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Abstract: Systematic experiments were firstly designed and conducted to investigate the 14 

operating characteristics of a dual compensation chamber loop heat pipe (DCCLHP) under 15 

periodic acceleration conditions. A new acceleration test rig was built to generate acceleration 16 

magnitude up to 11 g. The heat load ranged from 150 W to 300 W. Three different periodic 17 

acceleration patterns, two loading modes and two acceleration directions were used to study 18 

their influence on the operating characteristics of the DCCLHP. The results demonstrated that 19 

the loop temperature could periodically oscillate with the periodic change of the acceleration. A 20 

large acceleration could lead to a high operating temperature. Configuration B could cause the 21 

lower operating temperature than configuration A for a fixed case. There were stable operating 22 

temperature difference and thermal resistance variation before and after the periodic 23 

acceleration acting for the loading mode 1. Temperature overshooting after unloading the 24 

periodic acceleration was also confirmed for the loading mode 2. Such phenomena could be 25 

explained by the change of the vapor-liquid distribution in the loop and the heat leak from the 26 

evaporator to the compensation chambers (CCs). The loop temperature oscillation with 27 

different frequency and amplitude might also occur during each periodic acceleration. For the 28 

cases of 150 W and configuration A, the acceleration effect could trigger the operating 29 

temperature exceeding 60 oC. Our work proves significant phenomena existing in the DCCLHP 30 

and presents detailed analysis, which would be of great importance for the development of new 31 

generation of loop heat pipe used in aircraft thermal management system. 32 
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Operating characteristics.  34 

Nomenclature 35 

R   Thermal resistance, K/W 36 

Qe   Heat load, W 37 

Tin   Inlet temperature of cold plate, K 38 

Tout  Outlet temperature of cold plate, K 39 

cpT    Average temperature of cold plate, K 40 

Acronyms  41 

CC Compensation chamber 42 

DCCLHP Dual compensation chamber loop heat pipe 43 

LHP Loop heat pipe 44 

RTD Resistance temperature detector 45 

1. Introduction 46 

With the rapid development of aerospace technology, the conventional cooling technology 47 

cannot meet the thermal management demand of electronic devices with higher and higher heat 48 

dissipation power. New cooling technique has become an urgent demand for solving the 49 

cooling problems [1,2]. Loop heat pipe (LHP), an efficient two-phase heat transfer component, 50 

has attracted increasing attentions since it was invented [3,4]. It has many advantages including 51 

long heat transport distance, strong anti-gravity ability, high heat transfer efficiency and 52 

accurate temperature control ability. With such promising properties, LHP has been widely 53 

used in the area of aerospace and terrestrial electronics in recent years [5,6].  54 

LHP is mainly composed of evaporator, condenser, compensation chamber (CC), liquid and 55 

vapor transport line. It transports heat by evaporating and condensing the working fluid from 56 

the evaporator and condenser, respectively. Nowadays, a large number of experimental and 57 

numerical investigations have been conducted on the steady-state operation and startup 58 

performance [7-9], structure design [10,11] and internal visualization [12,13] for the LHP with 59 

a single cylindrical CC. Previous researches have brought people with deeper insights of the 60 

operating principle and heat transfer mechanism.  61 



3 

Compared with the conventional heat pipe, LHP shows its excellence as it overcomes the 62 

inherent structural limitations and also retains the merits of the traditional one. High heat 63 

transfer ability can be maintained for a long distance in terrestrial gravity due to its special 64 

capillary core structure. However, in the thermal tests in gravity, some orientations between 65 

evaporator and CCs will occasionally cause the difficulty in supplying the liquid and the LHP 66 

even cannot startup. To solve the dilemma, the concept of a dual compensation chamber loop 67 

heat pipe (DCCLHP) is proposed. It has two CCs at the both ends of evaporation. Previous 68 

studies have investigated the operating characteristics of DCCLHPs. Gluck and Gerhart [14] 69 

studied the performance of the DCCLHP using ammonia as working fluid. They found that it 70 

could startup and work normally under different configurations between evaporator and CCs. 71 

Operation features at nine different orientations were summarized in their study [15]. Long and 72 

Ochterbeck [16] experimentally investigated the operating performance of a DCCLHP at 73 

transient cyclic heat loads and different orientations, showing that the temperature overshot 74 

before starting up increased with the increase of the tilt angle of the evaporator. The 75 

performance at constant heat load was similar to that at cyclic heat load with frequency more 76 

than 0.1 Hz. The research group led by Lin [17-20] inspected the operating performance 77 

systematically and tried to give insight into the operating mechanism of the 78 

ammonia-strain-steel DCCLHP. They also confirmed that the DCCLHP could operate normally 79 

at any orientation but show different operating performance at different orientations. Based on 80 

the visual observations, they observed the flow inside the DCCLHP and investigated the 81 

startup behavior, temperature hysteresis and instability. They believed that the different startup 82 

performance derived from the change of the vapor-liquid distribution and the heat leak from 83 

the evaporator to the CCs. Chang et al. [21, 22] experimentally investigated the startup and 84 

operating performance of the DCCLHP anti-icing system. Stainless steel with nickel wick was 85 

used. Ethanol and ethanol-water mixture were utilized as working fluid. The results showed 86 

that the angle attack could significantly affect the operating temperature and led to a 87 

temperature oscillation of the anti-icing system. Moreover, the DCCLHP with 60% 88 

concentration of mixture operated more robustly and stably than that with pure ethanol. 89 

However, when the aircraft combats or maneuvers, airborne electronic devices suffer from 90 

acceleration forces with different directions and magnitudes. Correspondingly, the operating 91 
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performance of the LHP used to cool the electronic devices will vary. To date there are only a 92 

few reports which show the operating performance of the conventional LHP and the DCCLHP 93 

subjected to acceleration force. Ku et al. [23,24] carried out a series of experiments on a LHP 94 

subjected to variable acceleration ranging from 1.2 g to 4.8 g. It was found that the LHP could 95 

startup and operate under all working conditions. The temperature oscillation was also 96 

observed. Fleming et al. [25] studied the operation characteristics of titanium-water based LHP 97 

under standard and elevated acceleration fields. In their works, the heat load on evaporator and 98 

