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Abstract

Pharmaceutical consumption has expanded rapidly during the lastigeand their persistent
presence in the environment has become a major concern. Unfortunatefyunderstanding of
the distribution of pharmaceuticals in surface water and tledfects on aquatic biota and
public health is limitedHere, we explore patterns in the detection rate of the most freglen
studied pharmaceuticals in 64 rivers from 22 countriesgidirclustering algorithms and
subsequently analyze the results in the context of regiorféér@inces in pharmaceutical
consumption habits, social and environmental factors, and reahefficiency of wastewater
treatment plants (WWTP). To our knowledge, this is the fitslysto compare several rivers
across 3 major continents and systematically analyze them itirthisework. We find that 20%
of the pharmaceuticals included in this analysis are pervasivesept in all the surface
waterbodies. Several pharmaceuticals also display low overatlygodetection rates;
however, they exhibit significant spatial variability aheit detection rates are consistently
lower in Western European and North America (WEOG) rivasnparison to Asian rivers.
Our analysis suggests the important role of pharmaceuticadwmption and population in
governing these patterns, however the role of WWTP efficienpgared to be limited. We
were constrained in our ability to assess the role of hjayg, which most likely also plays an
important role in regulating pharmaceuticals in rivers. Miogportantly though, we
demonstrate the ability of our algorithto provide probabilistic estimates of the detection rate
of pharmaceuticals that were not studied in a rivan exercise that could be useful in

prioritizing pharmaceuticals for future study.
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1. Introduction

Pharmaceutical consumption has increased drastically in the lage¢&®@ and is likely to
continue increasing in the coming years due to risingytation, changing demographic across
the globe, and growing availability across the world (Daoigh?0(). The presence of
pharmaceuticals and their metabolites in environmental matrices i$ @sthblished and is a
major environmental concern (Beek et al., 2016; Daughton, 2DfXies et al., 2001; Oaks et al.,
2004; Schwarzenbach et al., 2006)owever, there are considerable knowledge gaps on the
impacts of pharmaceuticals on aquatic organisms and ecosystems(Boaisj 2007; Brain et
al., 2008; Daughton, 2001; Kiimmerer, 2009a, 2009b; Santds €007). With increasing use
of gray water in agriculture and in recharging groundwaterfiture human consumptions
there are also growing concerns on the long-term effects o$igégnt exposuréo
pharmaceuticals on public health (de Jesus Gaffney et al., Z&bSsberger et al., 2014; Jones-
Lepp et al., 2012; Webb et al., 2008)any countries and environmental agencies have
recognized th& potential detrimental effects and are developing policies to gnite their

impacts (Kaplan, 2013; Peake et al., 2015; Walters et al., 2010).

To evaluate the potential eco-toxicological risks of pharmacestidak important to measure
or model (Amiard-Triquet et al., 2015; Huggett et al., 2008ndon et al., 2013; Kehrein et al.,
2015; Kostich and Lazorchak, 2008) itikencentration in environmental compartments
document their spatiotemporal variability and understand theerof environmental and social
factors in determining their presence in the environment. Howetlegre are more than 3000

pharmaceuticals consumed in Europe adonnachie et al., 2016) and exhaustive monitoring
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of all the pharmaceuticals (and their metabolites) is expensive andhictipal In this regard,
statistical analysis (such as meta-analysis, clustering, regng¢sd large pharmaceutical
datasets could be useful in identifying spatiotemporal patteshpharmaceuticals and their
relationship with environmental covariates. This informatiomldahen be used to prioritize
pharmaceuticals for future studies, assess relationships betvpdanmaceuticals (for example:
which pharmaceuticals always co- occur in a river and wloahodl), examine pharmaceutical
detection patterns across regions, and identify other questioglevant to the risk of
pharmaceuticals in surface water (Altenburger et al., 2003; Andr2@&1; Donnachie et al.,
2016; Jones et al., 2002; Kostich and Lazorchak, 2008; Kum&eagodaraki, 2010; Rehman et
al., 2015) It is however worth mentioning that for each pharmaceutieaminimum number of
analytical measurements is indeed required to understandréiationships between different

pharmaceuticals.

