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Abstract 

The Theory of Critical Distances (TCD) is a powerful design tool capable of estimating the strength of notched/cracked materials 
by post-processing the linear-elastic stress fields ahead of the relevant stress raisers. The purpose of this paper is to reformulate the 
TCD to make it suitable for predicting the static/dynamic strength of notched unreinforced concrete subjected to Mixed-Mode I/II 
loading. The accuracy and reliability of the new extension of the TCD were checked using a large number of experimental results 
generated by testing plain concrete containing different geometrical features and tested under different loading rates and loading 
multiaxility. The predictions based on the proposed approach were seen to be within an error interval of ±30%. This level of 
accuracy is acceptable because it is within the scattering level of the experimental results used to calibrate the approach. These 
findings are promising and proving that this new reformulation of the TCD can be used to design notched plain concrete by 
modelling concrete as a linear-elastic, homogeneous, and isotropic material. 
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1. Introduction 

In real-life applications, concrete is subjected to different kinds of load, including dynamic loading (for instance, 
crashes, impact, or blast). Many studies show that concrete strength increases with the increase of the rate of applied 
loading (Malvar & Ross, 1998; Fu et al,. 1998; Biscoff & Perry, 1991; Williams, 1994). In more detail, the strength 
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1. Introduction 

In real-life applications, concrete is subjected to different kinds of load, including dynamic loading (for instance, 
crashes, impact, or blast). Many studies show that concrete strength increases with the increase of the rate of applied 
loading (Malvar & Ross, 1998; Fu et al,. 1998; Biscoff & Perry, 1991; Williams, 1994). In more detail, the strength 
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of concrete under dynamic compression loading is seen to increase more than twice its static compression strength. 
Similarly, concrete’s dynamic tensile strength is seen to increase more than six times its static tensile strength. 
 
Nomenclature 

f fa ,b  material constants in the f  vs. Z  relationship 

k ka ,b  material constants in the IdK  vs. Z  relationship 

L La ,b  material constants in the L vs. Z  relationship 

nr  notch root radius 

1K  Mode I stress intensity factor 

2K  Mode II stress intensity factor 

IcK  plane strain fracture toughness 

IdK  dynamic fracture toughness 

t ,bK  stress concentration factor under pure bending 
L  critical distance 
Z  reference dynamic variable 

p  rate of the maximum opening normal strain 
  ratio between the Mode II and the Mode I stress intensity factor 

0  inherent strength  

eff  effective stress 

f  dynamic failure stress 

n (r)  normal linear-elastic stress perpendicular to the focus path 

nom  nominal stress 

p  failure value of the maximum opening normal stress 

y  normal stress parallel to y-axis  

UTS  ultimate tensile strength 
, r  polar coordinates 

a  angle of orientation defining the focus path 

c  angle of orientation of the actual crack initiation plane 

c  displacement rate parallel to the focus path 
 
In the near future, additive manufacturing of concrete will be incorporated in the industry (Buswell et al., 2018). 

This technology will allow concrete components to have complex shapes. As a result, the stress gradients near these 
geometrical features will control the overall all strength of the concrete structure because they can trigger cracks 
leading to failure or shortening the designed life of the structure. To this end, the presence of stress concentration 
phenomena in concrete has not been investigated well (Pelekis & Susmel, 2017). Accordingly, this study proposes a 
new reformulation of the TCD to enable it to predict both static and dynamic strength of notched unreinforced concrete 
subjected to Mixed-Mode I/II loading. 

2. TCD assessment of notched Brittle Materials Under Mode I Loading 

According to the TCD (Taylor, 2007; Taylor, 2008), under Mode I quasi-static loading, a material containing a 
stress raiser will sustain the applied loading if the following condition is assured:  
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In the above inequality, σ0 is the inherent material strength, which is strictly equal to the ultimate tensile strength, σUTS, 
solely for those materials that are classified as brittle or quasi-brittle (Susmel & Taylor, 2008a; Taylor et al., 2004; 
Taylor, 2004). σeff is the effective stress that is calculated by post-processing the linear-elastic stress fields in the 
vicinity of the stress raiser being assessed 
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Fig.1 adopted coordinate system (a), calculation of σeff according to the Point Method (b), and the Line Method (c). 