CC was 100 W-600 W and 0-50 W, respectively. The radial acceleration ranged from 0 to 10 g. 99 

The results proved that the dry-out conditions occurred more readily with the heat load 100 

between 100 W and 400 W. The radial acceleration had little effect on the thermal resistance 101 

and evaporative heat transfer coefficient of the LHP. Yerkes et al. [26,27] studied the operating 102 

performance of a LHP via experiment under combined steady-periodic acceleration and 103 

constant heat load conditions. They found that the periodic acceleration force with greater 104 

frequency and peak-to-peak amplitude showed less detrimental impact on the LHP 105 

performance. If decreasing frequency and increasing peak-to-peak amplitude, however, 106 

detrimental impact on that aggravated. In addition, the transient operating performance of a 107 

titanium-water based LHP subjected to a phase-coupled evaporator heat input and acceleration 108 

field was studied in detail [28]. It was found that the condenser temperature and phase angle 109 

could change the time of LHP operating failure. Xie et al. [29,30] carried out experimental 110 

studies on the operating behaviors of a stainless steel-ammonia DCCLHP under terrestrial 111 

gravity and constant acceleration conditions. The results revealed that the transition of the 112 

operation mode was a function of acceleration direction, magnitude and heat load. The 113 

DCCLHP could startup and operate normally even the acceleration was up to 11 g. 114 

Acceleration effect significantly affects the startup performance at small heat load. Besides, 115 

reverse flow, temperature oscillation and evaporation in the evaporator core phenomena were 116 

observed.  117 

To the best of our knowledge, there are no detailed experimental data available in literatures 118 

concerning the effect of the varied acceleration force on the DCCLHP, especially the periodic 119 

acceleration force. Therefore, our study aims to provide comprehensive experimental data 120 

exploring the transient operating performance of a DCCLHP under periodic acceleration 121 
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conditions. Three different periodic acceleration patterns with different acceleration 122 

magnitudes, two loading modes with different heat loads and accelerations as well as two 123 

acceleration directions are applied, compared and analyzed in this work.  124 

2. Experimental apparatus and test parameters 125 

2.1 Experimental apparatus 126 

The experiment to investigate the operating performance of the DCCLHP under periodic 127 

acceleration force was performed at the Reliability and Environmental Engineering Laboratory 128 

at BeiHang University, Beijing, China. Fig. 1 presents the schematic diagram of the 129 

experimental test rig which mainly includes cooling water circulation subsystem, data 130 

acquisition and control subsystem, acceleration simulating and control subsystem as well as 131 

test section.  132 

 133 

Fig.1 The structure of the experimental system. 134 

In order to avoid the interaction of each component under acceleration field, only test section 135 

including the DCCLHP and a cold plate was arranged on the rotational arm. The other devices 136 

were placed on a stationary console. The cooling water circulation subsystem mainly consists 137 
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of a thermostatic water tank, gear pump, mass flow rate (DMF-1-2), plate heat exchanger and 138 

cold plate. The gear pump driven by a variable-frequency driver circulated the cooling water in 139 

the loop. The thermostatic water tank provided the cooling water with a constant temperature at 140 

19 oC. The accurate flow rate was measured by mass flow meter based on Coriolis force with 141 

an accuracy of ± 0.5%. The heat from the DCCLHP was transferred to the cooling water inside 142 

the aluminum cold plate (type 6061). Then the cooling water was cooled to a lower 143 

temperature after flowing through the plate heat exchanger. Finally, the cooled water returned 144 

back to the thermostatic water tank.  145 

In the data acquisition and control subsystem, the DC power supply (DH1716A-13) 146 

provided constant voltage and current to the flexible polyimide film electric resistance heater, 147 

which was adhesively attached on the outer surface of the evaporator of the DCCLHP. The heat 148 

load ranging from 0 to 400 W could be applied to the evaporator by changing the output 149 

voltage and current within the range of 0-250 V and 0-5 A, respectively. Resistance 150 

temperature detectors (RTDs) Pt100 were used to measure the temperature of the DCCLHP, 151 

inlet and outlet temperature of the cold plate, and ambient temperature. These temperatures and 152 

mass flow rate were recorded by the Agilent 34970A and saved in a remote computer placed in 153 

the control room. 154 

The acceleration simulating and control subsystem provided the required acceleration force, 155 

which was generated by the rotational arm of the centrifuge spinning clockwise. An electric 156 

motor drove the rotational arm to rotate by a gear box. These facilities were installed in a pit 157 

and controlled by a remote computer controller and transducer controller. The acceleration 158 

magnitude and actuation duration were set by the computer controller. To get the required 159 

acceleration magnitude up to 11 g, the test section should be arranged on a set location on the 160 

rotational arm. The accuracy of the acceleration is ± 5% of the given value. The continuous 161 

operation duration of the centrifuge was no more than 1 hour for the issue of safety. The 162 

stationary and rotational parts of the water loop tubes, signal wires and electrical wires for 163 

heating were linked up by the liquid collecting ring and the electric slip ring, respectively. Both 164 

the liquid collecting ring and the electric slip ring installed in the centrifuge axis were specially 165 

designed to ensure the flow and electric current working properly as the rotational arm was 166 

rotating during the test. Fig. 2 depicts a photo of the centrifuge and the test section horizontally 167 
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arranged on the rotational arm. 168 

In the test section, a stainless steel-ammonia DCCLHP manufactured in the China Academy 169 

of Space Technology was horizontally installed in a stainless steel enclosure. The filling 170 

quantity of working fluid was insufficient which means that the evaporator core could not be 171 

full of liquid under all conditions. Fig. 3 shows a picture of the test object and the internal 172 

construction of the evaporator and the CCs. The overall dimension of the DCCLHP is 565 mm 173 

× 469 mm × 25 mm. The major design parameters of the test DCCLHP are summarized in 174 