Here, we systematically analyze the detection rate (how often a pharmaed¢utas positively
detected when analyzed) of the 112 most commonly studied pharmacesiiic@4 rivers from
22 countries using a stochastic block model (also knovancasclustering or bi-clustering
model). Briefly, stochastic block model (SBM) is used fstaring high-dimensional data,
where the algorithm simultaneously clusters rows and coluofrtbe data to obtain subgroups
of rows and subgroups of columns that exhibit a highedation (Berkhin, 2006; Govaert, 1995
Hartigan, 1972; Tanay and Sharan Y Ron Shamir, 2004). A fealtarg of the algorithm is its
ability to perform robustly even with substantial missitea. The algorithm has been used for
analyzing high-dimensional data in many fields, includingifiionatics (Tanay and Sharan Y

Ron Shamir, 2004), text-mimgiiDhillon, 2001), ecolggChi et al., 2017; Hill et al., 2013), and
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social network analys{8anks and Hengartner, 2008; Hoff et al., 2002). Figurevidas a
hypothetical example to illustrate how the algorithm worksr Betailed information on SBM

and/or co-clustering please refer to (Berkhin, 2006; Gavd&95.; Hartigan, 1972)

To our knowledge this is the first study to 1) systenadiycanalyze the spatial patterns in the
detection rates of the most commonly studied pharmaceuticals, 2)yae the role of social
and environmental factors, such as wastewater treatment plant (WWTie)ezity,
pharmaceutical consumption habits, population density andrbipgical factors, in
determining the pattern of pharmaceutical detection rates and 3) estinfadeoccurrence

probability of unanalyzed pharmaceuticals to support aralytioritization for future study.

2. Methods

2.1 Description of the database and data aggregation

We obtained the pharmaceutical data analyzed in this study fronMkasured Environmental
Concentration (MEQJlatabase maintained by the German Environmental Agency (UBA,
https://www.umweltbundesamt.de/en/database-pharmaceuticalsthe-environment-0) The
databaseaccessed on 10/01/2018, consists of 123,761 entries afrphceuticals and/or their
transformation products measured in environmental matrices sagBurface water,
groundwater, drinking water and WWTP effluent across 71 aiestTo our knowledge, this is
the most comprehensive global dataset on pharmaceuticals availabielefils on the
database please refer to UBA website and Beek et al., {2MEgority of the data in the
database were from 2001 to October 2013. Only 1281 entriéiseinlatabase predated 2001

and there were no entries after October 2013.
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2.2 Rationale for analyzing detection rates of pharmaceuticals

Instead of analyzing measured concentrations reported inliteeature from where the data
were obtained, we transformed the data into presence/absence formaséveral reasons.
First, the majority of the studies measuring pharmaceuticalsnguthe last two decades have
not followed internationally/regionally established protdsqOrt et al., 2010) with minimal
information on uncertainty associated with the measureme®scond, most of the
pharmaceuticals included in our analysis have been measurethis$ times on a river with
limited or no information on the prevailing hydrologicahclitions. As a consequence, using a
statistical estimate (such as mean or mode) can lead to iacboharacterization of the
concentration if all the measurements were done only withisingle hydrologic regime (for
e.g. river low-flow season). Finally, several studies afgort different summary statistics
(e.g., mean, median or maximum concentration), typically based gndifferent sample sizes,
hindering a straight-forward comparison of these concatitm values. Due to these
limitations, we believe that reducing the data to present/abstmtmat was the most reliable
androbust way to minimize measurement uncertainties while captuthrgymajority of the

data published over the last two decades

2.3 Rationale for analyzing pharmaceutical data on basin scale instdad o
national scale
While there have been previous global, continental and couletvgl analyses on river systems

to identify and understand spatiotemporal variability in phreaceutical occurrence (Barnes et

al.,,20i6V ,uPzZ « § oXU T1iiiV :] vP § oXW ™}tV <So olXangitboi X U
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our knowledge have performed statistical analysis to explorbajlpatterns in pharmaceutical
occurrences in surface waterbodies and understand the factersrohining these patternsA
primary motivation for basin-scale data analysis was the Wagtability in data availability
between national datasets with some countries (such as Germabhsé) having an order of
magnitude or more data than others. Importantly, pharmaceutical measents when
organized by river basins are more evenly distributed anddkswed (supplementary material,

Figure S1), thus allowing more robust statistical compasison
2.4 Statistical analyses

2.4.1 Pharmaceutical Contamination Index

For each river, we calculated the mean detection rate or River Contamination Indel (Rg

the following formula

5
0 — A
4%t < A

where 25 and 6 gre the number of times pharmaceutigalias positively detected and

measured at river, respectivelyIn this expressionJgjs the number of unique pharmaceuticals

measured at river. An RClvalue of 1 means thatll pharmaceutical analytes assessed in river i
were detected and a value of 0 means that none of the pharmaceutivadsured at river

were ever detected.

