
This is a repository copy of An application of generative adversarial networks in structural 
health monitoring.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/169129/

Version: Accepted Version

Proceedings Paper:
Tsialiamanis, G., Chatzi, E., Dervilis, N. orcid.org/0000-0002-5712-7323 et al. (2 more 
authors) (2020) An application of generative adversarial networks in structural health 
monitoring. In: Papadrakakis, M., Fragiadakis, M. and Papadimitriou, C., (eds.) EURODYN
2020: Proceedings of the XI International Conference on Structural Dynamics. EURODYN 
2020: XI International Conference on Structural Dynamics, 23-26 Nov 2020, Athens, 
Greece. European Association for Structural Dynamics (EASD) , pp. 3816-3831. ISBN 
9786188507227 

10.47964/1120.9312.19021

© 2020 The Authors. This is an author-produced version of a paper subsequently 
published in EURODYN 2020 Proceedings.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



EURODYN 2020

XI International Conference on Structural Dynamics

M. Papadrakakis, M. Fragiadakis, C. Papadimitriou (eds.)

Athens, Greece, 22—24 June 2020

AN APPLICATION OF GENERATIVE ADVERSARIAL NETWORKS IN

STRUCTURAL HEALTH MONITORING

G. Tsialiamanis1, E. Chatzi2, N. Dervilis1, D. J. Wagg1, K. Worden1

1Dynamics Research Group, Department of Mechanical Engineering, University of Sheffield,
Mappin Street, Sheffield S1 3JD

2 ETH Zurich, Institute of Structural Engineering
Stefano-Franscini-Platz 5, 8093 Zurich

Keywords: Structural health monitoring, machine learning, neural networks, generative adver-

sarial networks, GANs

Abstract. In the current work, the use of generative adversarial networks (GANs) in a simulated

structural health monitoring (SHM) application is studied. A specific type of GAN is considered,

aiming at a disentangled representation of underlying features and clusters of data through

some latent variables. This idea could prove useful in SHM, since explanation of how damage

mechanisms or environmental conditions affect a structure may be exploited in order to monitor

structures more effectively. In a simulated mass-spring example, different damage cases are

introduced by reducing the stiffness of specific springs and different damage levels by applying

different extents of stiffness reduction. The GAN implementation proves able to capture different

damage cases through its categorical latent variables, as well as the damage extent within

its continuous latent variables. The results demonstrate that the latent variables are indeed

capturing the effect of damage in the structure and can be exploited for the purpose of condition

assessment.
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1 Introduction

Modern societies extensively rely on structural elements. Everyday activities depend on structures

like bridges, engines, power generators etc. Malfunction or damage of these critical systems

may lead to delays in transportation, power shutdowns or even injury or death of individuals.

Avoiding such failures and guaranteeing safe operation and efficient performance is therefore

a matter of critical importance. Structural Health Monitoring (SHM) offers a tool to this end.

SHM is employed to ensure operability and safety of structures and to avoid consequences of

failure. Many different approaches have been proposed in the context of SHM, but all of them

can be categorised according to the hierarchical structure proposed by Rytter [1] and extended in

[2]:

1. Is there damage (existence)?

2. Where is the damage in the system (location)?

3. What kind of damage is present (type/classification)?

4. How severe is the damage (extent/severity)?

5. How much useful (safe) life remains (prognosis)?

Ascending in Rytter’s hierarchy makes the task at hand more difficult than the one in the previous

step. Detecting if damage exists requires definition of the normal condition of a structure and

divergence from that is an indication of damage and has to be examined. The second step

of localising damage, requires further knowledge about the behaviour of a structure and how

damage in various areas may affect the structural response. Moreover, defining the type of

damage is a task that requires further understanding of the structural behaviour and of the manner

in which different types of damage affect observed features of the structure. Finally, the two

last steps in the hierarchy, demand understanding of the damage mechanism in order to define

its severity and to further predict the useful life of the structure under the specific damage case.

Although some data driven methods would promise to do this without really understanding the

mechanism as long as sufficient instances of failure are recorded.

