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Abstract. In the current work, the use of generative adversarial networks (GANs) in a simulated
structural health monitoring (SHM) application is studied. A specific type of GAN is considered,
aiming at a disentangled representation of underlying features and clusters of data through
some latent variables. This idea could prove useful in SHM, since explanation of how damage
mechanisms or environmental conditions affect a structure may be exploited in order to monitor
structures more effectively. In a simulated mass-spring example, different damage cases are
introduced by reducing the stiffness of specific springs and different damage levels by applying
different extents of stiffness reduction. The GAN implementation proves able to capture different
damage cases through its categorical latent variables, as well as the damage extent within
its continuous latent variables. The results demonstrate that the latent variables are indeed
capturing the effect of damage in the structure and can be exploited for the purpose of condition
assessment.



1 Introduction

Modern societies extensively rely on structural elements. Everyday activities depend on structures
like bridges, engines, power generators etc. Malfunction or damage of these critical systems
may lead to delays in transportation, power shutdowns or even injury or death of individuals.
Avoiding such failures and guaranteeing safe operation and efficient performance is therefore
a matter of critical importance. Structural Health Monitoring (SHM) offers a tool to this end.
SHM is employed to ensure operability and safety of structures and to avoid consequences of
failure. Many different approaches have been proposed in the context of SHM, but all of them
can be categorised according to the hierarchical structure proposed by Rytter [1] and extended in

[2]]:
1. Is there damage (existence)?
2. Where is the damage in the system (location)?
3. What kind of damage is present (type/classification)?
4. How severe is the damage (extent/severity)?
5. How much useful (safe) life remains (prognosis)?

Ascending in Rytter’s hierarchy makes the task at hand more difficult than the one in the previous
step. Detecting if damage exists requires definition of the normal condition of a structure and
divergence from that is an indication of damage and has to be examined. The second step
of localising damage, requires further knowledge about the behaviour of a structure and how
damage in various areas may affect the structural response. Moreover, defining the type of
damage is a task that requires further understanding of the structural behaviour and of the manner
in which different types of damage affect observed features of the structure. Finally, the two
last steps in the hierarchy, demand understanding of the damage mechanism in order to define
its severity and to further predict the useful life of the structure under the specific damage case.
Although some data driven methods would promise to do this without really understanding the
mechanism as long as sufficient instances of failure are recorded.

It is straightforward that dealing with these tasks involves acquiring and processing data in order
to infer results about the condition of a structure. Taking into account the progress made in the
disciplines of data analysis and machine learning (ML), diverse methods from these fields have
been exploited for the purposes of SHM [2]]. Regarding the first step in the aforementioned
hierarchy, ML has been used to perform outlier detection using autoencoders to explain data
corresponding to the normal condition of a structure [3]]. Autoencoders were chosen because
they are able to explain data belonging to an arbitrary manifold. For damage classification
or localisation, ML classifiers have been used [4], yielding quite good accuracy. The main
drawback of these methods is that data from damage states is required to perform their tasks.
Oftentimes however, data from damaged states are absent, or only limited samples are available.
Furthermore, to perform tasks further up in Rytter’s hierarchy, understanding of the underlying
physics of structures and damage mechanisms is needed.

Trying to understand the underlying physics within such a context, one may attempt to study a
black box model that is performing well on a task related to the underlying mechanism of the
problem. A representative example of such a case is a model trained on patient data [3] that
was able to predict schizophrenia with adequate precision. It is clear then that it may be worth



spending some time studying the model in an attempt to understand better how schizophrenia
works and which symptoms indicate its existence. The same scheme may be applied on structures
with models trained on identifying damage location/type. A black-box model like a neural
network [6] may be exploited to understand the way some type of damage affects a structure.