2.4.2 Stochastic Block Model



136  For each river, we determine the number of times a pharmaceuticalanvalyzed and

137  positively detected. We arranged our data in a format where eashrapresents a river and

138 each column represents a unique pharmaceutical. The model grogesher rivers and

139 pharmaceuticals that have similar detection rate and output subgso(also called blocks) that

140 are similar. We used SBM in our analysis as it not onlwslls to identify rivers groups and

141  pharmaceutical clusters with similar detection rates but alsovjgles information on their

142  covariation that can be used for predictiohdditionally, the generative nature of SBM allows

143 computing the mean probability (together with the associatedertainty) of positively

144  detecting pharmacpus] o+ (}&E Z EJAE VvV %Z Eu EEPFUSDYI_X /v }
145 model provides us the probability (with uncertainty) of detegtuimmeasured pharmaceuticals

146 in ariver.The detailed process of sub-setting data from the MEC dataliasejbsequent

147  manipulation for analysis and a complete description of dgoathm are provided in the

148 supplementary material. We provide an illustrative example ofdaia formatting and its

149 subsequent rearrangement by SBM in Figure 1. Since the algogitbups rivers as well as

150 pharmaceuticals (see Figure 1), we refer%eZ Eu UHS] o0 PE}U%oe *» Z%Z Eu S|

151 to avoid confusion with river groups.

152  Similar to the river, we determined the number of times a pharmécalwas analyzed and
153 positively detected in WWTPs (Influeartd effluent). Pharmaceuticals that were measured in
154 WWTP but were not part of our river subset samples were digzhrTo explore continental
155 scale differences, we subdivided the WWTP detection rates @etbiN groups (Asia, Eastern
156 Europe and Western Europe and others) and summarized them basedplnarmaceutical

157 clusters.
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2.5 Social and environmental variables

We explored the effect of environmental and anthropogenic factorg. (@vatershed size, river
length, flowrate and population density) on the degree of temnination for the different

rivers We specifically chose these variables as it has been showthiatan play an

important role in governing the degree of contamination oé tlivers (Acuia et al., 2015; Burns
et al., 2018; Kaushal and Belt, 2012; Osorio et al., ZIBa; Peng et al., 2008)/e obtained
the corresponding information for each river basin from [psited literature and reports from
national agencies. For the few rivers with no published datpapulation, we estimated basin
population by clipping the global population estimatestased from the Center for
International Earth Science Information Network (Columbia Usitygr with river shape files

obtained from HydroSHED (Lehner et al., 2008) and Europeamoinental agency.

3. Results

Our methodology resulted in 2202 measurementd b2 pharmaceuticals across 64 rivers
(Figure S2) with 1324 positive observations resultirg imean detection rate of 60%. The
range of RCI varied between 0 and 1. Except for 1 riverm@iasurements between 30-50
samples (Figure 2), very low RCI values were generally associdtetlrais with a lower
number of measurements (Figure 2) suggesting that sample size piégha role in governing
the RCI. Indeed, for rivers with less than 50 measuremérgsange of RCl was large (0 to 1)
On the other hand, for rivers, with greater than 50 measurateeRCI ranged from 0.3 to 0.85
(Figure 2)revealing that as the number of measurements increases, extrem&[Giwalues are

unlikely and thus every river would exhibit some degreeoottamination if pharmaceuticals
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are measured with adequate intensifjhis suggest that the limited monitoring of
pharmaceuticals in waterbodies, compared to a more traditiondlupents, may lead to
inaccurate conclusionsn their presence or absence, and concentrations, and thahéuy

more spatially and temporally intensive, monitoring is needed

The stochastic block model (SBM) resulted in 6 pharmaceutictércduand 5 river groups
respectively (Figure 3) i.e. 8@ multiplied by 5) blocks of rivers and pharmaceuticals. Each
block consists of a set of rivers that have similar detectades for a set of pharmaceuticals.
Each block can also be consideesh set of pharmaceuticals that have similar detection rates
for a set of rivers. The effectiveness of the model in grogisinface waterbodies as well as
pharmaceuticals with similar detection rates is best realizgdibually comparing the data
before and after clustering (see Figure S3 for the vavelustered data). The pharmaceutical

clusters and the river groups are arranged in increasidgroof the detection rates.

Pharmaceuticals in clusters D to F were positively detected theafiver groups and
pharmaceuticals in clusters A and B were mostly undetected ingieeips 1 to 3 (Figure 3).
We also observe regional differences in the river groupsuiltwo Asian rivers were assigned
to river groups 4 and 5 which exhibited high detection rageggesting highest level of
contamination in Asian Rivers. European and North Americarsrivere present in all the
groups, however our model also revealed important differene@hin the European rivers.
Only German and Slovenian rivers belonged to river groups 2 anih very low detection
rates of cluster A pharmaceuticals (<10%, Figure 3). In continestietection rate of cluster A
pharmaceuticals for Italian, Spanish and French rivers (belgmgostly to river groups 3, 4 and

5, Figure 3) were ~35% which, although lower than the deiratte in Asian rivers (>80%),

10
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was still higher than the rivers flowing in Germany, SlovakéhNetherlands (<20%). None of
the cluster A pharmaceuticals (more than 20 different pharmaceutit@dsé)were measured
multiple times in the River Rhine (flows through SwitzerJdadrmany and the Netherlands)

were positively detected (Figure 3).