It is straightforward that dealing with these tasks involves acquiring and processing data in order

to infer results about the condition of a structure. Taking into account the progress made in the

disciplines of data analysis and machine learning (ML), diverse methods from these fields have

been exploited for the purposes of SHM [2]. Regarding the first step in the aforementioned

hierarchy, ML has been used to perform outlier detection using autoencoders to explain data

corresponding to the normal condition of a structure [3]. Autoencoders were chosen because

they are able to explain data belonging to an arbitrary manifold. For damage classification

or localisation, ML classifiers have been used [4], yielding quite good accuracy. The main

drawback of these methods is that data from damage states is required to perform their tasks.

Oftentimes however, data from damaged states are absent, or only limited samples are available.

Furthermore, to perform tasks further up in Rytter’s hierarchy, understanding of the underlying

physics of structures and damage mechanisms is needed.

Trying to understand the underlying physics within such a context, one may attempt to study a

black box model that is performing well on a task related to the underlying mechanism of the

problem. A representative example of such a case is a model trained on patient data [5] that

was able to predict schizophrenia with adequate precision. It is clear then that it may be worth
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spending some time studying the model in an attempt to understand better how schizophrenia

works and which symptoms indicate its existence. The same scheme may be applied on structures

with models trained on identifying damage location/type. A black-box model like a neural

network [6] may be exploited to understand the way some type of damage affects a structure.

A specific type of black-box model that is targeted to capturing the physics of a specific problem,

is the generative model. More specifically, Generative Adversarial Networks (GANs) [7] and

Variational Autoencoders (VAEs) [8] are neural networks that learn how to generate data that

look like reality. It is believed that, by studying these types of neural networks and the way they

produce data, further understanding of the underlying problems may be achieved. In the current

work, a specific type of GAN is used, the infoGAN [9]. This specific type of network achieves

a disentanglement in the latent feature space of the data which may have great benefits in an

SHM application. The use of such networks is considered in the task of classifying data from

structures and also in defining latent variables that explain the extent of damage in the data or the

variation of a parameter affecting the behaviour of the structure.

2 Generative Adversarial Networks (GANs)

2.1 Vanilla GANs

The traditional scheme followed in ML is the training of a model to perform classification [6]

or regression [10]. To extend this to images, convolutional neural networks were developed

[11] yielding superior performance in the two mentioned tasks. Recently, a new type of neural

network has emerged, the Generative Adversarial Network [7]. The goal of this new scheme is

to generate images that resemble reality, which is achieved via use of two neural networks. The

first one is termed the generator and produces “fake” images given a latent vector. The second

network is the discriminator, which tries to identify whether an image is fake (generated by the

generator) or real (coming from the available dataset). Through training both of these networks,

improve in reaching their objective and finally, the generator, provided with some latent vector,

can generate images that appear to be real. More intuitively, this means that the generator maps a

latent vector distribution into a distribution or a manifold of the real data. The layout of the basic

(vanilla) GAN can be seen in Figure 1.

The generator is a multi-layer perceptron (MLP) that takes as input a latent noise vector z

coming from a probability distribution pz(z) and maps it into a vector (or an image) G(z) of

dimension equal to the dimension of the training samples. The discriminator is another MLP

that takes as inputs, vectors (or images) x, and outputs the probability of the sample being real,

P (x = real) = D(x). The training of D is carried out by maximising the probability that it

assigns the correct label (“real” or “fake”) to the samples. At the same time, the training of

the generator, G, is accomplished by trying to minimise the probability that the discriminator

classifies the generated samples as fake, i.e. minimisation of log(1−D(G(z))). Following from

[7], the objective function can be interpreted as a two player minmax game given by,

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log 1−D(G(z)))] (1)

Training of such a network is performed in two steps per epoch. During the first step, random

samples are created by the generator and they are concatenated with a batch of real samples

from the dataset. The resulting training batch is used to train the discriminator for one epoch by
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back-propagating the error of the output. The target label for the real samples is 1 and for the

generated ones is 0. The right-hand side of equation (1) is set in this step as the objective function

and its maximisation is attempted. Consequently, the two networks are clipped together, as in

Fig 1, and random samples of the latent vector are generated in order to create random generated

samples. These samples are fed into the whole GAN and the target outputs are labels of 1.

The weights of the discriminator’s connections are considered as constants during the second

training phase and the error is back-propagated in order to train the generator. This latter time,

the objective function is comprised exclusively from the second term of the right-hand side of

equation (1) and its minimisation is sought. Following this training scheme, during the first step

the discriminator learns to distinguish between real and generated images and the generator to

generate images that the discriminator classifies as real.