 
Fig. 2 Experimental determination of L using notched specimens according to the Poin Method. 

According to the TCD, σeff can be determined in many different ways, including the Point Method (PM) and the 
Line Method (LM) as follows (Taylor, 2008; Susmel & Taylor, 2008a): 

0,
2eff y

L
r      

 
 Point Method                 (2) 

 
2

0

1 0,
2

L

eff y r dr
L

     Line Method                 (3) 

4  

The adopted local coordinate system and symbols to calculate the effective stress according to Eqs. (2) and (3) are 
schematically explained in Figures 1a to 1c, where σy is the linear-elastic stress perpendicular to the notch bisector. L 
is the so-called material critical distance. If the material plane strain fracture toughness, KIc, and inherent strength, σ0, 
are known, the material critical distance can be directly calculated as follows (Taylor et al., 2004; Taylor, 2004; 
Jadallah et al., 2016): 
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Since unreinforced concrete is modelled as being predominantly brittle under quasi-static loading (Neville & 
Brooks, 1987), its inherent strength is recommended to be taken equal to σUTS (Pelekis & Susmel, 2017). For brittle 
materials, that is when KIc is unknown, an alternative strategy can be followed to determine L (Susmel & Taylor 
2010). In particular, according to Figure 2, initially, the linear-elastic stress field in the vicinity of a known notch is 
plotted in the incipient failure condition. From this stress-distance curve, the distance at which the local linear-elastic 
stress equals σUTS returns the value of L/2. 

3. Extending the TCD to predict static/dynamic notched concrete strength under Mixed-Mode Loading 

As discussed in the previous section, the TCD takes the material inherent strength equal to its ultimate tensile 
strength for brittle materials. Generally, testing material under bending shows higher flexural strength than its σUTS. 
However, previous investigations (Taylor, 200; Susmel & Taylor, 2008b) showed that the TCD calibrated by using 
σUTS is successful also in accommodating the increase in the strength due to bending. As far as concrete is concerned, 
bending is one of the commonly used material properties used in the design process. Therefore, in this study, the 
inherent strength is taken equal to the static/dynamic flexural strength of unnotched specimens.  

Focusing attention on the dynamic strength, σf, Malvar and Crawford (1998) carried out a systematic study to 
investigate the variation of the dynamic tensile strength of concrete as a function of the local strain rate. They found 
that the dynamic tensile strength increases as the local strain rate increases. The tensile dynamic strength as a function 
of the local strain rate can be modelled by using simple power laws (Pelekis & Susme, 2017), with an evident change 
in the trend of the data as the local strain rate exceeds 1 mm/mm∙s-1 (Malvar & Crawford, 1998). Similar studies were 
conducted on the dynamic fracture toughness of concrete, KId. The same monotonic response as the tensile dynamic 
strength was observed with an evident change as the local strain rate exceeds 1 mm/mm∙s-1 (John & Shah, 1990; 
Lambert & Ross, 2000). 

If Z�  is used to denote either the loading rate, the displacement rate, the stress rate, the strain rate, or the stress 
intensity factor rate, the increase in both the inherent strength and fracture toughness as the loading rate increases can 
be modelled, as a function of Z� , using the following power laws (Pelekis & Susmel, 2017; Yin et al., 2015): 
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                       (6) 

where af, bf, ak, bk are material constants either to be determined experimentally or to be derived theoretically.  
After defining suitable expressions for describing the dynamic effect on both the inherent strength and the fracture 

toughness, definition (4) for the critical distance can directly be rewritten to include the material dynamic response as 
(Pelekis & Susmel, 2017; Yin et al., 2015): 
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where aL and bL are constants to be derived as soon as the constants in Eqs (5) and (6) are known. 
Having presented definitions of the inherent strength and the critical distance to cover also the dynamic loading 

