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 Abstract 11 

Pharmaceutical consumption has expanded rapidly during the last century and their persistent 12 

presence in the environment has become a major concern. Unfortunately, our understanding of 13 

the distribution of pharmaceuticals in surface water and their effects on aquatic biota and 14 

public health is limited. Here, we explore patterns in the detection rate of the most frequently 15 

studied pharmaceuticals in 64 rivers from 22 countries using bi-clustering algorithms and 16 

subsequently analyze the results in the context of regional differences in pharmaceutical 17 

consumption habits, social and environmental factors, and removal-efficiency of wastewater 18 

treatment plants (WWTP). To our knowledge, this is the first study to compare several rivers 19 

across 3 major continents and systematically analyze them in this framework. We find that 20% 20 

of the pharmaceuticals included in this analysis are pervasively present in all the surface 21 

waterbodies. Several pharmaceuticals also display low overall positive detection rates; 22 

however, they exhibit significant spatial variability and their detection rates are consistently 23 

lower in Western European and North America (WEOG) rivers in comparison to Asian rivers. 24 

Our analysis suggests the important role of pharmaceutical consumption and population in 25 

governing these patterns, however the role of WWTP efficiency appeared to be limited. We 26 

were constrained in our ability to assess the role of hydrology, which most likely also plays an 27 

important role in regulating pharmaceuticals in rivers. Most importantly though, we 28 

demonstrate the ability of our algorithm to provide probabilistic estimates of the detection rate 29 

of pharmaceuticals that were not studied in a river, an exercise that could be useful in 30 

prioritizing pharmaceuticals for future study. 31 

.   32 
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1. Introduction 33 

Pharmaceutical consumption has increased drastically in the last 50 years and is likely to 34 

continue increasing in the coming years due to rising population, changing demographic across 35 

the globe, and growing availability across the world (Daughton, 2003). The presence of 36 

pharmaceuticals and their metabolites in environmental matrices is well established and is a 37 

major environmental concern (Beek et al., 2016; Daughton, 2001; Jones et al., 2001; Oaks et al., 38 

2004; Schwarzenbach et al., 2006) . However, there are considerable knowledge gaps on the 39 

impacts of pharmaceuticals on aquatic organisms and ecosystems(Botitsi et al., 2007; Brain et 40 

al., 2008; Daughton, 2001; Kümmerer, 2009a, 2009b; Santos et al., 2007). With increasing use 41 

of gray water in agriculture and in recharging groundwater for future human consumptions , 42 

there are also growing concerns on the long-term effects of persistent exposure to 43 

pharmaceuticals on public health (de Jesus Gaffney et al., 2015; Grossberger et al., 2014; Jones-44 

Lepp et al., 2012; Webb et al., 2003). Many countries and environmental agencies have 45 

recognized their potential detrimental effects and are developing policies to mitigate their 46 

impacts (Kaplan, 2013; Peake et al., 2015; Walters et al., 2010). 47 

To evaluate the potential eco-toxicological risks of pharmaceuticals, it is important to measure 48 

or model (Amiard-Triquet et al., 2015; Huggett et al., 2003; Johnson et al., 2013; Kehrein et al., 49 

2015; Kostich and Lazorchak, 2008)  their concentration in environmental compartments, 50 

document their spatiotemporal variability and understand the role of environmental and social 51 

factors in determining their presence in the environment. However, there are more than 3000 52 

pharmaceuticals consumed in Europe alone (Donnachie et al., 2016) and exhaustive monitoring 53 
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of all the pharmaceuticals (and their metabolites) is expensive and impractical. In this regard, 54 

statistical analysis (such as meta-analysis, clustering, regression) of large pharmaceutical 55 

datasets could be useful in identifying spatiotemporal patterns of pharmaceuticals and their 56 

relationship with environmental covariates. This information could then be used to prioritize 57 

pharmaceuticals for future studies, assess relationships between pharmaceuticals (for example: 58 

which pharmaceuticals always co- occur in a river and which do not), examine pharmaceutical 59 

detection patterns across regions, and identify other questions relevant to the risk of 60 

pharmaceuticals in surface water (Altenburger et al., 2003; Andrews, 2001; Donnachie et al., 61 