A specific type of black-box model that is targeted to capturing the physics of a specific problem,
is the generative model. More specifically, Generative Adversarial Networks (GANSs) [7] and
Variational Autoencoders (VAESs) [[8] are neural networks that learn how to generate data that
look like reality. It is believed that, by studying these types of neural networks and the way they
produce data, further understanding of the underlying problems may be achieved. In the current
work, a specific type of GAN is used, the infoGAN [9]. This specific type of network achieves
a disentanglement in the latent feature space of the data which may have great benefits in an
SHM application. The use of such networks is considered in the task of classifying data from
structures and also in defining latent variables that explain the extent of damage in the data or the
variation of a parameter affecting the behaviour of the structure.

2 Generative Adversarial Networks (GANs)
2.1 Vanilla GANs

The traditional scheme followed in ML is the training of a model to perform classification [6]]
or regression [[10]. To extend this to images, convolutional neural networks were developed
[L1]] yielding superior performance in the two mentioned tasks. Recently, a new type of neural
network has emerged, the Generative Adversarial Network [7]. The goal of this new scheme is
to generate images that resemble reality, which is achieved via use of two neural networks. The
first one is termed the generator and produces “fake” images given a latent vector. The second
network is the discriminator, which tries to identify whether an image is fake (generated by the
generator) or real (coming from the available dataset). Through training both of these networks,
improve in reaching their objective and finally, the generator, provided with some latent vector,
can generate images that appear to be real. More intuitively, this means that the generator maps a
latent vector distribution into a distribution or a manifold of the real data. The layout of the basic
(vanilla) GAN can be seen in Figure|[I]

The generator is a multi-layer perceptron (MLP) that takes as input a latent noise vector z
coming from a probability distribution p,(z) and maps it into a vector (or an image) G(z) of
dimension equal to the dimension of the training samples. The discriminator is another MLP
that takes as inputs, vectors (or images) X, and outputs the probability of the sample being real,
P(x = real) = D(x). The training of D is carried out by maximising the probability that it
assigns the correct label (“real” or “fake”) to the samples. At the same time, the training of
the generator, (7, is accomplished by trying to minimise the probability that the discriminator
classifies the generated samples as fake, i.e. minimisation of log(1 — D(G(z))). Following from
[7], the objective function can be interpreted as a two player minmax game given by,

mén mgx V(D,G) = Expiara () [log D(x)] + Esmp. (2) log1 — D(G(z)))] (1)

Training of such a network is performed in two steps per epoch. During the first step, random
samples are created by the generator and they are concatenated with a batch of real samples
from the dataset. The resulting training batch is used to train the discriminator for one epoch by
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back-propagating the error of the output. The target label for the real samples is 1 and for the
generated ones is 0. The right-hand side of equation (T]) is set in this step as the objective function
and its maximisation is attempted. Consequently, the two networks are clipped together, as in
Fig|l} and random samples of the latent vector are generated in order to create random generated
samples. These samples are fed into the whole GAN and the target outputs are labels of 1.
The weights of the discriminator’s connections are considered as constants during the second
training phase and the error is back-propagated in order to train the generator. This latter time,
the objective function is comprised exclusively from the second term of the right-hand side of
equation (1) and its minimisation is sought. Following this training scheme, during the first step
the discriminator learns to distinguish between real and generated images and the generator to
generate images that the discriminator classifies as real.

Generated
samples G(z)
Probability D(G(z))
Real
samples x

Figure 1: Vanilla GAN layout.

The most straightforward application of GANS is to generate artificial data to augment a dataset.
Training neural networks is highly dependent on the size of the available dataset. The rule-of-
thumb for training neural networks that generalise well [12]], specifies that for each trainable
weight of the neural network, 10 training samples are needed. Acquiring data is difficult and
some times even expensive. Labelled images are hard to be obtained and their manual labeling
costs. In cases of image datasets, augmentation can also be achieved by rotation of the pictures or
colour change etc. In SHM though, the securing of data from structures in different damage cases
or under different environmental conditions is expensive or even impossible; the samples are
usually limited and augmentation is not that easy. For this purpose, GANs can be used to increase
the size of a dataset and may even serve as interpolators. Especially for deep networks and even
more for deep convolutional neural networks, where the number of trainable parameters is huge,
augmentation of available dataset size could yield an efficient way to increase the generalisation
performance of models [13]].