Noise, z Generator

Generated
samples G(z)

Real
samples x

Discriminator Probability D(G(z))

Figure 1: Vanilla GAN layout.

The most straightforward application of GANs is to generate artificial data to augment a dataset.

Training neural networks is highly dependent on the size of the available dataset. The rule-of-

thumb for training neural networks that generalise well [12], specifies that for each trainable

weight of the neural network, 10 training samples are needed. Acquiring data is difficult and

some times even expensive. Labelled images are hard to be obtained and their manual labeling

costs. In cases of image datasets, augmentation can also be achieved by rotation of the pictures or

colour change etc. In SHM though, the securing of data from structures in different damage cases

or under different environmental conditions is expensive or even impossible; the samples are

usually limited and augmentation is not that easy. For this purpose, GANs can be used to increase

the size of a dataset and may even serve as interpolators. Especially for deep networks and even

more for deep convolutional neural networks, where the number of trainable parameters is huge,

augmentation of available dataset size could yield an efficient way to increase the generalisation

performance of models [13].

Another use of GANs is found in filling gaps in pictures [14, 15]. In this case, GANs trained

on a dataset are able to use pictures with missing pixels and generate a complete picture by

replacing missing pixels with something that fits well in the gap. This is a great example of how

this type of model may assist in repairing corrupted datasets. At the same time, these results are

encouraging the perspective that GANs achieve a better linkage of data to the driving physics (or

semantics) than traditional neural networks, since they are able repair corrupted data that they

have never seen before.

Furthermore, GANs are applied in image processing [16, 17, 18]. This application is also an

impressive usage of GANs, since they are able to capture through their latent variables, specific

features of the data. Afterwards, the users are able to manipulate the latent vectors and use the

generator to produce images, whose characteristics fit custom needs. A similar approach in the

current work is followed and an attempt is performed to capture in the latent code the extent

and type of damage in a structure. The ability to describe such features through a latent vector
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and generate data corresponding to specific damage cases or to the extent of damage would be

beneficial for the purposes of SHM, since further progress related to the fourth and fifth steps in

Rytter’s hierarchy could be achieved.

2.2 Information Maximising Generative Adversarial Nets

According to the classic formulation of GANs described, the latent variables used as inputs in the

generator do not encapsulate any specific features from the data. This is because no restriction

is imposed during training that every variable would describe a specific feature, resulting in

latent noise variables that correspond to entangled features or combinations of features. In

order to improve performance regarding the representation of disentangled features by the

latent variables, a slightly different architecture and training scheme is followed in [9], called

Information Maximising Generative Adversarial Nets (InfoGAN).

The procedure followed to enforce this disentanglement will be described below. At first, the

latent vector is divided into two parts, the latent noise z and the latent code c. The noise part z is

used to model noise that may be present in the data, while the latent code c is used to represent

interpretable features of the data. Following [9], the output of the generator becomes G(z, c). In

order for the latent code c to have a meaning, there should be high mutual information between

the code c and the generator distribution G(z, c), i.e. I(c;G(z, c)). The term I(c;G(z, c))
represents the amount of information learnt from knowledge of G(z, c) about c and can be

calculated using two entropy terms from,

I(c;G(z, c)) = H(c)−H(c|G(z, c)) = H(G(z, c))−H(G(z, c)|c) (2)

where H(x) and H(x|y) are the entropy of the random variable x and the conditional entropy of

x given y, respectively.

Trying to get further insight into equation (2), one realizes the reduction of uncertainty about c

when G(z, c) is observed. If the two variables are completely independent, then the term is equal

to zero. So for the maximisation of (2), given x ∼ PG(x), PG(c|x) should have small entropy.

Trying to maximise this term, enforces a deterministic relationship between the two variables.

