity-inducing priors such as the Student-t (RVM) and Laplace (Lasso) is

the bias they introduce while attempting to shrink every coefficient towards zero. When learning

the dynamics of a system, bias should be avoided if at all possible. There are other types of

sparsity-inducing priors that have been shown to induce sparsity while reducing bias, such as the

Horseshoe. However, in the authors’ view, the current gold standard in Bayesian learning with

sparsity is achieved through the use of spike-and-slab prior distributions [46]. In this case, the prior

is composed of a distribution that is sharply peaked around zero (the spike), and a distribution that

defines a broad prior (the slab). This prescription has the effect of attracting only those coefficients

that do not have a contribution towards a good fit, to zero. On the other hand, coefficients that

are likely to belong to the model fall in the regime of the slab component, defined by a broad and

possibly uninformative prior distribution that minimises parameter bias.

A final remark is that a move to multiple degrees of freedom would be straightforward in principle

under this scheme, but this is also outside the scope of this paper and will be addressed in future

work.

6. Conclusions

This paper has presented a new approach for equation discovery – combined parameter estimation

and model selection – for nonlinear systems using sparse Bayesian learning techniques. The SI

problem has been formulated in terms of a first-order (state-space) differential equation that uses

a dictionary containing a large number of candidate functional forms that could form part of the

solution. The solution to the sparse Bayesian learning problem exploits the use of the Relevance

Vector Machine (RVM) here due to its computational tractability and fast implementations.

Sensitivity to hyperparameters has proved to be an issue for many sparse methods. For most

non-Bayesian approaches in particular (e.g., the Lasso), this can be attributed to the use of a sin-

gle hyperparameter λ to regulate the extent to which the individual model parameters are shrunk

towards zero. A consequence of relying on a single hyperparameter is that a large value will indis-

criminately shrink all parameter values towards zero, which is undesirable when where there may

be some small but relevant parameters. In contrast, the Bayesian approach using the RVM employs

predictor-specific hyperparameters, where each predictor is independently controlled by its own hy-
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perparameter. As such, the RVM approach is arguably less sensitive to hyperparameter tuning,

which is an added advantage to the method.

The approach has been demonstrated and validated using a series of numerical simulations of non-

linear systems; the results here show that the method correctly identifies the type and presence of

several nonlinearities such as: cubic stiffness (Duffing oscillator), quadratic and Coulomb damping,

as well as the type and presence of hysteresis in the form of a Bouc-Wen model. Furthermore, the

approach has been demonstrated on two experimental benchmarks with considerable success: a non-

linear electrical circuit with known cubic nonlinearity and an electro-mechanical positioning system

with Coulomb friction nonlinearity. In both experimental cases the expected terms corresponding to

the known dynamics of such systems were recovered, albeit with extra terms owing to the limitations

of sampling real-world data as well as analogue and digital pre-processing.

There is clear scope for continuing to explore other strategies for performing SI under a hierarchical

Bayesian framework with sparse priors that encourage parsimonious representations of physical

systems, as this would allow one to learn representations that are potentially capable of extrapolation,

whilst quantifying the uncertainty in such predictions. One clear avenue of further work is that of

exploring sparsity-inducing prior forms that minimise the bias induced by the implicit regularisation.

One limitation of the work presented here is the authors’ own bias towards mechanical systems;

one avenue of further research is the application of this framework to other types of natural and

engineering systems.
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Appendix A. Marginal likelihood maximisation procedure for RVM

The RVM requires computing the optimal values of the hyperparameters α and σ2. They are

determined by maximising the marginal likelihood function using Type II maximum likelihood. The

marginal likelihood function is obtained by integrating out the vector β as follows,

p(t | α, σ2) =

∫

p(t | β, σ2) p(β | α) dβ (A.1)

26



Since both p(t | β, σ2) and p(β | α) have Gaussian distributions, their convolution result in a Gaus-

sian distribution, and the above integration can be analytically computed to give the log marginal

likelihood,

log p(t | α, σ2) = −
1

2

[
N log(2π) + log|C|+ t⊤C−1t

]
(A.2)

where,

C = σ2I+DA−1D⊤ (A.3)

and A is the diagonal matrix with the elements of α along its diagonal. Another form of the log

marginal likelihood can be defined in terms of µ and Σ (defined in equations (17) and (18)) as

log p(t | α, σ2) = −
1

2

[

N log(2πσ2) +
(
σ−2t⊤t− µ⊤Σ−1µ

)
+ log|Σ| −

M∑

i=1

logαi

]

(A.4)