Another use of GANSs is found in filling gaps in pictures [14, [15]. In this case, GANs trained
on a dataset are able to use pictures with missing pixels and generate a complete picture by
replacing missing pixels with something that fits well in the gap. This is a great example of how
this type of model may assist in repairing corrupted datasets. At the same time, these results are
encouraging the perspective that GANs achieve a better linkage of data to the driving physics (or
semantics) than traditional neural networks, since they are able repair corrupted data that they
have never seen before.

Furthermore, GANs are applied in image processing [ 16, |17, [18]. This application is also an
impressive usage of GANSs, since they are able to capture through their latent variables, specific
features of the data. Afterwards, the users are able to manipulate the latent vectors and use the
generator to produce images, whose characteristics fit custom needs. A similar approach in the
current work is followed and an attempt is performed to capture in the latent code the extent
and type of damage in a structure. The ability to describe such features through a latent vector



and generate data corresponding to specific damage cases or to the extent of damage would be
beneficial for the purposes of SHM, since further progress related to the fourth and fifth steps in
Rytter’s hierarchy could be achieved.

2.2 Information Maximising Generative Adversarial Nets

According to the classic formulation of GANs described, the latent variables used as inputs in the
generator do not encapsulate any specific features from the data. This is because no restriction
is imposed during training that every variable would describe a specific feature, resulting in
latent noise variables that correspond to entangled features or combinations of features. In
order to improve performance regarding the representation of disentangled features by the
latent variables, a slightly different architecture and training scheme is followed in [9], called
Information Maximising Generative Adversarial Nets (InfoGAN).

The procedure followed to enforce this disentanglement will be described below. At first, the
latent vector is divided into two parts, the latent noise z and the latent code ¢. The noise part z is
used to model noise that may be present in the data, while the latent code ¢ is used to represent
interpretable features of the data. Following [9], the output of the generator becomes G(z, ¢). In
order for the latent code ¢ to have a meaning, there should be high mutual information between
the code ¢ and the generator distribution G(z,¢), i.e. I(c;G(z,¢)). The term I(c; G(z,c¢))
represents the amount of information learnt from knowledge of G/(z,¢) about ¢ and can be
calculated using two entropy terms from,

I(e;G(z,¢)) = H(c) — H(c|G(z,¢)) = H(G(z,¢)) — H(G(z,¢)[c) 2)

where H(x) and H(x|y) are the entropy of the random variable x and the conditional entropy of
X given y, respectively.

Trying to get further insight into equation (2)), one realizes the reduction of uncertainty about ¢
when G(z, ¢) is observed. If the two variables are completely independent, then the term is equal
to zero. So for the maximisation of (2), given x ~ Pg(z), Px(c|x) should have small entropy.
Trying to maximise this term, enforces a deterministic relationship between the two variables.
To include this quantity in the optimisation process, the following modification is made in the
cost functions from equation (T,

mci:n mngl(D, G) = mgn max V(D,G) — M (c;G(z,¢)) 3)

In practice though, maximisation of (c; G(z,¢)) is non-trivial, as one has no access to the



posterior Pg(¢|x). To avoid maximising it directly, an auxiliary distribution @)(c|x) is defined,

I(e;G(z,¢)) = H(e) — H(c|G(z,¢)) =

Ex~c(z.0)[Ec~p(elx) [log P(c[x)]] + H(c) =
P (C|X) _
Ex~c(z.0)[Ee~P(ely) [log Qe Q(c[x))]] + H(e) =
Bvrctus B pien 108 g3 e ] — Eevrigo log Qlelx)] “
+ H(e) =
Ex~cao)[DrL(P ('|§) 1Q(-]¢)) —Eevp(eix [log Q(clx))]]
+ H(e) )

> Exvc(z,0)[Ee~p(ex [log Q(c|x)]] + H(c)