To include this quantity in the optimisation process, the following modification is made in the

cost functions from equation (1),

min
G

max
D

V1(D,G) = min
G

max
D

V (D,G)− λI(c;G(z, c)) (3)

In practice though, maximisation of I(c;G(z, c)) is non-trivial, as one has no access to the
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posterior PG(c|x). To avoid maximising it directly, an auxiliary distribution Q(c|x) is defined,

I(c;G(z, c)) = H(c)−H(c|G(z, c)) =

Ex∼G(z,c)[Ec∼P (c|x)[logP (c|x)]] +H(c) =

Ex∼G(z,c)[Ec∼P (c|x)[log
P (c|x)

Q(c|x)
Q(c|x))]] +H(c) =

Ex∼G(z,c)[Ec∼P (c|x)[log
P (c|x)

Q(c|x)
]− Ec∼P (c|x)[logQ(c|x))]]

+H(c) =

Ex∼G(z,c)[DKL(P (·|x)||Q(·|c))
︸ ︷︷ ︸

≥0

−Ec∼P (c|x)[logQ(c|x))]]

+H(c)

≥ Ex∼G(z,c)[Ec∼P (c|x)[logQ(c|x)]] +H(c)

(4)

The technique of maximising the lower bound of the mutual information is called Variational

Information Maximisation [19]. In equation (4) the quantity to be maximised is the first term of

the final formula, since H(c) is a constant and has an analytical form and a common distribution

is chosen for c. To avoid sampling from the posterior in the inner expectation of the expression

in equation (4), the Lemma 5.1 of [9] is used; according to which, for random variables X , Y

and functions f(x, y) under suitable regularity conditions it applies that: Ex∼X,y∼Y |x[f(x,y)] =
Ex∼X,y∼Y |x,x∼X|y[f(x,y)]. Following this result a variational lower bound, L1(G,Q), of the mutual

information I(c;G(z, c)) is defined,

L1(G,Q) = Ex∼G(z,c)[Ec∼P (c|x)[logQ(c|x)]] =

Ec∼P (c),x∼G(z,c)[logQ(c|x)] +H(c) ≤ I(c;G(z, c))
(5)

In equation (5), the quantity to be maximised is the log-probability of the auxiliary distribution

Q. In practice Q is modeled using a neural network. The newly-defined neural network is part of

the discriminator network of the vanilla GAN. By defining the neural network Q, maximisation

of the quantity in equation (5) is performed by back-propagating its error.

In the categorical case, in order to maximise logQ(c|x) by training Q, the output is given by a

softmax function and the categorical-crossentropy loss function gives the desired results. In the

case of a continuous code c, a maximum likelihood estimation (MLE) scheme has to be followed.

The outputs of the neural network are two for each continuous code ci; one for the mean value of

the code and one for the variance. Afterwards, the loss function to be maximised is the mean

log probability of all the outputs corresponding to the continuous code inputs. Assuming that c

comes from a Gaussian distribution and that the variables ci are independent, the loss function is

6



given by,

log[Q(c|x)] = log[
nc∏

i=1

P (ci)] =
nc∑

i=1

logP (ci) =

nc∑

i=1

[−
1

2
log(2πσ2

i )−
(ci − µi)

2

σ2
i

] ∝
nc∑

i=1

[− log(σi)−
(ci − µi)

2

σ2
i

]

(6)

In equation (6), ci corresponds to the input value in the neural network and µi, σi are the mean

and variance of each distribution of the code ci. An overview of the network architecture of the

infoGAN is shown in Fig 2. It becomes clear that the logic behind this architecture is that a

sample is generated by the generator; it should look real, so that the discriminator classifies it as

real and the parameters of the code c that were used to generate it should be as distinguishable as

possible by the auxiliary neural network Q. Following this scheme, the infoGAN is expected to

generate samples belonging to different classes (or manifolds) using different categorical codes

ccat and to explain the variability of features within the classes, using the continuous code ccont.

Also, some random noise is added via z because as usual, noise in the data exists and should be

modelled.

Noise, z

Code, c

Generator

Generated
samples G(z)

Real
samples x

Discriminator Probability D(G(z))

Q network

Estimation of c

Figure 2: InfoGAN layout.

3 Application on simulated data

3.1 Simulation description

For the application of GANs to structural data, a simple simulated linear six-degree-of-freedom

lumped mass system is examined. The masses of the system were all equal to one, the stifness of

the undamaged states of the springs equal to 104 and a diagonal damping matrix was assumed

with its elements equal to 25. The system was simulated using a fourth-order Runge-Kutta

integration scheme. The excitation was a white noise signal applied on the first mass. In order to

introduce different levels of damage in the structure, stiffness reductions were applied on springs