Table 1. 175 

 176 

Fig.2 The diagram of the centrifuge. 177 

 As shown in Fig. 3 (a), the bayonet passed through one CC and was extended to the middle 178 

point of the evaporator core to discharge the vapor bubbles from the evaporator core at any 179 

arrangement orientation. A nickel wick with a pore radius of 1.5 μm was used only in the 180 

evaporator. The vapor line, liquid line and condenser line were all smooth round stainless steel 181 

tubes with an outer diameter of 3.0 mm. The condenser line was welded to six copper fins 182 

which were fixed on the top surface of the cold plate with screws, as shown in Fig. 3 (b). 183 

Moreover, the thermal conductive grease was used between the copper fins and the cold plate 184 

to decrease the contact thermal resistance. In order to reduce the heat transfer between the 185 

DCCLHP and the surroundings, the whole DCCLHP were wrapped with insulation materials 186 

and the stainless steel enclosure was crammed with glass wool.  187 
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 188 

(a) Internal structure of the evaporator 189 

 190 

(b) A photo of the test DCCLHP 191 

Fig.3 A photo of the test DCCLHP and internal structure of the evaporator 192 

Table 1 Major design parameters of the test DCCLHP. 193 

Evaporator O.d/i.d. × length of casing 

Material 

20 mm/18 mm×209 mm 

Stainless steel 

Wick Pore radius 1.5μm  

Porosity 

Permeability 

O.d/i.d. × length 

Material 

55% 

>5×10-14 m2 

18 mm/6 mm×190mm 

Nickel 

Vapor line O.d/i.d. × length 

Material 

3 mm/2.6 mm×225 mm 

Stainless steel 

Liquid line O.d/i.d. × length 

Material 

3 mm/2.6 mm×650 mm 

Stainless steel 
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Condenser line O.d/i.d. × length 

Material 

3 mm/2.6 mm×2200 mm 

Stainless steel 

CCs O.d/i.d. × length 

Material 

27 mm/25 mm×64 mm 

Stainless steel 

Working fluid Ammonia  

When the test section was fixed on the end of the rotational arm, non-uniform radial 194 

acceleration forces on the DCCLHP were generated at different radius positions. GB/T2423.15 195 

requires that the acceleration magnitude should range from 90% to 130% related to the value at 196 

a certain rotational radius over the DCCLHP. Thus, the DCCLHP should be installed at 197 

approximate 1.9 m of rotational radius of the centrifuge. Correspondingly, the value of the 198 

rotational radius should also be set to 1.9 m in the acceleration control software. 199 

In the current study, fourteen RTDs were utilized to monitor the temperature in the test. Fig. 200 

4 shows the RTD locations of the measuring points along the DCCLHP. RTD1 and RTD2, 201 

RTD4 and RTD5 were attached to the top and bottom of the outer surface of CC1 and CC2, 202 

respectively. RTD3 was located at the middle position on the evaporator. RTD6 was located at 203 

the end of the vapor line, and that is at the inlet of the condenser. RTD7 and RTD8 were 204 

located on the condenser line, respectively. RTD9, RTD10 and RTD11 were located at the inlet, 205 

middle and outlet position of the liquid line, respectively. RTD12 and RTD13 were used to 206 

measure the cooling water temperatures at the inlet and outlet of the cold plate, respectively. 207 

RTD14 was used to monitor the ambient temperature. 208 

 209 

Fig.4 Schematic diagram of RTDs locations on the DCCLHP. 210 
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2.2 Test parameters 211 

In the current work, tests were conducted with the following two different configurations, 212 

namely configuration A and B as shown in Fig. 5. For both configurations, the DCCLHP was 213 

placed on a horizontal plane and the longitudinal axis of the evaporator and CCs was aligned 214 

with the direction of the radial acceleration. The main difference for both configurations was 215 

that the radial acceleration direction pointed from CC1 to CC2 for configuration A while it 216 

pointed from CC2 to CC1 for configuration B.  217 

 218 

(a) Configuration A 219 

 220 

(b) Configuration B. 221 

Fig.5 Two different acceleration directions.   222 

Two loading modes, i.e., loading mode 1 and loading mode 2, were used to apply the heat 223 

load and acceleration force on the DCCLHP. For loading mode 1, the heat load was applied on 224 
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the evaporator firstly and then the acceleration force was applied until the DCCLHP reaching a 225 

steady state. For loading mode 2, the heat load and the acceleration force were acted on the 226 

DCCLHP simultaneously. The heat load ranged from 150 W to 300 W and the acceleration 227 

magnitude from 0 g to 11 g. Moreover, three different periodic acceleration force were 228 

generated and used to study the effect on the operating performance of the DCCLHP. Fig. 6 229 

presents these periodic acceleration patterns in the tests. In each periodic acceleration pattern, 230 

the action time of the acceleration force was 5 minutes. In periodic acceleration pattern 1, 0 g 231 

referred to no acceleration action but only the gravity and the lasting time was 1 minute. In 232 

order to compare different cases, the cooling water temperature at the inlet of the cold plate 233 

was kept at 20.3 ± 0.5 oC. The indoor temperature was kept at about 26 oC. 234 

 235 

Fig.6 Three different periodic acceleration patterns. 236 

2.3 Test procedure 237 

Calibrations of the RTDs and mass flow meter were conducted prior to the formal test. The 238 

validation of the experimental setup was verified by measuring the thermal conductivity of a 239 
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pure copper bar with the diameter of 30 mm under terrestrial gravity conditions. Detailed 240 

descriptions are available in Ref. [30]. 241 

Before each test, the test section was arranged at a proper location on the rotational arm for 242 

the given acceleration direction. When starting the formal tests, the data acquisition and control 243 

subsystem was firstly operated and then the cooling water circulation subsystem was turned on. 244 