Our resultsuggests that for all the rivers groups, the mean probahidlitpositively detecting

the pharmaceuticals in cluster F was high (Figure 4). As a ngisaittnaceuticals in cluster F are
likely to be positively deteed in all of the studied rivers. Similarly, except for riiargroup 1,
the mean likelihood of positively detecting clusters D amqgh&maceuticals in unmeasured
rivers is greater than 50%. In contrast, the detection rateslusters A to C pharmaceuticals in

river groups 1 and 2 is low (Figure 4).

The estimated 95% credible intervals provide confidence erpméting the mean detection

rate associated with each river and pharmaceutical block. The weBB8%6 credible intervals
(Cls, ranging mostly from 0.6 to 1) associated with clustier all the river groups (Figurg 4
suggests high confidence in the likelihood of positiwiiecting cluster F pharmaceuticals at all
the rivers. On the other hand, the 95% CI associated witarislC and D are large (Figure 4)
(due to limited number of measurements) indicating substantradertainty associated with

these probabilities (Figure 4)

4. Discussion

4.1 Pattern in pharmaceutical detection rates

11
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The high detection rates of 22 pharmaceuticals in clustersB(&igure 3) suggests that these
pharmaceuticalsvere present ubiquitously in all the rivers included irsteiudy. Many
pharmaceuticals in clusters D to F are among the most widelsuroed in the USA, UK and
several other countries (Fuentes et al., 2018; Letsinger and K&9) 20d have exhibited high
detection frequencies in previous global analyses of pharmazastin surface water bodies
(Fekadu et al., 2019; Hughes et al., 2013). The pharmaceutickided by our model in
clusters D to F do not belong to a single therapeutic griout come fromdiverse classes

including analgesics, antibiotics, estrogens and betakieiec(Table B.

Even though the overall detection rate of pharmaceuticalsustets A, B and C (Figurpwaas
lower, the detection rate for pharmaceuticals in these clusterseaest similar across the river
groups. Blocks 4;A-A 3-B, 4-B and Bhad much higher positive detection than blocks 1-A, 2-
A 3-A 1-B and 2-B (see figure 3). Most of the rivers with ligtection rates of
pharmaceuticals in clusters A and B were Asian. Among the Europeas) only Italian, French
and Spanish exhibited high detection rates. Rivers from othesgean countries including
England, Germany, Netherlands and Slovakia exhibited low deteeties for pharmaceuticals
in clusters A and B. Our model output suggests, there atersyic country level differences

in the rivers for clustexA and B pharmaceuticals. These differences might be attributable to
multiple factors (e.g., pharmaceutical consumption pattern, WWTRokatprocesses,

hydrological and social factors and/or a combination of ¢h&sctors), that we discuss below.

4.2 Factors governing the regional differences among the rivers

12
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To explore the patterns observed above, we combined the riveestheir official UN regional
group resulting in 13, 10 and 41 rivers belonging taASastern Europe (EE) and Western
Europe and others (WEOG) regional groups, respectively. E®WHBEOG group, 33 rivers were
Western European and 8 were North American. We also combinadnateuticals in clusters
Ato C and D to F respectively in 2 groups as pharmaceuticistars A to C and D to F have
similar detection rates. We restrict our discussion to Asiath\AHEOG groups as the majority of

the rivers in the EE group are from a single country (Slaya&e Figures 3 and S2).
4.2.1 Wastewater treatment plants

In developed countries, WWTP effluent is considered a prirsanyce of pharmaceuticals to
aquatic environments (Andreozzi et al., 2003; Letsinger and Kay, Réfr@vic et al., 2002) and
the degree of contamination of a river is linked to the pharmaioaliremoval efficiency of
WWTPsIn developing countries, untreated effluent could also lectarged directly due to
absence of WWTPs and/or limited connectivity between housdsvdWTPs. The removal rate
of pharmaceuticals in WWTP varies significantly (Khamis @0dll,; Verlicchi et al., 2012).
Many of the clusters D to F pharmaceuticals such as diclofanatylsalicylic acid, naproxen,
and gemfibrozil are in ionic state at neutral pH, and thereforgadilt to remove during waste
water treatment processg(Khamis et al., 2011)n an extensive review, (Verlicchi et al., 2012)
showed that the removal rate of several clusterso- pharmaceuticals such as
carbamazepine, sotalol, sulfamethoxazole, metoprolol, erythrdmgnd others are as low as
40% even post-secondary treatment. In contrast, many of therpheaeuticals in clusters A to