case, the subsequent step in the reasoning is establishing a rule suitable for locating the orientation of the focus path 
independently of the degree of multiaxiality of the applied loading. In this context, it is worth remembering that crack 
initiation and initial propagation in unreinforced concrete are due to Mode I opening stresses (Anderson, 2017; 
Karihaloo, 1995). Therefore, it is assumed that failure happens due to the initiation and initial propagation of cracks 
that are perpendicular to the maximum opening normal stress (Susmel & Taylor, 2008a). According to this assumption, 
the focus path is supposed to be a straight line emanating from the assumed crack initiation point and perpendicular to 
the maximum opening normal stress at the hot-spot itself (which is tangent to the surface at the crack initiation location 
and therefore coincides with the maximum principal stress). In this specific context, the focus path should coincide 
with the actual crack initiation plane. 

To better clarify this aspect, consider Fig. 3a which shows a notched unreinforced concrete component subjected 
to a complex external system of forces that result in a local Mixed-Mode I/II stress state around the notch surface. In 
this case, the maximum opening stress is no longer at the notch tip. Instead, it could be found by solving Finite Element 
(FE) models or by using a proper analytical solution. Once the maximum normal opening stress is located, the focus 
path is simply a straight line emanating from the hot-spot and perpendicular to the surface itself at the origin. Further, 
as presented in Fig. 3a, the focus path takes an angle of θc from the notch bisector. This simple rule also works for 
those cases involving pure Mode I loading where the focus path coincides with the notch bisector (θc=0) because it is 
where the maximum opening normal stress operates, as in Fig. 3b. This indicates that this simple rule is in agreement 
with the classic Mode I TCD (Taylor 2007). 

The dynamic variables used in this study and representing Z�  in Eqs (5) and (6) are the displacement rate, Δ� �, and 
the local maximum opening normal strain rate, ε��. Δ� � is the displacement rate always taken parallel to the focus path, 
see Fig. 3. The displacement rate is used to check the consistency when Z�  is defined by using a global/nominal quantity. 
In contrast, ε�� is used to assess the accuracy of the approach being proposed when Z�  is defined via a local quantity. 

 
a b

 
  

Fig. 3 Proposed orientation of the focus path for brittle materials under Mixed-Mode (I/II) loading (a) and under pure Mode (I) loading (b). 
 
Having introduced suitable definitions for Z� , the TCD should be reformulated for making it suitable for assessing 

the strength of notched unreinforced concrete under Mixed-Mode static/dynamic loading. This starts with extending 
condition (1) by assuming that final breakage takes place when σ����Z� � is equal to σ��Z� �, with the latter being defined 
according to Eq. (5):  
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where σ����Z� � can be calculated by modifying both definitions (2) and (3) as: 
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where σ���� is the normal linear-elastic stress perpendicular to the focus path (see Figure 3), r is the rectilinear 
coordinate parallel to the focus path, and ��Z� � is determined according to Eq. (7). 
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Fig. 4 Generated results of the un-notched (a) and notched specimens (b-j).  

4. Experimental details and results 

The accuracy of the new extension of the TCD being proposed was checked by generating a large number of 
experimental results. In more detail, symmetric and asymmetric bending tests were carried on beams having 100 mm 
X 100 mm square section and 500 mm long. Both unnotched and notched specimens had 50 mm net nominal depth. 
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where aL and bL are constants to be derived as soon as the constants in Eqs (5) and (6) are known. 
Having presented definitions of the inherent strength and the critical distance to cover also the dynamic loading 

case, the subsequent step in the reasoning is establishing a rule suitable for locating the orientation of the focus path 
independently of the degree of multiaxiality of the applied loading. In this context, it is worth remembering that crack 
initiation and initial propagation in unreinforced concrete are due to Mode I opening stresses (Anderson, 2017; 
Karihaloo, 1995). Therefore, it is assumed that failure happens due to the initiation and initial propagation of cracks 
that are perpendicular to the maximum opening normal stress (Susmel & Taylor, 2008a). According to this assumption, 
the focus path is supposed to be a straight line emanating from the assumed crack initiation point and perpendicular to 
the maximum opening normal stress at the hot-spot itself (which is tangent to the surface at the crack initiation location 
and therefore coincides with the maximum principal stress). In this specific context, the focus path should coincide 
with the actual crack initiation plane. 