The technique of maximising the lower bound of the mutual information is called Variational
Information Maximisation [19]. In equation () the quantity to be maximised is the first term of
the final formula, since H(c) is a constant and has an analytical form and a common distribution
is chosen for ¢. To avoid sampling from the posterior in the inner expectation of the expression
in equation , the Lemma 5.1 of [9]] is used; according to which, for random variables X, Y
and functions f(z,y) under suitable regularity conditions it applies that: E,_x y v |s[f(z,y)] =
Eyn X y~¥|e,o~X|yf(z,y)]- FOllowing this result a variational lower bound, L, (G, ), of the mutual
information /(c; G(z, ¢)) is defined,

Ll (G, Q) - EXNG(Z,C) [ECNP(C\X) UOg Q(C|X)”

Eevp(e)x~Gze)log Q(ex)] + H(c) < I(c; G(z,¢)) o)

In equation (5)), the quantity to be maximised is the log-probability of the auxiliary distribution
Q. In practice Q is modeled using a neural network. The newly-defined neural network is part of
the discriminator network of the vanilla GAN. By defining the neural network (), maximisation
of the quantity in equation (5)) is performed by back-propagating its error.

In the categorical case, in order to maximise log )(¢|x) by training (), the output is given by a
softmax function and the categorical-crossentropy loss function gives the desired results. In the
case of a continuous code ¢, a maximum likelihood estimation (MLE) scheme has to be followed.
The outputs of the neural network are two for each continuous code c¢;; one for the mean value of
the code and one for the variance. Afterwards, the loss function to be maximised is the mean
log probability of all the outputs corresponding to the continuous code inputs. Assuming that ¢
comes from a Gaussian distribution and that the variables ¢; are independent, the loss function is



given by,

log[Q(cx)] = log[[[ Plc)] = 3 log Ples) =
. z'1=1 izl(c' o . (6 — ) (6)
> -5 log(2ro?) - ] oo Y [ log(o) — ]

i=1 i i=1 i
In equation (]§|), ¢; corresponds to the input value in the neural network and y;, o; are the mean
and variance of each distribution of the code ¢;. An overview of the network architecture of the
infoGAN is shown in Fig |2l It becomes clear that the logic behind this architecture is that a
sample is generated by the generator; it should look real, so that the discriminator classifies it as
real and the parameters of the code ¢ that were used to generate it should be as distinguishable as
possible by the auxiliary neural network (). Following this scheme, the infoGAN is expected to
generate samples belonging to different classes (or manifolds) using different categorical codes
c.qt and to explain the variability of features within the classes, using the continuous code €..;-

Also, some random noise is added via z because as usual, noise in the data exists and should be
modelled.

Figure 2: InfoGAN layout.

3 Application on simulated data
3.1 Simulation description

For the application of GANSs to structural data, a simple simulated linear six-degree-of-freedom
lumped mass system is examined. The masses of the system were all equal to one, the stifness of
the undamaged states of the springs equal to 10* and a diagonal damping matrix was assumed
with its elements equal to 25. The system was simulated using a fourth-order Runge-Kutta
integration scheme. The excitation was a white noise signal applied on the first mass. In order to
introduce different levels of damage in the structure, stiffness reductions were applied on springs
1-2, 2-3, 3-4 and 4-5. The reducted stifnesses came from normal distributions with mean values
of 80% of the initial values of the system and variance equal to 4.5% of the initial stiffness of
each spring.



In each simulation the transmissibilities between masses 1-2, 2-3, 3-4 and 4-5 were calculated,
concatenated and considered as the samples representing each simulation. The normal condition
concatenated transmissibilities are shown in Figure [d Transmissibilities are a useful tool in
monitoring real structures, where one has no knowledge about the input excitation to a dynamical
system, in order to calculate the frequency response function (FRF). The sampling frequency of
the simulation was 200 H z; each transmissibility consists of 512 spectral lines and noise with
variance equal to 5% of the transmissibility’s variance was added to each one of them. In order
to visualise the data, a principal component analysis (PCA) [20] was performed on the data and
the first three principal components were plotted. In Figure [5] each batch/manifold of points
corresponds to a different damage case. Moreover, through the gradual colour transition, the
different damage levels are shown. A yellow colour represents points with low damage level
(5-7.5% stiffness reduction) and dark red points correspond to higher damage levels (32-35%).

kl | kz k3 k4 k5 kG

ma (PR ma (FT ms [FHT ma NN s (TN me

Figure 3: Mass-spring system.