The cooling water circulated until the system reaching a steady state. Consequently, for the 245 

loading mode 1, the DCCLHP first operated to a steady state at a given heat load on the 246 

evaporator and then the acceleration simulating and control subsystem started to apply the 247 

acceleration force. While for the loading mode 2, the film heater and the centrifuge were turned 248 

on simultaneously. Then the effect of different magnitudes and directions of the periodic 249 

acceleration force, and that of different heat loads on transient operating performance was 250 

investigated.  251 

3. Results and discussion 252 

The operating performances of the DCCLHP subjected to various periodic acceleration 253 

patterns and loading modes are presented in the following sections, including several particular 254 

phenomena such as stable operating temperature difference, temperature overshooting after 255 

unloading, temperature oscillation and excessive operating temperature.  256 

3.1 Operating performance during periodic acceleration  257 

In order to analyze the operating performance of the DCCLHP under different periodic 258 

acceleration conditions, Fig. 7 depicts the loop temperature profiles at 150 W and loading 259 

mode 1 under configuration B and the periodic acceleration pattern 1, 2 and 3, respectively. 260 

Such results revealed that the loop temperature under periodic acceleration conditions was 261 

obviously lower than that without periodic acceleration force acting. The loop temperature 262 

showed periodic oscillation with the acceleration periodic change. Moreover, the temperature 263 

oscillation at the acceleration pattern 1 was more than that at the acceleration pattern 2 and 3. 264 

The higher the acceleration magnitude, the higher the operating temperature. 265 

As shown in Fig. 7 (a), the loop temperature showed a periodic fluctuation under the 266 

periodic acceleration force conditions. Before applying the first 3 g of the acceleration force, 267 

the evaporation temperature indicated by RTD3 was 55.1 oC. The upper and lower surface 268 
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temperature of the CC1 and CC2 was 54.2 oC, 53.3 oC, 46.8 oC and 37.1 oC, respectively. The 269 

temperature of RTD1 to RTD4 dropped rapidly while the RTD5 temperature increased instantly 270 

and then decreased quickly upon applying the periodic acceleration force. The main reason for 271 

this was that the vapor-liquid distribution in the loop was changed by the acceleration force, 272 

which directed from the CC2 to CC1 under configuration B. It enabled more liquids with lower 273 

temperature to enter the CC1 but more vapor with higher temperature to enter the CC2. 274 

Consequently, the CC1 temperature decreased while the RTD5 temperature rose rapidly. 275 

Moreover, the significant increase of the RTD7 temperature and the slight increase of both 276 

RTD8 and RTD9 indicated that the vapor-liquid interface moved forward to somewhere 277 

between RTD7 and RTD8 from that between RTD6 and RTD7. The acceleration effect 278 

enlarged the area of two-phase region in the condenser. According to the temperature variation 279 

of RTD7, RTD8 and RTD9, it could be further inferred that the vapor-liquid interface located 280 

closer to the RTD7 point. Thus, the external loop pressure drop caused by acceleration could be 281 

neglected. Because the vapor-liquid distribution in the CCs contributed to decreasing the heat 282 

leak from the evaporator to the CCs, and thereby the temperature of the evaporator and the CCs 283 

dropped continuously.  284 

 285 

(a) Temperature profiles at acceleration pattern 1 286 
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 287 

(b) Temperature profiles at acceleration pattern 2 288 

 289 

(c) Temperature profiles at acceleration pattern 3 290 

Fig.7 Temperature curves at 150 W, loading mode 1 under configuration B and acceleration 291 

pattern 1, 2 and 3. 292 

After unloading the first 3 g，the temperature of RTD1 to RTD4 rose but RTD5 dropped 293 
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obviously. The reason could be that the vapor-liquid distribution in the loop was quickly altered 294 

to the previous state as the acceleration was removed. Hence the heat leak from the evaporator 295 

to the CCs increased. Due to the slight change of RTD11 temperature, the subcooling of the 296 

returning liquid kept almost constant. Thus, both CCs temperature rose and the evaporator 297 

temperature increased accordingly. 298 

When the second 3 g acceleration functioned, the vapor-liquid distribution changed again 299 

which would be similar to that in the first 3 g process. The temperature of RTD1 to RTD4 300 

dropped and then kept constant while the RTD5 temperature rose to a constant. Moreover, the 301 

loop temperature decreased again as the second 3 g was removed. Similarly, the temperature of 302 

the evaporator and the CCs during the period from the third 3 g to the fourth 3 g showed the 303 

similar variation as the second 3 g. The evaporator temperature varied from 36.4 ℃ to 37.2 ℃. 304 

When 5 g was applied, it could be found that the operating temperature was nearly 0.6 ℃ 305 

higher than that under 3 g at a steady state. The temperature of RTD4 to RTD7 showed similar 306 

profiles. This indicated that larger acceleration could result in a higher operating temperature 307 

and temperature variation.  308 

After the periodic acceleration was unloaded at about 7674 s, the whole loop operated in 309 

terrestrial gravity. The vapor-liquid distribution in the loop recovered back to the initial state 310 

before the acceleration was applied. The temperature of the evaporator and the CCs started to 311 

increase after a slight fluctuation. Finally, the whole loop reached a steady state. The final 312 

operating temperature was 50.5 ℃, which was 4.6 ℃ lower than the initiate temperature.  313 

In Fig. 7 (b), as the first 3 g was applied, the evaporator and the CC1 temperature decreased 314 

rapidly, while the upper surface temperature of the CC2 increased firstly and then descended. 315 

The RTD7 temperature increased significantly. Meanwhile the RTD8 and RTD9 temperature 316 

only changed slightly. It indicated that the vapor-liquid interface was supposed to locate 317 

somewhere between RTD7 and RTD8. The acceleration effect altered the vapor-liquid 318 

distribution in the loop and further caused the heat leak from the evaporator to the CCs change. 319 

Consequently, the loop temperature varied dramatically. During the period of the first 5 g and 320 

the second 3 g, the loop temperature dropped continuously except for the RTD8, RTD9 and 321 