To better clarify this aspect, consider Fig. 3a which shows a notched unreinforced concrete component subjected 
to a complex external system of forces that result in a local Mixed-Mode I/II stress state around the notch surface. In 
this case, the maximum opening stress is no longer at the notch tip. Instead, it could be found by solving Finite Element 
(FE) models or by using a proper analytical solution. Once the maximum normal opening stress is located, the focus 
path is simply a straight line emanating from the hot-spot and perpendicular to the surface itself at the origin. Further, 
as presented in Fig. 3a, the focus path takes an angle of θc from the notch bisector. This simple rule also works for 
those cases involving pure Mode I loading where the focus path coincides with the notch bisector (θc=0) because it is 
where the maximum opening normal stress operates, as in Fig. 3b. This indicates that this simple rule is in agreement 
with the classic Mode I TCD (Taylor 2007). 

The dynamic variables used in this study and representing Z�  in Eqs (5) and (6) are the displacement rate, Δ� �, and 
the local maximum opening normal strain rate, ε��. Δ� � is the displacement rate always taken parallel to the focus path, 
see Fig. 3. The displacement rate is used to check the consistency when Z�  is defined by using a global/nominal quantity. 
In contrast, ε�� is used to assess the accuracy of the approach being proposed when Z�  is defined via a local quantity. 

 
a b

 
  

Fig. 3 Proposed orientation of the focus path for brittle materials under Mixed-Mode (I/II) loading (a) and under pure Mode (I) loading (b). 
 
Having introduced suitable definitions for Z� , the TCD should be reformulated for making it suitable for assessing 

the strength of notched unreinforced concrete under Mixed-Mode static/dynamic loading. This starts with extending 
condition (1) by assuming that final breakage takes place when σ����Z� � is equal to σ��Z� �, with the latter being defined 
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where σ����Z� � can be calculated by modifying both definitions (2) and (3) as: 
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where σ���� is the normal linear-elastic stress perpendicular to the focus path (see Figure 3), r is the rectilinear 
coordinate parallel to the focus path, and ��Z� � is determined according to Eq. (7). 
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Fig. 4 Generated results of the un-notched (a) and notched specimens (b-j).  
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Three notches of different sharpness were considered: the blunt notches had root radius, rn, equal to 24 mm with a 
resulting stress concentration factor under bending, Kt,b, equal to 1.44, the intermediate notches had rn = 12.5 mm (Kt,b 
= 1.76), and, finally, sharp notches with rn = 1.3 mm (Kt,b = 4.51). 

The specimens were manufactured according to the standardized procedure reported in Teychenné et al., (1975). 
30 N/mm2 Portland cement was mixed with river aggregate of 10 mm nominal size and fine aggregate of grade-M 
sand. The water-to-cement ratio was kept equal to 0.44 for all specimens. After casting, the specimens were removed 
from the moulds and directly stored in a controlled moist room until the time of testing. 

Turning to the mechanical testing, three different loading multiaxiality were investigated. The level of loading 
multiaxiality was quantified by calculating index ρ, which is the ratio of the Mode II stress intensity factor, K2, over 
the Mode I stress intensity factor, K1. ρ was calculated analytically (Tada, 1985; Murakami, 1987) by replacing the 
notches with ideal zero tip cracks. Three different test configurations were considered in this study. First, standard 
three-point bending (3PB) set-up on symmetric notched specimens to produce Pure Mode I failure (ρ = 0). Asymmetric 
specimens tests under 3PB to generated Mixed-Mode I/II failures under ρ=0.18. Finally, Mixed-Mode I/II failure 
(ρ=0.3) was obtained by testing symmetric specimens under asymmetric four-point bending (4PB). 