The goal is to maximise equation (A.2) or equivalently (A.4) with respect to the hyperparameters

α and σ2. One approach is set the derivatives of the log marginal likelihood (equation A.4) with

respect to the hyperparameters to zero, which gives,

d

dαi

log p(t | α, σ2) =
1

2αi

−
1

2
Σii −

1

2
µ2
i = 0

=⇒ αnew
i =

1− αiΣii

m2
i

(A.5)

and,

d

dσ−2
log p(t | α, σ2) =

1

2

[
N

σ−2
− ‖t−Dµ‖2 − tr

(
ΣD⊤D

)
]

= 0

=⇒
(
σ−2

)new
=

N −M +
∑M

i=1 αiΣii

‖t−Dµ‖2
(A.6)

Here, Σii is the element in the ith diagonal of Σ. The hyperparameters αi and σ2 which maximise

the marginal likelihood are then found iteratively by setting α and σ2 to initial values, finding values

of µ and Σ from equations (17) and (18), using these to calculate new estimates for α and σ2 and

repeating this process until a convergence criteria is met.

It is noted that the result in equation (A.5) for re-estimating αi is an implicit function of αi. Due

to this implicit form, [29, 47] proposed a second approach to solving the optimisation problem for

the RVM, in which the dependence of the marginal likelihood on a particular αi is made explicit

and then the stationary points are determined. To do this, the contribution of αi in the matrix C

(defined in equation A.3) is explicitly written out as follows,

C = σ2I+
∑

m 6=i

α−1
m dmd⊤

m + α−1
i did

⊤
i

= C−i + α−1
i did

⊤
i

(A.7)
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where C−i represents C with the contribution of the basis vector i removed. The determinant and

inverse of C can be written as,

|C| = |C−i| |1 + α−1
i d⊤

i C
−1
−idi| (A.8)

C−1 = C−1
−i −

C−1
−idid

⊤
i C

−1
−i

αi + d⊤
i C

−1
−idi

(A.9)

using established matrix determinant and inverse identities. Using the above results, the log marginal

likelihood function in equation (A.2) can be re-written as,

log p(t | α, σ2) =−
1

2






N log(2π) + log|C−i|+ t⊤C−1

−i t (A.10)

− logαi + log
(

αi + d⊤
i C

−1
−idi

)

−

(

d⊤
i C

−1
−i t

)2

αi + d⊤
i C

−1
−idi







(A.11)

= log p(t | α−i, σ
2) +

1

2

[

logαi − log (αi + si) +
q2i

αi + si

]

︸ ︷︷ ︸

ℓ(αi)

(A.12)

where log p(t | α−i, σ
2) is simply the log marginal likelihood with the basis function di removed and

the quantity ℓ (αi) contains all the dependence on αi. Moreover, the two quantities si and qi are,

si = d⊤
i C

−1
−idi (A.13)

qi = d⊤
i C

−1
−i t (A.14)

The stationary points of the marginal likelihood with respect to αi occur when the derivative,

dℓ (αi)

dαi

=
α−1
i s2i −

(
q2i − si

)

2 (αi + si)
2 (A.15)

is set to zero. Since αi ≥ 0, there are two possible solution cases for αi,

αi =
s2i

q2i − si
if q2i > si (A.16)

αi = ∞ if q2i ≤ si (A.17)

The relative values of si and qi determine whether a particular basis vector will be included in the

model or not. Note that this approach yields a closed-form explicit solution for αi, given values

of the other hyperparameters. The resulting sequential sparse Bayesian learning algorithm used in

RVM is summarised below [29]:

1. Initialisation step
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(a) Choose starting value of σ2.

(b) Initialise using a single basis vector di. Choose di as the basis vector from D with the

largest normalised projection onto the target vector t, ‖dT
i t‖

2/‖di‖
2. The corresponding

αi is set using equation (A.16), as follows:

αi =
‖di‖

2

‖dT
i t‖

2/‖di‖2 − σ2

All other αm are notionally set to infinity, so that only one basis vector is included in the

model.

2. Compute Σ and µ (which are scalars initially), along with qi and si for all M basis vectors.

3. Select a candidate basis vector di from D.

4. If q2i > si and αi < ∞ (that is, di is in the model), update αi using equation (A.16).

5. If q2i > si and αi = ∞, then add di to the model and evaluate αi using equation (A.16).

6. If q2i ≤ si and αi < ∞, then remove di to the model and set αi = ∞.

7. Update σ2 = ‖t−Dµ‖2

N−M+
∑

M

i=1
αiΣii

(using equation (A.6)).

8. If the estimates have converged, then terminate, else go to 3.
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