RTD11 temperature. However, during the period of the second 5 g and the third 3 g and 5 g, the 322 

temperature of the evaporator, the CC2 and the liquid line showed a slight increase or decrease 323 
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as the acceleration increased or decreased. The evaporator temperature changed between 37.0 324 

oC and 37.9 oC. After unloading the acceleration force, the temperature of the evaporator and 325 

the CCs increased and finally stayed constant.  326 

In Fig. 7 (c), the loop temperature change presented a similar trend to that shown in Fig. 7 (a) 327 

and (b). Especially when the first 3 g and 5 g were applied, all the loop temperature was almost 328 

the same with that shown in Fig. 7 (c). When the acceleration magnitude increased to 7 g, the 329 

evaporator temperature decreased to about 37.8 oC. However, the evaporator temperature 330 

increased continuously up to about 38.6 oC as the acceleration magnitude further increased to 9 331 

g and 11 g. Consequently, the temperature of RTD4 to RTD7 also increased slightly. When the 332 

acceleration magnitude decreasing from 11 g to 3 g, the evaporator temperature dropped 333 

gradually to about 36.8 oC. During the whole period of the periodic acceleration, the CC2 334 

temperature dropped continuously and the RTD8 to RTD11 temperature kept almost constant. 335 

After unloading the acceleration force, the loop temperature presented the similar trend to that 336 

shown in Fig. 7 (b). Finally, the temperature of the evaporator and the CCs increased to 337 

constant.  338 

In addition, it is worth noting that the operating temperature at 150 W, 200 W and 250 W 339 

was lower than that before applying the acceleration force for the cases at the loading mode 1 340 

and configuration B. The operating temperature increased periodically with the periodic 341 

acceleration force at almost all cases under configuration A. Some cases showed an excessive 342 

operating temperature, which would be discussed in the section 3.5. 343 

Fig. 8 presents the maximum operating temperature of the DCCLHP during the periodic 344 

acceleration with the heat load under configurations A and B respectively. Here, the maximum 345 

value of the operating temperature was used during the periodic acceleration except for the 346 

initiate stage. For the cases at 150 W/loading mode 1, 250 W/acceleration pattern 3/loading 347 

mode 1, as well as 150 W/acceleration pattern 3/loading mode 2, the maximum operating 348 

temperature of the DCCLHP under configuration A exceeded the maximum allowable 349 

temperature of 60 oC. It can be found from Fig. 8 that the maximum operating temperature 350 

decreased with the increase of heat load under configuration A for both loading modes. But it 351 

firstly decreased and then increased with the heat load under configuration B. For three 352 

acceleration patterns, the maximum operating temperature at loading mode 1 was generally 353 
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greater than that at loading mode 2 under both configurations A and B.  354 

 355 

(a) Under configuration A 356 

 357 

(b) Under configuration B 358 

Fig. 8 Maximum operating temperature during periodic acceleration with heat load under 359 

configurations A and B 360 

In Fig. 8 (a), with the heat load of 150 W and loading mode 1, the maximum operating 361 

temperature exceeded 60 oC for three acceleration patterns. For the heat load of 250 W and 300 362 

W, the maximum operating temperature at acceleration pattern 3 was generally higher than that 363 
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at acceleration pattern 2, which was higher than that at the acceleration pattern 1. For the cases 364 

of loading mode 1 at 300 W, the maximum operating temperature at the acceleration pattern 1, 365 

2 and 3 was 43.9 oC, 45 oC and 45.8 oC, respectively. For the cases of loading mode 2 at 300 W, 366 

in contrast, it was 39.5 oC, 37.5 oC and 39.5 oC, respectively. 367 

Compared to the cases shown in Fig. 8 (a), the maximum operating temperature under 368 

configuration B shown in Fig. 8 (b) was significantly lower than that under configuration A. 369 

The maximum temperature at the loading mode 1 and 2 for different heat loads was less than 370 

40 oC and 38.5 oC respectively. For the cases of 250 W and 300 W, the maximum operating 371 

temperature at the acceleration pattern 1 was higher than that at the acceleration pattern 2 as the 372 

loading mode 1 was used, which showed an opposite trend with those under configuration A. 373 

However, for the loading mode 2, the maximum operating temperature at the acceleration 374 

pattern 3 was hiher than that at the acceleration pattern 2. It presented the same change to that 375 

under configuration A. The maximum operating temperature at the acceleration pattern 1 and 2 376 

under 250 W and loading mode 1 was 36.6 oC and 35.8 oC, respectively. The maximum 377 

operating temperature at the acceleration pattern 2 and 3 was 36.4 oC and 36.5 oC for the 378 

loading mode 2 at 250 W respectively.  379 

The study on the effect of the loading mode revealed that the maximum operating 380 

temperature at 150 W and the loading mode 1 exceeded 60 oC for all the three acceleration 381 

patterns. The DCCLHP showed high operating temperature beyond 50 oC for the cases of 250 382 

W and the loading mode 1. For different heat loads, the maximum operating temperature at the 383 

loading mode 1 was higher than that at the loading mode 2 in general when the acceleration 384 

pattern 1 was applied. For the given heat load, loading mode and acceleration pattern, the 385 

maximum operating temperature under configuration A was greater than that 386 

underconfiguration B. The maximum temperature under configuration B was less than 40 oC. 387 

Moreover, under configuration A, the maximum operating temperature of the acceleration 388 

pattern 3 was the highest, followed by the acceleration pattern 2 and the smallest of the 389 

acceleration pattern 1. Under configuration B, the maximum operating temperature of the 390 

acceleration pattern 1 at the loading mode 1 was more than that of the acceleration pattern 2. 391 

For the cases of the loading mode 2, the maximum operating temperature of the acceleration 392 

pattern 3 was greater than that of the acceleration pattern 2.  393 
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3.2 Stable operating temperature difference 394 

For some cases as the loading mode 1 was used, the steady operating temperature of the 395 

DCCLHP before applying acceleration force was different from that after unloading 396 

acceleration force, although all the conditions like the heat load, the heat sink temperature and 397 

the ambient temperature were identical. As shown in Fig. 7, the steady operating temperature 398 

difference before and after the periodic acceleration force was 4.6 oC, -0.7 oC and -1.6 oC for 399 

the acceleration pattern 1, 2 and 3, respectively.  400 

Fig. 9 shows the loop temperature profiles at 250 W, periodic acceleration pattern 2 and 401 

loading mode 1 under configuration B. It could be clearly seen from Fig. 9 that the operating 402 

temperature of the DCCLHP under acceleration conditions was lower than that in gravity. The 403 

operating temperature after removing acceleration force was higher than that before applying 404 

acceleration force and showed a slight oscillation. The loop temperatures showed periodic 405 

oscillation along with the periodic acceleration force. Especially for the temperature of the 406 

liquid line, it oscillated more significantly than that shown in Fig. 7 (a).  407 