All of the tests were performed using a hydraulic actuator that was displacement-controlled with nominal travel 
speed ranging approximately between 0.002 mm/s to 35 mm/s. A high-speed/high-resolution camera was also 
synchronized with the loading cell to monitor the crack initiation process with the recorded peak force in the loading 
cell as well as to measure the local displacements around the tested notches. This was done by utilizing the Digital 
Image Correlation (DIC) technique. For every test, the high speed/high resolution videos confirm that the recorded 
peak force corresponded to a visible crack on the surface. This eliminates the possibility of having delays in the loading 
cell signal as well as confirms that the inertia of the loading piston did not influence the experimental values of the 
failure forces.  

The stress distribution in the vicinity of stress raisers was determined numerically by solving FE models. The 
material in the specimens was treated as being linear-elastic, homogeneous, and isotropic. The notched samples were 
modelled using 4-node structural plane elements (plane 182) with gradual mesh refinement until convergence was 
reached in the vicinity of notches themselves. 

Fig. 4 shows the experimental results as a function of Δ� �, which is calculated from the displacement given from the 
DIC and parallel to the focus path, see Fig. 3. Fig. 4a shows the dynamic failure strength of the un-notched specimens 
tested under pure Mode I 3PB. σf is determined according to the beam theory at the failure condition (i.e. the maximum 
recorded force). Further, this figure states that the data points fall within an intrinsic error interval of ±30% 
(Montgomery et al., 2012). Further, the same figure shows a good agreement between the data points and the fitted 
power law, as stated by (Malvar & Crawford, 1998). Figs 4b to 4j show the experimental results of the notched 
specimens under pure Mode I and Mixed-Mode loadings in terms of σp. σp is the maximum opening normal stress 
perpendicular to the focus path (see Fig. 3). Again, the same level of scattering in the notched specimens was observed 
where all the data points fall within a scatter band of ±30%. 

The cracking behaviour of the notched specimens was observed visually. Independently of the loading rate and the 
Mode-Mixity level, the direct inspection of the cracked faces revealed that the cracks formed due to deboning between 
the aggregates and cement paste in those areas experiencing the maximum opening normal stresses - as explained in 
Section 3. After that, the initial crack propagation was seen to occur in the cement paste, which is immediately followed 
by unstable cracking until the final breakage of the specimens.  

As explained in Section 3, the orientation of the focus path (θc) is assumed to coincide with the actual crack initiation 
plane, θa. In Fig. 5, both θc and θa are positive for specimens tested under 3PB (ρ = 0.18) and negative for specimens 
tested under 4PB (ρ = 0.3). The positive/negative signs are because the measurements were carried on opposite lateral 
surfaces. Fig 5 presents a comparison between the two angles. From the figure, it is possible to conclude that the 
proposed simple rule is capable of accurately capturing the actual orientation of the crack initiation plane 
independently of loading rate and Mode-Mixity level. 
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Fig. 5 Accuracy of the estimated orientation of the focus path compared to the actual orientation of the crack initiation plane of specimens 

containing blunt (a), intermediate (b), and sharp notches (c). 

5. Verification of the new form of the PM and the LM 

To check the accuracy of the new extension of the PM and LM in estimating the static/dynamic strength of notched 
plain concrete, the constants describing the dynamic strength in Eq (5) were calibrated by taking Z�  equal to Δ� �and ε��, 
as discussed in Section 3. By post-processing the results from the un-notched concrete specimens tested under Mode 
I static/dynamic loading (i.e. Fig. 4a) and applying the standard least-square method, the following values for af and 
bf were derived: 
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The determination of aL and bL in Eq (7) to describe the relationship between L and Z�  was done by following the 
methodology explained in Fig. 2. This was performed by post-processing the Mode I results from the un-notched 
specimens and the sharply notched samples (Fig. 4a and 4j), obtaining: 
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resulting stress concentration factor under bending, Kt,b, equal to 1.44, the intermediate notches had rn = 12.5 mm (Kt,b 
= 1.76), and, finally, sharp notches with rn = 1.3 mm (Kt,b = 4.51). 