1-2, 2-3, 3-4 and 4-5. The reducted stifnesses came from normal distributions with mean values

of 80% of the initial values of the system and variance equal to 4.5% of the initial stiffness of

each spring.
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In each simulation the transmissibilities between masses 1-2, 2-3, 3-4 and 4-5 were calculated,

concatenated and considered as the samples representing each simulation. The normal condition

concatenated transmissibilities are shown in Figure 4. Transmissibilities are a useful tool in

monitoring real structures, where one has no knowledge about the input excitation to a dynamical

system, in order to calculate the frequency response function (FRF). The sampling frequency of

the simulation was 200Hz; each transmissibility consists of 512 spectral lines and noise with

variance equal to 5% of the transmissibility’s variance was added to each one of them. In order

to visualise the data, a principal component analysis (PCA) [20] was performed on the data and

the first three principal components were plotted. In Figure 5 each batch/manifold of points

corresponds to a different damage case. Moreover, through the gradual colour transition, the

different damage levels are shown. A yellow colour represents points with low damage level

(5-7.5% stiffness reduction) and dark red points correspond to higher damage levels (32-35%).

m1 m2 m3 m4 m5 m6

F

k1 k2 k3 k4 k5 k6

Figure 3: Mass-spring system.

Figure 4: Normal condition concatenated transmissibilities.

Each damage case affects the transmissibilities in a different way. To be able to judge the results

of the GANs to be trained consequently, an illustration of influence of that stiffness reduction on

the transmissibilities is offered in Figure 6. Each different colour line corresponds to different

8



Figure 5: First three principal components of simulated transmissibilities. Gradual colour change

from yellow to dark red represents lower to higher damage levels respectively.

damage level and the “movement” of the diagram as the damage extent increases is depicted.

Damage induced in different springs causes similar effects to the one shown in Figure 6, but in

different areas of the diagram.

3.2 InfoGAN training

The infoGAN was trained on the five first principal components of the data (explaining 99%

of the variance) in order to reduce both training time and trainable parameters of the networks.

Since the PCA transformation is linear, the infoGAN training is not considered to be assisted by

it in any way other than the dimensionality reduction. In the input layer of the generator, two

latent variables zi sampled from a Gaussian distribution z ∼ N(0, 1) were used because noise is

present in the data. Four categorical variables ci,cat sampled with equal probability were also

used, since there are four different damage cases and one continuous ccont, sampled also from

a Gaussian distribution similar to the previous one. The expected result is that the generator

should be able to generate samples corresponding to the different damage cases by altering the

categorical variables and also corresponding to the damage extent by varying the continuous

latent variable.

The discriminator was chosen to be a neural network with two hidden layers comprising 60 and

30 nodes and an output layer. The generator was also defined as a neural network with two

hidden layers of 100 and 15 nodes and an output layer with five nodes. The ideal size of the

networks is not considered to be the object of the current work, therefore, choosing the best

architecture is not examined and was simply performed by trying different architectures manually

and selecting the ones that had satisfying results in terms of the value of the loss function. The

networks were initialised several times and the one with the lowest value for the loss function

was kept. In contrast to vanilla GANs, where the value of the objective function oscillates during

training, the value of the regularisation term in the loss function of infoGANs (4) gets lower by

training and selection of the network with the lowest value of the cost function is a legitimate
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Figure 6: First damage case samples, focused on the first transmissibility, which is affected by

the damage. Different colours reflect gradually increasing damage level, from cyan (no damage)

to blue (highest damage level).

strategy.

Having trained the generator, random samples are generated and studied. For each categorical

variable, 1000 samples were generated varying the continuous ccont in the interval [−2.0, 2.0] and

generating random values for the latent noise vector z. In Figure 7. It is clear that the generated

points are quite close to the areas of the original points. It is also clear that each categorical

variable forces the generated points to belong to different clusters of the data, as long as the

manifolds of these clusters are not connected.

3.3 Classification and regression using GANs

In order to exploit the results of training a GAN, apart from generating artificial data, two

more use cases are examined. The first one is classification of the data and the second one is

a regression scheme; both in an unsupervised manner. The algorithm so far required minimal

supervision for the results above. The only supervised part of the algorithm was the definition of

the number of noise, categorical and continuous variables in the latent space.

For the classification process, random samples are generated in the principal component space

for each categorical variable separately. Subsequently, for each sample in the original dataset

the closest generated point is sought in terms of the Euclidean distance between the points. The

class assigned to the sample from the dataset is the class of the categorical variable that was

used to generate the closest point to the sample. Following this procedure for every point in

10



(a) First categorical variable. (b) Second categorical variable.