 408 

Fig. 9 Temperature profiles at 250 W, acceleration pattern 1 and loading mode 1 under 409 

configuration B. 410 

Compared to the case shown in Fig. 7, the temperature changes of the evaporator and the 411 

CCs were similar after applying the periodic acceleration. But the temperature amplitude of the 412 
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evaporator and CCs was larger for the case given in Fig. 9. Furthermore, the vapor-liquid 413 

interface moved forward to somewhere between RTD8 and RTD9. A large temperature 414 

oscillation of RTD9 to RTD11 indicated that the subcooling of the returning liquid varied 415 

acutely. During almost all the periods between two periodic accelerations, the temperature of 416 

RTD9, RTD10 and RTD11 increased rapidly. As a result, the evaporator temperature increased 417 

and the vapor-liquid interface moved forward. But the subcooling of the returning liquid 418 

decreased. On the contrary, if the periodic acceleration (3 g or 5 g) existed, the vapor-liquid 419 

interface would move backwards, which induced an increase of the subcooling of the returning 420 

liquid. Additionally, the peak value of the RTD11 temperature corresponded to the valley value 421 

of the upper surface of the CC2. And at these moments, the acceleration was just applied. It 422 

was at about 6400 s that the whole loop reached a quasi-stable state again. The operating 423 

temperature was about 43.9 ℃. It showed an increase of 3.5 ℃ relative to 40.4 ℃ before the 424 

periodic acceleration. 425 

Fig. 10 shows the operating temperature and thermal resistance of the DCCLHP before and 426 

after the periodic acceleration patterns under both configurations and loading mode 1 427 

conditions. Here, the thermal resistance of the DCCLHP was determined by the evaporator 428 

temperature and the average temperature of the cold plate.  429 

e

cpe

Q

T-T
R =                                        (1) 430 

where ( )
inoutcp . TTT += 50  is the average cold plate temperature, and Tin and Tout are the 431 

temperature at the inlet and outlet of the cold plate, respectively. Qe is the heat load on the 432 

evaporator. 433 

Fig. 10 indicates an obvious difference in the operating temperature and thermal resistance 434 

for the cases of various heat loads and configurations. In Fig. 10 (a), the operating temperature 435 

after removing the periodic acceleration under configuration B could be higher or lower than 436 

that before applying the periodic acceleration although the operating conditions were the same. 437 

Apparently, the same operating temperature could also occur. It should be random that there 438 

was a stable operating temperature difference. Possible reasons could be attributed to that the 439 

history of the periodic acceleration force acting could change the vapor-liquid distribution and 440 

the heat leak from the evaporator to the CCs. Furthermore, the stable operating temperature 441 
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increased under the most working cases, especially at 250 W and 300 W after removing the 442 

acceleration patterns. It should be noted that the operating temperature at 150 W under 443 

configuration A exceeded the allowable value after removing the acceleration patterns. 444 

Therefore, the corresponding data did not be displayed in Fig. 10 (a).  445 

 446 

(a) Operating temperature 447 

 448 

(b) Thermal resistance 449 

Fig. 10 Stable operating temperature and thermal resistance vs heat load under all acceleration 450 

patterns and configurations at loading mode 1. 451 
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As can be seen from Fig. 10 (b), the thermal resistance value decreased with the increase of 452 

the heat load for each acceleration pattern and configuration. The maximum value of the 453 

thermal resistance was 0.23 oC/W at 150 W and configuration A before applying periodic 454 

acceleration pattern 2. The minimum value was 0.05 oC/W at 300 W and configuration B 455 

before applying periodic acceleration pattern 2. The thermal resistance value after removing 456 

the acceleration patterns was higher than that before applying the acceleration patterns for the 457 

most working cases.  458 

3.3 Temperature overshooting after unloading 459 

For the cases at loading mode 2 with large heat load, the operating temperature of the 460 

DCCLHP could significantly overshoot after the periodic acceleration force was removed. Fig. 461 

11 presents the temperature evolutions at 300 W, periodic acceleration pattern 2 and loading 462 

mode 2 under configuration B. The heat load and the acceleration were applied simultaneously 463 

at about 278 s. The DCCLHP started up immediately. The acceleration force resulted in the 464 

change of the vapor-liquid distribution in the loop. As more liquid entered into the CC1, the 465 

heat leak from the evaporator to the CC1 decreased and the RTD1 and RTD2 temperature rose 466 

slowly. After the loop started up, the temperature oscillation of the partial loop occurred except 467 

for RTD1 and RTD2 points. The evaporator temperature amplitude was the smallest while the 468 

amplitude of the liquid line was the largest during the periodic acceleration force acting. The 469 

evaporator temperature was approximate 37.3 oC. Furthermore, the higher the acceleration 470 

magnitude, the larger the temperature amplitude of each point.  471 

As the acceleration was removed at 2260 s, there was an obvious peak on the temperature 472 

curves of the evaporator, vapor line and CC2, while there was an apparent valley value on the 473 

temperature curves of the liquid line and CC1. The peak value of the operating temperature 474 

reached 43.7 ℃. After the peak, the temperature of the evaporator, CC2 and vapor line 475 

continuously increased. Finally, the loop achieved a steady state. The final operating 476 

temperature was about 46.9 ℃. At this time, the vapor-liquid interface in the condenser located 477 

somewhere between RTD7 and RTD8.  478 

The similar phenomenon was shown in Fig. 12 for the case of 300 W, periodic acceleration 479 

pattern 3 and loading mode 2 under configuration B. The acceleration effect caused the 480 
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variation of the vapor-liquid distribution at the first 3 g just like that shown in Fig. 11. 481 