The specimens were manufactured according to the standardized procedure reported in Teychenné et al., (1975). 
30 N/mm2 Portland cement was mixed with river aggregate of 10 mm nominal size and fine aggregate of grade-M 
sand. The water-to-cement ratio was kept equal to 0.44 for all specimens. After casting, the specimens were removed 
from the moulds and directly stored in a controlled moist room until the time of testing. 

Turning to the mechanical testing, three different loading multiaxiality were investigated. The level of loading 
multiaxiality was quantified by calculating index ρ, which is the ratio of the Mode II stress intensity factor, K2, over 
the Mode I stress intensity factor, K1. ρ was calculated analytically (Tada, 1985; Murakami, 1987) by replacing the 
notches with ideal zero tip cracks. Three different test configurations were considered in this study. First, standard 
three-point bending (3PB) set-up on symmetric notched specimens to produce Pure Mode I failure (ρ = 0). Asymmetric 
specimens tests under 3PB to generated Mixed-Mode I/II failures under ρ=0.18. Finally, Mixed-Mode I/II failure 
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All of the tests were performed using a hydraulic actuator that was displacement-controlled with nominal travel 
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synchronized with the loading cell to monitor the crack initiation process with the recorded peak force in the loading 
cell as well as to measure the local displacements around the tested notches. This was done by utilizing the Digital 
Image Correlation (DIC) technique. For every test, the high speed/high resolution videos confirm that the recorded 
peak force corresponded to a visible crack on the surface. This eliminates the possibility of having delays in the loading 
cell signal as well as confirms that the inertia of the loading piston did not influence the experimental values of the 
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The stress distribution in the vicinity of stress raisers was determined numerically by solving FE models. The 
material in the specimens was treated as being linear-elastic, homogeneous, and isotropic. The notched samples were 
modelled using 4-node structural plane elements (plane 182) with gradual mesh refinement until convergence was 
reached in the vicinity of notches themselves. 

Fig. 4 shows the experimental results as a function of Δ� �, which is calculated from the displacement given from the 
DIC and parallel to the focus path, see Fig. 3. Fig. 4a shows the dynamic failure strength of the un-notched specimens 
tested under pure Mode I 3PB. σf is determined according to the beam theory at the failure condition (i.e. the maximum 
recorded force). Further, this figure states that the data points fall within an intrinsic error interval of ±30% 
(Montgomery et al., 2012). Further, the same figure shows a good agreement between the data points and the fitted 
power law, as stated by (Malvar & Crawford, 1998). Figs 4b to 4j show the experimental results of the notched 
specimens under pure Mode I and Mixed-Mode loadings in terms of σp. σp is the maximum opening normal stress 
perpendicular to the focus path (see Fig. 3). Again, the same level of scattering in the notched specimens was observed 
where all the data points fall within a scatter band of ±30%. 

The cracking behaviour of the notched specimens was observed visually. Independently of the loading rate and the 
Mode-Mixity level, the direct inspection of the cracked faces revealed that the cracks formed due to deboning between 
the aggregates and cement paste in those areas experiencing the maximum opening normal stresses - as explained in 
Section 3. After that, the initial crack propagation was seen to occur in the cement paste, which is immediately followed 
by unstable cracking until the final breakage of the specimens.  