Amplitude

-_—

0 250 500 750 1000 1250 1500 1750 2000
Spectral Line

Figure 4: Normal condition concatenated transmissibilities.

Each damage case affects the transmissibilities in a different way. To be able to judge the results
of the GANSs to be trained consequently, an illustration of influence of that stiffness reduction on
the transmissibilities is offered in Figure[6] Each different colour line corresponds to different
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Figure 5: First three principal components of simulated transmissibilities. Gradual colour change
from yellow to dark red represents lower to higher damage levels respectively.

damage level and the “movement” of the diagram as the damage extent increases is depicted.
Damage induced in different springs causes similar effects to the one shown in Figure [6] but in

different areas of the diagram.

3.2 InfoGAN training

The infoGAN was trained on the five first principal components of the data (explaining 99%
of the variance) in order to reduce both training time and trainable parameters of the networks.
Since the PCA transformation is linear, the infoGAN training is not considered to be assisted by
it in any way other than the dimensionality reduction. In the input layer of the generator, two
latent variables z; sampled from a Gaussian distribution z ~ N (0, 1) were used because noise is
present in the data. Four categorical variables c; ..; sampled with equal probability were also
used, since there are four different damage cases and one continuous c.,,;, sampled also from
a Gaussian distribution similar to the previous one. The expected result is that the generator
should be able to generate samples corresponding to the different damage cases by altering the
categorical variables and also corresponding to the damage extent by varying the continuous

latent variable.

The discriminator was chosen to be a neural network with two hidden layers comprising 60 and
30 nodes and an output layer. The generator was also defined as a neural network with two
hidden layers of 100 and 15 nodes and an output layer with five nodes. The ideal size of the
networks is not considered to be the object of the current work, therefore, choosing the best
architecture is not examined and was simply performed by trying different architectures manually
and selecting the ones that had satisfying results in terms of the value of the loss function. The
networks were initialised several times and the one with the lowest value for the loss function
was kept. In contrast to vanilla GANs, where the value of the objective function oscillates during
training, the value of the regularisation term in the loss function of infoGANs () gets lower by
training and selection of the network with the lowest value of the cost function is a legitimate
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Figure 6: First damage case samples, focused on the first transmissibility, which is affected by
the damage. Different colours reflect gradually increasing damage level, from cyan (no damage)
to blue (highest damage level).

strategy.

Having trained the generator, random samples are generated and studied. For each categorical
variable, 1000 samples were generated varying the continuous ¢, in the interval [—2.0, 2.0] and
generating random values for the latent noise vector z. In Figure[/| It is clear that the generated
points are quite close to the areas of the original points. It is also clear that each categorical
variable forces the generated points to belong to different clusters of the data, as long as the
manifolds of these clusters are not connected.

3.3 Classification and regression using GANs

In order to exploit the results of training a GAN, apart from generating artificial data, two
more use cases are examined. The first one is classification of the data and the second one is
a regression scheme; both in an unsupervised manner. The algorithm so far required minimal
supervision for the results above. The only supervised part of the algorithm was the definition of
the number of noise, categorical and continuous variables in the latent space.

For the classification process, random samples are generated in the principal component space
for each categorical variable separately. Subsequently, for each sample in the original dataset
the closest generated point is sought in terms of the Euclidean distance between the points. The
class assigned to the sample from the dataset is the class of the categorical variable that was
used to generate the closest point to the sample. Following this procedure for every point in
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(a) First categorical variable. (b) Second categorical variable.

(c) Third categorical variable. (d) Fourth categorical variable.