Cincluding doxycycline, chlortetracycline, estradiol, p&tme, sulfamethizole etc. have been

13
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shown to have higher removal rat@gerlicchi et al., 2012). The median removal rate of clusters
Ato C and D to F pharmaceuticals complied in Verlicchi(20aPR) is 62% and 48% respectively
(see Figure Sdlx is therefore possible that the patterns observed in obhapnaceutical

clusters are related to their removal efficiency by WWTRe&SWWTP are more extensive and
up to date in WEOG (includes secondary and tertiary treatrpestesses), we hypothesized

that the differences in the detection rate for cluster A tol@apnaceuticals between Asian and
WEOG rivers could be due to more efficient removal of clustéesCApharmaceuticals in

WEOG.

For Asia as well as WEOG groups, the detection rates of pharnwadsuni clusters D to F were
high for both WWTP influent and effluent, with liti#fference between Asian and WEOG
effluents (Figure 5¢ and 5d). This was not surprisinguasecs D to F pharmaceuticals are
difficult to remove using conventional WWTP processesi@dhilet al., 2012). As expected, for
pharmaceuticals in clusters A totBe median detection rates in WWTP effluent were lower
than the influent detection rates for both Asia and WEOGQugso(Figure5a and B) suggesting
that WWTP processes are more successful in removing these pharntatetihan D to F
pharmaceuticalsHowever, the decrease in the detection rate from influent towedfit were

not statistically different (t-test, p>0.05) for Asian andE®@G WWTP effluents. Therefore, our
first order comparative analysis does not provide any comgglfidication that there are
systematic differences between the WWTPs in Asia and WEOG@&tMEOG WWTPs are
removing pharmaceuticals more effectively compared to the Asian YRBVIT is possible that
WEOG WWTPs are better at lowering the concentration; howevermalysis suggests that

even in that case, the concertation are high enough forgharmaceutical to be detected in

14
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WWTP effluents. A meta-analysis of pharmaceutical concertati?fAfTP influent and

effluent across the different countries can provide more dethinhsight into these differences.

We observe a substantial decrease in the detection rates of cldsterC pharmaceuticals
between WWTP effluents and downstream river sites for WEQ@réba) but not for Asia
(Figure 5b). The higher detection rates in rivers compared t&WNETP effluent for Asia
suggests additional input through combined sewer overi@md/or direct discharge of
untreated sewage water to the rivers. Indeed, the degree oheativity of households to
WWTP in Asia are significantly lower compared to the WE@Gha@nobserved pattern is not
surprising and highlights the need of reducing dischafgentreated wastewater in rivers and
other surface waterbodies in Asia (Isobe et al., 2004; Shaestd Pandey, 2016; Thomes et al.,

2019).

It would have been interesting to divide European WWTR&@subgroups that includk
Germany, Netherlands, Austria, Switzerland, Belgium and Englamméigroup and France,
Italy, Spain, Portugal and Greece in another, as the countriester group had less than 40%
of the population served by WWTP with tertiary treatment pracbsfore 2005

(https://www.eea.europa.eu/data-and-maps/indicators/urban-waste-water-treatment/urbaaste-

water-treatment-assessment)hereas more than 80% of the population in Germany,

Netherlands, Austria, Switzerland, Belgium and England vegved by WWTPs with tertiary
treatment processes by 2005. However, due to limited WWTP sampedid not further
subdivide WEOG WWTPs data in subgroGpsen the fact that most European WWTPs have
upgraded to tertiary treatment in recent years, and there have beegd number of studies in

recent yearsan analysis comparing detection rates in WWTP pre and post 2OEQrope can

15
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help to understand and document the effectiveness of the advanced techniguesmoving
pharmaceuticals and perhaps explain the differences in degreerdmination of European

rivers.