Temperature oscillations of the evaporator, CC2, vapor line and condenser occurred except for 482 

the CC1. The amplitudes of the evaporator and liquid line temperature were still the smallest 483 

and largest, respectively. Moreover, the temperature amplitude of both components showed a 484 

stepped increase along with the stepped increase of the acceleration magnitude and reached the 485 

maximum values at 11 g. Subsequently, the temperature amplitude showed a stepped drop with 486 

the stepped decrease of the acceleration magnitude. The operating temperature was about 38 ℃ 487 

under periodic acceleration conditions.  488 

 489 

Fig.11 Temperature evolutions at 300 W, acceleration pattern 2 and loading mode 2 under 490 

configuration B. 491 

After the periodic acceleration was removed at 3250 s, the evaporator, vapor line and CCs 492 

temperature curves presented a formation of an obvious peak. Especially for the vapor line 493 

temperature, its instant maximum value got to 50.8 oC. But the temperature of the liquid line 494 

formed a valley. The vapor-liquid interface located somewhere between RTD7 and RTD8 495 

according to their temperatures.  496 

In the current study, it was found that the temperature overshooting also appeared in the 497 

periodic acceleration pattern 2 and 3 at 250W with the same loading mode. To be sure, the 498 
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temperature overshooting under these conditions was negative for the operation of the 499 

DCCLHP. The reason for this result could be the variation of the pressure difference in the 500 

external loop and the redistribution of the working fluid in the entire loop after unloading 501 

acceleration force. As a consequence, the heat leak from the evaporator to CCs and the 502 

evaporator temperature increased rapidly. 503 

 504 

Fig.12 Temperature variations at 300 W, acceleration pattern 3 and loading mode 2 under 505 

configuration B. 506 

Fig.13 depicts temperature evolutions at 150 W, acceleration pattern 3 and loading mode 2 507 

under configuration B. The data in Fig. 13 indicates that there was no temperature overshooting 508 

after unloading the periodic acceleration. The temperature variation at periodic acceleration 509 

pattern 2 was similar to that shown in Fig. 13 under 150 W, loading mode 2 and configuration 510 

B. The temperature overshooting might be related to the magnitude of the heat load. The larger 511 

the heat load was, more likely the temperature overshooting occurred.  512 

During the periodic acceleration, the temperature of RTD3 to RTD7 showed slightly stepped 513 

changes along with stepped increase and decrease of the acceleration force. However, the 514 

temperature of the CC1 and liquid line had no stepped changes. The highest temperature of the 515 

evaporator reached 37.9 oC when the acceleration was 11 g. The vapor-liquid interface located 516 
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somewhere between RTD7 and RTD8 point. After the acceleration force was removed at 3058s, 517 

the evaporator temperature descended firstly and then rose continuously to approximately 6 oC. 518 

Moreover, the vapor-liquid interface located somewhere between RTD6 and RTD7 point.  519 

 520 

Fig.13 Temperature evolutions at 150 W, acceleration pattern 3 and loading mode 2 under 521 

configuration B. 522 

3.4 Temperature oscillation 523 

Besides the periodic change of the loop temperature along with the periodic acceleration 524 

force changing, temperature oscillations of the loop during each periodic acceleration were 525 

observed in many cases, such as the cases of periodic acceleration pattern 2 or 3 and loading 526 

mode 2 at 250 W under configuration A, as well as periodic acceleration pattern 1 or 2 and 527 

loading mode 1 at 300 W under configuration B.  528 

Fig. 14 illustrates the loop temperature curves at 300 W, periodic acceleration pattern 1 and 529 

loading mode 1 under configuration B. As can be clearly seen from the figure, all the loop 530 

temperature except for CC1 temperature showed obvious oscillations during the periodic 531 

acceleration force acting. The evaporator temperature at 5 g periodic acceleration was slightly 532 

higher than that at 3 g periodic acceleration. The temperature amplitude of the liquid line was 533 

greater than that of other loop components. The temperature change of the loop was the largest 534 
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between both periodic accelerations.  535 

 536 

Fig.14 Temperature profiles at 300 W, acceleration pattern 1 and loading mode 1 under 537 

configuration B. 538 

It could be confirmed that the effect of the acceleration force led to the temperature 539 

oscillation of the loop. The reason could be as follows. The tangential and radial acceleration 540 

force changed the vapor-liquid distribution in the loop immediately once it was applied. The 541 

heat leak from the evaporator to CC1 reduced but that to CC2 increased a bit. Simultaneously, 542 

the pressure head originated from the acceleration force would decrease as the vapor-liquid 543 

interface in the condenser moved forward by the increase of the RTD9, RTD10 and RTD11 544 

temperatures. When the RTD9 temperature reached a peak value at about 1138 s, the 545 

acceleration pressure head might arrive the smallest value. The capillary pressure difference 546 

decreased to the smallest value to balance the loop pressure, which required the RTD4 547 

temperature to drop to a valley value. Simultaneously, the evaporator temperature also 548 

decreased and reached a valley value. When the subcooling of the returning liquid could not 549 

balance the heat leak, the CC2 temperature stopped to drop and started to rise. 550 

During the following fluctuation period, the vapor-liquid interface started to move backward 551 

in the condenser. Therefore, the additional liquid in the CCs took over the space left by the 552 
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vapor recession through the bayonet. As the interface moved backward in the condenser, the 553 

acceleration pressure head increased gradually. Correspondingly, the capillary pressure 554 

difference increased to balance the loop pressure. The RTD4 temperature rose. In this process, 555 

there was a phase difference between RTD4 and RTD9 temperature. Subsequently, the RTD4 556 

temperature rose to a peak value and then dropped back to a valley value. On the contrary, the 557 

RTD9 temperature decreased to a valley value and then increased to a peak value. At this time, 558 

the phase difference of the RTD4 and RTD9 temperature disappeared. Then the next cycle of 559 

the loop started. As a result, the sustained variation of the external loop pressure and the 560 

capillary pressure self-regulation were the essential cause for the temperature oscillation. 561 