As explained in Section 3, the orientation of the focus path (θc) is assumed to coincide with the actual crack initiation 
plane, θa. In Fig. 5, both θc and θa are positive for specimens tested under 3PB (ρ = 0.18) and negative for specimens 
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containing blunt (a), intermediate (b), and sharp notches (c). 
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Having presented the calibration equations for the inherent strength and the critical distance, σeff was then calculated 
according to the PM and LM using to Eqs (9) and (10). This was done by post-processing the linear- elastic stress 
fields at failure condition in the vicinity of notches for all notched specimens being considered. The accuracy of the 
estimations of both the PM and LM were quantified by calculating the error as follows: 

   
 

eff 0

0

Z Z
Error 100

Z

 




 

 

                (15) 

a  b 

c  d  

Fig. 6. Accuracy of the proposed extension of the TCD in assessing the static/dynamic strength as a function of local displacement rate (a,b) and  
maximum opening strain rate (c,d). 

Fig. 6 summarizes the overall accuracy of the new proposed approach. In more details, Figs 6a and 6c show the 
predictions made under quasi-static loading, whereas Figs 6b and 6d those obtained under dynamic loading. 

Fig. 6 makes it evident that the predictions due to the PM and LM fall within an error internal of ±30%, which is 
seen to be within the intrinsic scattering level characterising the experimental results. These predictions are considered 
accurate as it is impossible to derive more accurate results than the scattering level of the data used to calibrate the 
approach. Further, as expected, calibrating the TCD with local quantity (i.e. ε��) in the vicinity of the estimated crack 
initiation points resulted in more accurate estimates. 

6. Conclusion 

 The strength of concrete weakened by notches increases with the increase of the loading rate. 
 Opening normal stresses govern the cracking behaviour, with this holding true independently of loading rate 

and level of loading multiaxiality. 
 The suggestions to define the orientation of the focus path are seen to be accurate in estimating the orientation 

of the crack initiation plane. 
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 Taking advantage of the TCD features, un-reinforced concrete can be designed by modelling concrete as a 
linear-elastic, homogeneous, and isotropic material. 

 The new formulation of the TCD confirms that the strength of unreinforced notched concrete can be estimated 
within ±30% which is found to be accurate because the predictions are as scattered as the data points used to 
calibrate the approach itself. 
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Having presented the calibration equations for the inherent strength and the critical distance, σeff was then calculated 
according to the PM and LM using to Eqs (9) and (10). This was done by post-processing the linear- elastic stress 
fields at failure condition in the vicinity of notches for all notched specimens being considered. The accuracy of the 
estimations of both the PM and LM were quantified by calculating the error as follows: 

   
 

eff 0

0

Z Z
Error 100

Z
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a  b 

c  d  

Fig. 6. Accuracy of the proposed extension of the TCD in assessing the static/dynamic strength as a function of local displacement rate (a,b) and  
maximum opening strain rate (c,d). 

Fig. 6 summarizes the overall accuracy of the new proposed approach. In more details, Figs 6a and 6c show the 
predictions made under quasi-static loading, whereas Figs 6b and 6d those obtained under dynamic loading. 

Fig. 6 makes it evident that the predictions due to the PM and LM fall within an error internal of ±30%, which is 
seen to be within the intrinsic scattering level characterising the experimental results. These predictions are considered 
accurate as it is impossible to derive more accurate results than the scattering level of the data used to calibrate the 
approach. Further, as expected, calibrating the TCD with local quantity (i.e. ε��) in the vicinity of the estimated crack 
initiation points resulted in more accurate estimates. 

6. Conclusion 

 The strength of concrete weakened by notches increases with the increase of the loading rate. 
 Opening normal stresses govern the cracking behaviour, with this holding true independently of loading rate 

and level of loading multiaxiality. 
 The suggestions to define the orientation of the focus path are seen to be accurate in estimating the orientation 

of the crack initiation plane. 
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 Taking advantage of the TCD features, un-reinforced concrete can be designed by modelling concrete as a 
linear-elastic, homogeneous, and isotropic material. 

 The new formulation of the TCD confirms that the strength of unreinforced notched concrete can be estimated 
within ±30% which is found to be accurate because the predictions are as scattered as the data points used to 
calibrate the approach itself. 
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