2016; Jones et al., 2002; Kostich and Lazorchak, 2008; Kumar and Xagoraraki, 2010; Rehman et 62 

al., 2015). It is however worth mentioning that for each pharmaceutical, a minimum number of 63 

analytical measurements is indeed required to understand the relationships between different 64 

pharmaceuticals. 65 

Here, we systematically analyze the detection rate (how often a pharmaceutical was positively 66 

detected when analyzed) of the 112 most commonly studied pharmaceuticals in 64 rivers from 67 

22 countries using a stochastic block model (also known as a co-clustering or bi-clustering 68 

model). Briefly, stochastic block model (SBM) is used for clustering high-dimensional data, 69 

where the algorithm simultaneously clusters rows and columns of the data to obtain subgroups 70 

of rows and subgroups of columns that exhibit a high correlation (Berkhin, 2006; Govaert, 1995; 71 

Hartigan, 1972; Tanay and Sharan Ý Ron Shamir, 2004). A salient feature of the algorithm is its 72 

ability to perform robustly even with substantial missing data. The algorithm has been used for 73 

analyzing high-dimensional data in many fields, including bioinformatics (Tanay and Sharan Ý 74 

Ron Shamir, 2004), text-mining (Dhillon, 2001), ecology (Chi et al., 2017; Hill et al., 2013), and 75 
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social network analysis (Banks and Hengartner, 2008; Hoff et al., 2002). Figure 1 provides a 76 

hypothetical example to illustrate how the algorithm works. For detailed information on SBM 77 

and/or co-clustering please refer to (Berkhin, 2006; Govaert, 1995.; Hartigan, 1972). 78 

To our knowledge this is the first study to 1) systematically analyze the spatial patterns in the 79 

detection rates of the most commonly studied pharmaceuticals, 2) analyze the role of social 80 

and environmental factors, such as wastewater treatment plant (WWTP) efficiency, 81 

pharmaceutical consumption habits, population density and hydrological factors, in 82 

determining the pattern of pharmaceutical detection rates and 3) estimate the occurrence 83 

probability of unanalyzed pharmaceuticals to support analyte prioritization for future study. 84 

2. Methods 85 

2.1 Description of the database and data aggregation 86 

We obtained the pharmaceutical data analyzed in this study from the Measured Environmental 87 

Concentration (MEC) database maintained by the German Environmental Agency (UBA, 88 

https://www.umweltbundesamt.de/en/database-pharmaceuticals-in-the-environment-0). The 89 

database, accessed on 10/01/2018, consists of 123,761 entries of pharmaceuticals and/or their 90 

transformation products measured in environmental matrices such as surface water, 91 

groundwater, drinking water and WWTP effluent across 71 countries. To our knowledge, this is 92 

the most comprehensive global dataset on pharmaceuticals available. For details on the 93 

database please refer to UBA website and Beek et al., (2016). Majority of the data in the 94 

database were from 2001 to October 2013. Only 1281 entries in the database predated 2001 95 

and there were no entries after October 2013. 96 
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2.2 Rationale for analyzing detection rates of pharmaceuticals 97 

Instead of analyzing measured concentrations reported in the literature from where the data 98 

were obtained, we transformed the data into presence/absence format for several reasons. 99 

First, the majority of the studies measuring pharmaceuticals during the last two decades have 100 

not followed internationally/regionally established protocols (Ort et al., 2010) with minimal 101 

information on uncertainty associated with the measurements. Second, most of the 102 

pharmaceuticals included in our analysis have been measured less than 5 times on a river with 103 

limited or no information on the prevailing hydrological conditions. As a consequence, using a 104 

statistical estimate (such as mean or mode) can lead to incorrect characterization of the 105 

concentration if all the measurements were done only within a single hydrologic regime (for 106 

e.g. river low-flow season). Finally, several studies often report different summary statistics 107 