4.2.2 Regional variation in pharmaceutical consumption

The majority of the pharmaceuticals in clusters A to C are iatittb (48 out of 85, Table S2)
and their consumption varies significantly across the glttdeed, antibiotics are used less
often and are generally more difficult to obtain without peemption in WEOG whereas their
consumption in Asia is widespread and they are easily avaitaid often unregulated (Komori
et al., 2013; Shimizu et al., 2013). Between 2000 an@® 2glbbal antibiotic consumption
increased by 35%, fueled dominantly by Asian countries Béackel et al., 2014) with India
and China being the largest consumers. In comparison,dhsunption of antibiotics &snot
only lower in European countries, but also declined vSJu] E} ] o }vApnu#bS]}v

%] U]}OIP] 0 Z % }ES (}E Tii6U_V.sv } 1o & oXU fiide

As mentioned previously, the majority of the rivers in grousd 2 were German and
Slovenian, whereas rivers in France, Italy and Spain betioggroups 3 to 5. According to the
latest OCED (Organization for Economic Co-operation anddpevenht) report (2017), Italy
and France are among the highest consumers of antibioticarwpE. The defined daily dose
(DDD) of antibiotics in Italy and France are approximately ttinees higher than Netherlands
and twice that of Germany and Slovenia. For this reason, we belex the pattern observed

for pharmaceuticals in clusters A to C with much higher deteatibe in Asia and some
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European countries in part reflect the regional and coutemel variation in consumption of

these pharmaceuticals.

4.2.3 Effects of hydrologic and socio-environmental facor

The differences observed in the detection rates among the rivarkicaso be due to local
hydrological factors. The presence of pharmaceuticals will natiyers due to the prevailing
hydrological conditions at the time of sampling. For ins&rhigh river flows may dilute
pharmaceutical residues emanating from wastewater treatment plants. €sely, untreated
effluent could be released from combined sewer overflows dusitmgm events. Unfortunately
these hydrological characteristics are seldom described inghdad reports and scientific
articles Although pharmaceutical measurements in rivers are traditigriaken during low
flow summer conditions close to the WWTP effluent oytteainy pharmaceutical datasets
comprise a small number of samples taken with no consideratidlowfconditions. As a result,
our study, which focuses on general trends at large spat@éés based on a meta-analysis,
unfortunately cannot account for how flow conditions magvie affected the presence of
pharmaceuticals in rivers. Nevertheless, it is important ttertbat it would be unlikely that
high flow events would have discriminately diluted pharmaazls in clusters A to C in WEOG
to an extent that they were not detected with a similar dilutieffect missing for

pharmaceuticals in clusters D to F

Keeping in mind the limitations of data available and the tadetailed information associated
with sampling eventsye analyzed the relationship between basin size, river lengthraadn

flow rates and river contamination index (RCI) of the riveesg hydrologic metrics were

17
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available (or obtained) for most of the basins, however owlgsis did not resulh any
statistically meaningful relationship between RCI and theseiogetndeed, many of the rivers
in group 1 (most contaminated) and group 5 (least contaminatextl rivers with comparable
mean flow rate and size. Whereas hydrology is a critical factdetermining the degree of
contamination of a river as highlighted by several stadi@y et al., 2017; Keller et al., 2014;
Kolpin et al., 2004), the lack of relationship between meaw flate and the detection rates
highlights the complexity of interaction between hydrolagyd pharmaceuticals in water and
the inability of seasonally and basin averaged mean flow vatueapture this relationship. Our
analysis highlights the need for long-term catchment scaisigmporal studies to

understand these relationships.

We observe an increasing trend in RCI with increasing ptpnldensity within the basin
(Figure 6) albeit with significant variability. Most of {plearmaceuticals analyzed in our study
were used primarily for human consumption and the positive tréetween population
density and pharmaceutical detection was expected. The effect of pipnlon the degree of
contamination was appropriately highlighted for the rivelsd; LLobregat and Ter. These
rivers are comparable in size, situated within the Iberian PeansSpain (thus experiencing
similar climatic regime and country level pharmaceutical policied)re@ve more than 30
unique measurements on each river. In our analysis, the detect pharmaceuticals as
much lower for the River Ter (RCI = 0.25) compared to theddat (RCI = 0.78) and Ebro (RCI =
0.80) which mighbe due to the lower population density of the River Ter (Céspest al.,
2006). A recently conducted independent study (Osorio et @l6Pwithin the same region

comparing four rivers (Llogregat, Ebro, Jucar and Guadalgaiso highlighted the positive
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correlation between human population and pharmaceutical concrdn in these rivers and
showed that the degree of contamination of the LLobregat and Elare higher than Jucar and

Guadalquivir, most likely due to their higher populatie@ndity (Osorio et al., 2016).