(c) Third categorical variable. (d) Fourth categorical variable.

Figure 7: Generated points (red) and original points (blue) using different categorical variables.

the dataset, the result of the classification is shown in Figure 8a. Each colour corresponds to a

different cluster assigned by the algorithm. The classification is perfect, as each point is classified

correctly. In order to contrast performance against a more trivial unsupervised classification

algorithm, a K-means clustering algorithm [21] is also applied on the same dataset and the results

are shown in Figure 8b. It is clear that there are some misclassified points using the K-means

algorithm.

Regarding the regression scheme, the captured variance from the continuous variable is examined.

In order to illustrate what the continuous variable has captured, more samples were generated

this time with the noise latent variables z considered constant and equal to zero. Again for each

categorical variable, several samples were generated by using different values for the continuous

variable in the interval [−3.0, 3.0]. The results are shown in Figure 10. The variable has captured

some of the physics, explaining how the extent of damage affects the transmissibilities but the fit

is not perfect. By generating samples in the principal component space and transforming them

back to the original space, the effect of varying the continuous and the categorical code can be

illustrated. In Figure 9 the transmissibilities generated the way mentioned above are shown for

the categorical variable that corresponds to the first damage case. It is clear that the continuous

variable has the same effect on the diagram as the same “movement” occurs as in the one with
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(a) (b)

Figure 8: Results of the classification procedure using the GAN generator (left) and a K-means

algorithm (right).

different damage extents in Figure 6. Similar behaviour is observed with the rest of the damage

cases.

4 Conclusions

Summarising, this work demonstrates that there exist certain benefits in using GANs, and more

specifically infoGANs, in SHM. Using simulated data, it was illustrated that an infoGAN with

only prior knowledge of the number of different states of the structure is able to fit latent variables

in the distribution of the real data. Being trained on the data, the algorithm could be used to

classify the samples according to the categorical variables defined and at the same time to produce

artificial samples in a desired class. Furthermore, the continuous variable was able to capture an

underlying varying feature of the data, that of the extent of damage. As before, samples could be

generated by altering the continuous variable, while keeping the categorical variable constant.

This way, the effect of the level of damage was observed on the generated transmissibilities. It

could be stated that the infoGAN is imitating the damage mechanism through the continuous

code variables and such a scheme could be followed with a view to understanding how damage

mechanisms affect specific structures.

Since the GAN is an artificial intelligence algorithm, the results it yields should be evaluated in

this context. In artificial intelligence, the goal is for algorithms to perform as good as human

intelligence would and if possible, outperform it. In the case of classifying points in a feature

space, human-like behaviour is quite similar to the way infoGANs cluster data. A human

examining this data, in order for two batches of points to belong in different clusters, their

manifolds should be disjoint. The infoGAN exhibits a similar behaviour, as for it to generate

points using different categorical variables, the real points should belong in two unconnected

manifolds. Under this assumption, the algorithm’s performance is quite good, since it classifies

points the same way a human would and can moreover perform it in multidimensional spaces,

which humans usually are not able to perceive and process.

Focusing on SHM and damage detection, if damage occurs gradually, the points representing

the status of the structure smoothly moves in space as a function of the damage extent. In this

case the infoGAN algorithm should be able to capture this change through a continuous latent
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Figure 9: Generated samples, using a single categorical variable, corresponding to the first

damage case and varying the continuous variable, focused on the first transmissibility, which is

affected by the damage. Different colours reflect gradually increasing damage level, from cyan

(lower damage level) to blue (higher damage level).

variable. If damage occurs suddenly, the infoGAN might be able to capture it as a different cluster

through its categorical variables. At the same time, generation of artificial data for different

clusters or values of underlying variables as damage extent is possible. In cases of continuous

monitoring of structures, some varying environmental conditions in the acquired data may be

captured. In this case, the infoGAN should also be able to capture the variation of the parameters

in its continuous variables. This observation points out a potential use of infoGANs in large

databases in order to define trends and different clusters of data caused either by damage or

benign changing environmental conditions.
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(a) First categorical variable. (b) Second categorical variable.

(c) Third categorical variable. (d) Fourth categorical variable.

Figure 10: Generated points (red) and original points (blue) using different categorical variables,

constant noise variable equal to zero and varying the continuous code variable in the interval

[−3.0, 3.0].
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