(e.g., mean, median or maximum concentration), typically based on very different sample sizes, 108 

hindering a straight-forward comparison of these concentration values. Due to these 109 

limitations, we believe that reducing the data to present/absent format was the most reliable 110 

and robust way to minimize measurement uncertainties while capturing the majority of the 111 

data published over the last two decades.  112 

2.3 Rationale for analyzing pharmaceutical data on basin scale instead of 113 

national scale   114 

While there have been previous global, continental and country level analyses on river systems 115 

to identify and understand spatiotemporal variability in pharmaceutical occurrence (Barnes et 116 

al., 2008; Hughes et al., 2013; Jiang et al., 2013; Klečka et al., 2009; Loos et al., 2010), none to 117 
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our knowledge have performed statistical analysis to explore global patterns in pharmaceutical 118 

occurrences in surface waterbodies and understand the factors determining these patterns. A 119 

primary motivation for basin-scale data analysis was the high variability in data availability 120 

between national datasets with some countries (such as Germany or USA) having an order of 121 

magnitude or more data than others. Importantly, pharmaceutical measurements when 122 

organized by river basins are more evenly distributed and less skewed (supplementary material, 123 

Figure S1), thus allowing more robust statistical comparisons.  124 

2.4 Statistical analyses 125 

2.4.1 Pharmaceutical Contamination Index 126 

For each river i, we calculated the mean detection rate or River Contamination Index (RCI) using 127 

the following formula 128 

 𝑅𝐶𝐼𝑖 =  1𝑛𝑖 ∑ 𝑃𝑖,𝑗𝑇𝑖,𝑗𝑛𝑖𝑗=1  129 

where 𝑃𝑖,𝑗  and 𝑇𝑖,𝑗are the number of times pharmaceutical j was positively detected and 130 

measured at river i, respectively. In this expression, 𝑛𝑖  is the number of unique pharmaceuticals 131 

measured at river i. An RCI value of 1 means that all pharmaceutical analytes assessed in river i 132 

were detected and a value of 0 means that none of the pharmaceuticals measured at river i 133 

were ever detected.  134 

2.4.2 Stochastic Block Model 135 
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For each river, we determine the number of times a pharmaceutical was analyzed and 136 

positively detected. We arranged our data in a format where each row represents a river and 137 

each column represents a unique pharmaceutical. The model groups together rivers and 138 

pharmaceuticals that have similar detection rate and output subgroups (also called blocks) that 139 

are similar. We used SBM in our analysis as it not only allows us to identify rivers groups and 140 

pharmaceutical clusters with similar detection rates but also provides information on their 141 

covariation that can be used for prediction. Additionally, the generative nature of SBM allows 142 

computing the mean probability (together with the associated uncertainty) of positively 143 

detecting pharmaceuticals for each” river and pharmaceutical block”. In other words, the 144 

model provides us the probability (with uncertainty) of detecting unmeasured pharmaceuticals 145 

in a river. The detailed process of sub-setting data from the MEC database, its subsequent 146 

manipulation for analysis and a complete description of our algorithm are provided in the 147 

supplementary material. We provide an illustrative example of our data formatting and its 148 

subsequent rearrangement by SBM in Figure 1. Since the algorithm groups rivers as well as 149 

pharmaceuticals (see Figure 1), we refer to pharmaceutical groups as ‘pharmaceutical clusters’ 150 

to avoid confusion with river groups.  151 

Similar to the river, we determined the number of times a pharmaceutical was analyzed and 152 

positively detected in WWTPs (Influent and effluent). Pharmaceuticals that were measured in 153 

WWTP but were not part of our river subset samples were discarded. To explore continental 154 

scale differences, we subdivided the WWTP detection rates in three UN groups (Asia, Eastern 155 

Europe and Western Europe and others) and summarized them based upon pharmaceutical 156 

clusters. 157 
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2.5 Social and environmental variables 158 

We explored the effect of environmental and anthropogenic factors (e.g., watershed size, river 159 

length, flowrate and population density) on the degree of contamination for the different 160 

rivers. We specifically chose these variables as it has been shown that they can play an 161 

important role in governing the degree of contamination of the rivers (Acuña et al., 2015; Burns 162 

et al., 2018; Kaushal and Belt, 2012; Osorio et al., 2016, 2012a; Peng et al., 2008). We obtained 163 

the corresponding information for each river basin from published literature and reports from 164 

national agencies. For the few rivers with no published data on population, we estimated basin 165 

population by clipping the global population estimates, obtained from the Center for 166 