The presence of substantial scatter around the relationskeipveen RCI and population density
in our analysis could be due to multiple factors that cary\ar basin, local and national scales
including access to pharmaceuticals, pharmaceutical consumptioitshakean age of the
population, seasonal variability, per capita domestic waterscomption, and sampling
strategies (Murata et al., 2011; Osorio et al., 2012b). Ourtrégyhlights the relationship
between contamination and population and the growing needjt@antify the presence of
pharmaceuticals in densely populated areas especially in developingries where public
health and aquatic ecosystems might be acutely affected due to elevatsgpce of several

pharmaceuticals.
4.4 Anovel approach for selecting pharmaceuticals to be studied in reve

Currently, more than 3000 pharmaceuticals are being used tijoli2onnachie et al., 2016) and
the listis growing. Given that our understanding of the eco-toxagidal effects of most
pharmaceuticals in surface water is not fully developed(Fent e2@Q6) , it is important to
determine their environmental concentration. However, monitorinmgheodelling concentration

of pharmaceuticals in surface water is challenging due todnniesources, time and costs
associated with these studies. Most monitoring efforts hagerblimited to fewer than 10
pharmaceuticals per study (Gros et al., 200®) circumvent these challenges, researchers have

complementd field measurements with estimated concentrations in surface wagaéng
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pharmaceutical sales and wastewater production rates and have develapg&thg schemes to
prioritize pharmaceuticals for analysis in a given locatidsfK{razrajy and Boxall, 2016;
Berninger et al., 2016; Bu et al., 2020; De Voogt et@92Fick et al., 2010; Huggett et al.,
2003; Kostich and Lazorchak, 2008; Kumar and Xagoraraki, 201}, al., 2012)the output of
such models varies substantially (Roos et al., 2012) lgrtitieir utility for analytical

prioritization purposes.

The SBM enabsthe identification of pharmaceuticals with similar ocamnce patterns in
surface water. For example, in our dataset for all the rivers whetéa diclofenac and
carbamazepine were measured, they were positively detected 90%edfrhe. Similar patterns
were also observed for pharmaceuticals that were not detected whensomea concurrently.
Our model provides a probabilistic estimate of positivelyegéhg unstudied pharmaceuticals
in rivers (Figure 4), which can complement existing mecharpsticéss-based models such as
those proposed by (Huggett et al., 2003; Kumar and Xagor&@kd, Roos et al., 2012) to
choose thepharmaceuticals needed to be included in a study. For example|dfenac is
positively detected in a river, it might not be useful to rmeee carbamazepine in the same
river as it is very likely to be positively detected. A srealidation exercise (results not shown)
suggests that, by grouping pharmaceuticals with singiteoccurrence pattern in rivers, we can
make reasonable predictions on the presence/absence dhallpharmaceuticals within a
group by performing field measurement of fegelected[pharmaceuticals, a very useful
feature given the high costs associated with measuring caragon of these pharmaceuticals.
As an example, we provide estimates of the probability of detgdinv selected

pharmaceuticals that were not studied in River Colorado, ElbeRdmde (Table)lindeed
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411 Diclofenac was positively detected in all the water ways & Rilver catchment (Marsik et al.,
412 2017; Meyer et al., 2016AIthough this example is for illustrative purposes, the go&d

413 highlight the applicability of statistical analyses @ pharmaceutical datasets in providing
414 useful information on environmental pharmaceutical contamination. &deourage

415 researchers to validate the robustness and accuracy of the meblgazbmparing the

416 pharmaceutical detection rates to our model output. We hope ttin$ paper would motivate
417 users to use our method or develop newer statistical metho@s tan be applied to the

418 emerging field of environmental pharmaceutical contamination. Ournyammhas highlighted
419 and confirmed some of the patters (effect of population, consuomppatterns) that have been

420 suggested before but never explored globally.

421  As the number of studies measuring pharmaceuticals in environmerda#ix using

422 standardized protocokomposite sampling and concurrent measurements of WWTP and
423 receiving watelis increasing rapidlfor example see (Challis et al., 2018; Cui et al., 20119; Gri
424 etal., 2016; Kay et al., 201#) future we plan to perform similar analysis using concann
425 rather than presence/absence data yielding results that are more Ufeim eco-toxological
426 and policy point of viewSuch analysis will be especially appropriate for companiey basins
427  within a country asn-country variation in pharmaceutical consumption behaviod &WTP
428 efficiency is likely to be smaller than between country vasiatiVe believe that combining
429 process-based rankings with results from sophisticatedsttesil model would maximize the
430 information that can be obtained on the toxicity of pharmatieals in different environmental
431 matrices and could help in developing sustainable strategiesimimize the effects of

432 pharmaceutical®n aquatic ecosystems.
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5. Conclusions

Previous works have suggested the presence of numerous pharmadsditara a wide
spectrum of therapeutic classes in environmental waters (Beek,2@l6; Daughton, 2001;
Hughes et al., 2013; Loos et al., 2010). However, tomawledge, none of them except (Loos
et al., 2010) have conducted a systematic assessment of the dwigette of pharmaceuticals
across multiple riverOur meta-analysis highlights the differences in the detectaia of 112
pharmaceuticals and their variation across Asia, Europe anith Monerica. We identify some
of the possible factors including consumption rate, |[doadrology and population that could
be driving this pattern. Whereas we could detect a first ondgationship between
pharmaceutical detection rates and pharmaceutical use, the effect afdhygical factors could
not be resolved in this analysis. Importantly, our apptoadforms the probability of detecting

unanalyzed pharmaceuticals and supports analyte prioritizatorfiuture.