In addition, the similar temperature oscillations during each acceleration force acting had 562 

been presented in Fig. 11 and Fig. 12. There were significant distinctions in frequency and 563 

amplitude between Fig. 11 and Fig. 12 and Fig. 14. It could be caused by the different loading 564 

modes and periodic acceleration patterns.  565 

3.5 Excessive operating temperature 566 

In some cases, the operating temperature of the DCCLHP continued to increase and finally 567 

exceeded the maximum allowable temperature since the periodic acceleration was applied. 568 

Moreover, the excessive operating temperature occurred only at the heat load of 150 W under 569 

configuration A.  570 

Fig.15 depicts the temperature curves at 150 W, periodic acceleration pattern 1 and loading 571 

mode 1 under configuration A. It could be clearly seen from Fig. 15 that the loop temperature 572 

showed a periodic fluctuation during the periodic acceleration. The CC2 temperature presented 573 

more significant fluctuation than other components’ temperature. The temperature of the CC1, 574 

evaporator and vapor line increased gradually during the periodic acceleration acting.  575 

The stable operating temperature was 53 ℃ in terrestrial gravity and the vapor-liquid 576 

interface in the condenser located somewhere between RTD6 and RTD7. When the first 3 g 577 

was applied, the liquid with lower temperature filled into the CC2 while the vapor entered into 578 

the CC1. The vapor-liquid distribution in the CCs led to an increase of the heat leak from the 579 

evaporator to CC1 but a decrease to CC2. However, the subcooling of the returning liquid 580 

barely changed. Thus, the CC2 temperature dropped and the CC1 temperature rose in general. 581 
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In addition, the acceleration pressure head resulted in the decrease of the external pressure drop. 582 

Therefore, the capillary pressure difference reduced. The role of both effects determined the 583 

temperature of the evaporator and CC1 descending slightly. After unloading the first 3 g, the 584 

RTD4 temperature rose sharply. The RTD5 temperature decreased first and followed by a rapid 585 

increase. The temperature change was caused by the vapor-liquid redistribution in the CCs. 586 

Additionally, the external loop pressure drop increased which consequently led to a 587 

temperature increase of the evaporator and CC1. When the acceleration increased to 5 g, the 588 

amplitude of the CC2 temperature became much larger than that at 3 g. Furthermore, the RTD7 589 

temperature increased at 5 g. It indicates that the vapor-liquid interface moved forward in the 590 

condenser. Finally, the operating temperature exceeded the safety temperature limit. 591 

 592 

Fig.15 Temperature profiles at 150 W, acceleration pattern 1 and loading mode 1 under 593 

configuration A. 594 

Fig.16 displays the temperature curves at 150 W, periodic acceleration pattern 3 and loading 595 

mode 2 under configuration A. It demonstrates that the evaporator temperature continuously 596 

increased to 62.9 oC. At loading mode 2, the effect of the acceleration force made the CC2 be 597 

filled by liquid but the CC1 be filled by vapor. Thereby the heat leak from the evaporator to 598 

CC2 decreased but that to CC1 increased. The subcooling of the returning liquid remained 599 
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constant because the RTD9 temperature was constant. As a consequence, the temperature of the 600 

evaporator and CC1 would rise. Moreover, the acceleration pressure head changed along with 601 

the vapor-liquid interface moving backward. The evaporator and CC1 temperature 602 

continuously increased to regulate the capillary pressure force and further to balance the 603 

external loop pressure drop. Meanwhile, the heat leak needed to be balanced by the subcooling 604 

of the returning liquid. Finally, the loop failed to reach a steady state.  605 

In the current work, excessive operating temperature was observed only at 150 W under 606 

configuration A. It indicated that the phenomenon would be related to the magnitude of the 607 

heat load and acceleration direction.  608 

 609 

Fig.16 Temperature profiles at 150 W, acceleration pattern 3 and loading mode 2 under 610 

configuration A. 611 

4. Conclusions 612 

The operating characteristics of the DCCLHP under periodic acceleration conditions were 613 

investigated experimentally in detail. Different heat loads, periodic acceleration patterns, 614 

loading modes and acceleration directions were systematically analyzed. The main conclusions 615 

are summarized as follows: 616 

(1) During the period of periodic acceleration, the loop temperature periodically oscillated 617 
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with the acceleration periodic change. The temperature oscillation at the acceleration pattern 1 618 

was more obvious than that at the acceleration pattern 2 and 3. The higher the acceleration 619 

magnitude, the higher the operating temperature. For a given loading mode, heat load and 620 

acceleration pattern, the maximum operating temperature under configuration A was greater 621 

than that below 40 oC under configuration B. The maximum operating temperature dropped 622 

with the heat load increasing under configuration A. But it dropped firstly and then rose under 623 

configuration B. The maximum operating temperature at the acceleration pattern 3 was the 624 

greatest among the three studied patterns.  625 

(2) For the loading mode 1, the stable operating temperature difference and thermal 626 

resistance under configuration B occurred randomly between before and after the periodic 627 

acceleration force acting. Moreover, the stable operating temperature increased under the most 628 

working cases, especially at 250 W and 300 W after removing the acceleration. For the loading 629 

mode 2, there was a temperature overshooting after unloading, which could cause the operating 630 

temperature exceeding 60 oC. The larger the heat load was, more likely the temperature 631 

overshooting occurred. Both observed phenomena could be explained by the change of the 632 

loop vapor-liquid distribution and the heat leak from the evaporator to the CCs. 633 

(3) The loop temperature during each periodic acceleration showed obvious oscillation along 634 

with varying the frequency and amplitude in some cases of 250 W and 300 W. The sustained 635 

variation of the external loop pressure and the capillary pressure self-regulation were the 636 

essential cause for the temperature oscillations. For several cases of 150 W under configuration 637 

A, the excessive operating temperature could appear and even more than 60 oC, which would 638 

be related to the heat load and the acceleration direction.  639 

In this study, we demonstrated the operating performance including the above discussed four 640 

kinds of particular phenomena, which are the essential factors that must be considered for the 641 

DCCLHP system in practical applications. The corresponding analysis and possible mechanism 642 

explanation are proposed for the first time, with potential significance of paving a foundation 643 

to solve the critical problems of the DCCLHP. Investigating feasible strategies to address such 644 

problems is the focus of our further research.  645 
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