Figure 7: Generated points (red) and original points (blue) using different categorical variables.

the dataset, the result of the classification is shown in Figure[8al Each colour corresponds to a
different cluster assigned by the algorithm. The classification is perfect, as each point is classified
correctly. In order to contrast performance against a more trivial unsupervised classification
algorithm, a K-means clustering algorithm [21] is also applied on the same dataset and the results
are shown in Figure It is clear that there are some misclassified points using the K-means
algorithm.

Regarding the regression scheme, the captured variance from the continuous variable is examined.
In order to illustrate what the continuous variable has captured, more samples were generated
this time with the noise latent variables z considered constant and equal to zero. Again for each
categorical variable, several samples were generated by using different values for the continuous
variable in the interval [—3.0, 3.0]. The results are shown in Figure The variable has captured
some of the physics, explaining how the extent of damage affects the transmissibilities but the fit
is not perfect. By generating samples in the principal component space and transforming them
back to the original space, the effect of varying the continuous and the categorical code can be
illustrated. In Figure 9] the transmissibilities generated the way mentioned above are shown for
the categorical variable that corresponds to the first damage case. It is clear that the continuous
variable has the same effect on the diagram as the same “movement” occurs as in the one with
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Figure 8: Results of the classification procedure using the GAN generator (left) and a K-means
algorithm (right).

different damage extents in Figure[6] Similar behaviour is observed with the rest of the damage
cases.

4 Conclusions

Summarising, this work demonstrates that there exist certain benefits in using GANs, and more
specifically infoGANSs, in SHM. Using simulated data, it was illustrated that an infoGAN with
only prior knowledge of the number of different states of the structure is able to fit latent variables
in the distribution of the real data. Being trained on the data, the algorithm could be used to
classify the samples according to the categorical variables defined and at the same time to produce
artificial samples in a desired class. Furthermore, the continuous variable was able to capture an
underlying varying feature of the data, that of the extent of damage. As before, samples could be
generated by altering the continuous variable, while keeping the categorical variable constant.
This way, the effect of the level of damage was observed on the generated transmissibilities. It
could be stated that the infoGAN is imitating the damage mechanism through the continuous
code variables and such a scheme could be followed with a view to understanding how damage
mechanisms affect specific structures.

Since the GAN is an artificial intelligence algorithm, the results it yields should be evaluated in
this context. In artificial intelligence, the goal is for algorithms to perform as good as human
intelligence would and if possible, outperform it. In the case of classifying points in a feature
space, human-like behaviour is quite similar to the way infoGANSs cluster data. A human
examining this data, in order for two batches of points to belong in different clusters, their
manifolds should be disjoint. The infoGAN exhibits a similar behaviour, as for it to generate
points using different categorical variables, the real points should belong in two unconnected
manifolds. Under this assumption, the algorithm’s performance is quite good, since it classifies
points the same way a human would and can moreover perform it in multidimensional spaces,
which humans usually are not able to perceive and process.

Focusing on SHM and damage detection, if damage occurs gradually, the points representing
the status of the structure smoothly moves in space as a function of the damage extent. In this
case the infoGAN algorithm should be able to capture this change through a continuous latent
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Figure 9: Generated samples, using a single categorical variable, corresponding to the first
damage case and varying the continuous variable, focused on the first transmissibility, which is
affected by the damage. Different colours reflect gradually increasing damage level, from cyan
(lower damage level) to blue (higher damage level).

variable. If damage occurs suddenly, the infoGAN might be able to capture it as a different cluster
through its categorical variables. At the same time, generation of artificial data for different
clusters or values of underlying variables as damage extent is possible. In cases of continuous
monitoring of structures, some varying environmental conditions in the acquired data may be
captured. In this case, the infoGAN should also be able to capture the variation of the parameters
in its continuous variables. This observation points out a potential use of infoGANSs in large
databases in order to define trends and different clusters of data caused either by damage or
benign changing environmental conditions.
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Figure 10: Generated points (red) and original points (blue) using different categorical variables,

constant noise variable equal to zero and varying the continuous code variable in the interval
[—3.0,3.0].
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