Many of our findings have been suggested before, however hershew these empirically
using a large dataset analyzed within a statistical frameweukure analysis could leverage
much larger datasets and more sophisticated statistical teclesda acquire more detailed

and improved information on pharmaceutical contamination in acefwater.
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686 Figure 1. Schematic representing simultaneous clustering ¢ifypdthetical) rivers and 14

687 (hypothetical) pharmaceuticals studied on those riviks Detection ratéhow often a pharmaceutical

688 was positively detected when analyzed fofrjhe 14 pharmaceuticals (columns) measured across 10

689 rivers (rows) arranged in alphabetical order. Pharmacelstitteat are not studied in a river are shoas

690 blank. (b) Rearranged blocks of pharmaceuticals and rivatsetthibit high degree of similarityhe

691 SBM divides the 14 pharmaceuticals in 4 clusters (A to D,adeddy blue vertical lines). The algorithm

692 also divides the 10 rivers in three groups (1 to 3, separateddpenta horizontal lines). Each color

693 represents a river-pharmaceutical block. v /E u%o0 U "%Z Eu WBJA E PUES o it
694 reveals that the detection rates of pharmaceuticals in clustemv lthe lowest detection rates for river

695 PE}U% i V "%Z Eu pPIF]A ®PEE ti_ E A o 53Z2f§ §Z § 3]}v & 3
696 pharmaceuticals in cluster D have the highest detection ratesviargroup 3. (¢) The probability of

697 positively detecting an unstudied pharmaceutical (for exampharma 8 at river)lis 0.9 (as they

698 O}vP 8} "% Z Eu pS]rivergoupis E&o} teX
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Figure 3Detection rate of the 112 pharmaceuticals (columns) studied atimes®4 rivers (rows). White
square represents pharmaceuticals that were not studied atrilvat. The matrix has been ordered
according to the river-pharmaceutical block. Rows 1-9,11®22-35, 36-60 and 61-64 represents river
groups 1,2,3,4, and 5 (partitioned by magenta lineshui@ns 1-67, 68-81, 82-85, 86-91, 92-103 and
104-112 represents pharmaceutical clusters A, B, C, D, E and Eqpedtby blue lines). The
pharmaceuticals clusters are arranged according to the detecditen Each rectangle enclosed by the
magenta and blue lines is a pharmaceutical-river blockckBIl6 td ~ vEtT™ & Z]P4lgh®yZ s
shaded for illustrative purposes. Mean detection rate (and the 95% crdilérval) for each river-
pharmaceutical block is shown in figure 4. The name of thesrineksia are highlighted in (blue),
Western Europe and North America (purple) and Eastern Eurgrey&).
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Figure 5Detection rate of pharmaceuticals in rivers, WWTP-effluents and W¥TENts. (a)
pharmaceuticals in clusters A to C in WE® pharmaceuticals in clusters A to C in Asia, (c)
pharmaceuticals in clusters D to F in WENA and (d): pharnieasuin clusters D to F in Asia.
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725

726  Figure 6. Relationship between river contamination index (RCpPamudation density for the rivers

727 analyzed in this study. Population density has beedetivinto 5 sub-classes (<50, 50-100, 100-200, 200-
728 500 and >500 persons/square kilometer). Correlation between pipuidensity and RCI are

729  statistically significant (p <0.05). The color palette represemtsrito higher RCI (blue to red).
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Table 1 Mean probability and 95% credible interval (values in bracKebeodetection rate of selected

pharmaceuticals for River Colorado, Rhine and Elbe.

River Pharmaceuticall|  Probability of detection
Colorado Estradiol 35% (20-50%)
Colorado Ciprofloxacin 65% (60-85%)
Colorado Erythromycin 90% (80-100%)
Colorado Diclofenac 98% (95-100%)

Rhine Estradiol 10% (0-20%)

Rhine Ciprofloxacin 40% (20-60%)

Rhine Erythromycin 60% (40-80%)

Rhine Diclofenac 90% (80-95%)

Elbe Estradiol 0% (0-56)

Elbe Ciprofloxacin 3% (0-10%)

Elbe Erythromycin 95% (65-100%)

Elbe Diclofenac 97% (95-100%)
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