International Earth Science Information Network (Columbia University), with river shape files 167 

obtained from HydroSHED (Lehner et al., 2008) and European Environmental agency.  168 

3. Results  169 

Our methodology resulted in 2202 measurements of 112 pharmaceuticals across 64 rivers 170 

(Figure S2) with 1324 positive observations resulting in a mean detection rate of 60%. The 171 

range of RCI varied between 0 and 1. Except for 1 river with measurements between 30-50 172 

samples (Figure 2), very low RCI values were generally associated with rivers with a lower 173 

number of measurements (Figure 2) suggesting that sample size might play a role in governing 174 

the RCI.  Indeed, for rivers with less than 50 measurements, the range of RCI was large (0 to 1). 175 

On the other hand, for rivers, with greater than 50 measurements RCI ranged from 0.3 to 0.85 176 

(Figure 2), revealing that as the number of measurements increases, extreme low RCI values are 177 

unlikely and thus every river would exhibit some degree of contamination if pharmaceuticals 178 
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are measured with adequate intensity. This suggest that the limited monitoring of 179 

pharmaceuticals in waterbodies, compared to a more traditional pollutants, may lead to 180 

inaccurate conclusions on their presence or absence, and concentrations, and that further, 181 

more spatially and temporally intensive, monitoring is needed.  182 

The stochastic block model (SBM) resulted in 6 pharmaceutical clusters and 5 river groups 183 

respectively (Figure 3) i.e. 30 (6 multiplied by 5) blocks of rivers and pharmaceuticals. Each 184 

block consists of a set of rivers that have similar detection rates for a set of pharmaceuticals. 185 

Each block can also be considered as a set of pharmaceuticals that have similar detection rates 186 

for a set of rivers. The effectiveness of the model in grouping surface waterbodies as well as 187 

pharmaceuticals with similar detection rates is best realized by visually comparing the data 188 

before and after clustering (see Figure S3 for the raw un-clustered data).  The pharmaceutical 189 

clusters and the river groups are arranged in increasing order of the detection rates.  190 

Pharmaceuticals in clusters D to F were positively detected in all the river groups and 191 

pharmaceuticals in clusters A and B were mostly undetected in river groups 1 to 3 (Figure 3). 192 

We also observe regional differences in the river groups. All but two Asian rivers were assigned 193 

to river groups 4 and 5 which exhibited high detection rates, suggesting highest level of 194 

contamination in Asian Rivers. European and North American rivers were present in all the 195 

groups, however our model also revealed important differences within the European rivers. 196 

Only German and Slovenian rivers belonged to river groups 1 and 2, with very low detection 197 

rates of cluster A pharmaceuticals (<10%, Figure 3). In contrast, the detection rate of cluster A 198 

pharmaceuticals for Italian, Spanish and French rivers (belonging mostly to river groups 3, 4 and 199 

5, Figure 3) were ~35% which, although lower than the detection rate in Asian rivers (>80%), 200 
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was still higher than the rivers flowing in Germany, Slovakia and Netherlands (<20%). None of 201 

the cluster A pharmaceuticals (more than 20 different pharmaceuticals) that were measured 202 

multiple times in the River Rhine (flows through Switzerland, Germany and the Netherlands) 203 

were positively detected (Figure 3). 204 

Our result suggests that for all the rivers groups, the mean probability of positively detecting 205 

the pharmaceuticals in cluster F was high (Figure 4). As a result, pharmaceuticals in cluster F are 206 

likely to be positively detected in all of the studied rivers. Similarly, except for rivers in group 1, 207 

the mean likelihood of positively detecting clusters D and E pharmaceuticals in unmeasured 208 

rivers is greater than 50%. In contrast, the detection rates of clusters A to C pharmaceuticals in 209 

river groups 1 and 2 is low (Figure 4). 210 

The estimated 95% credible intervals provide confidence in interpreting the mean detection 211 

rate associated with each river and pharmaceutical block. The narrow 95% credible intervals 212 

(CIs, ranging mostly from 0.6 to 1) associated with cluster F for all the river groups (Figure 4) 213 

suggests high confidence in the likelihood of positively detecting cluster F pharmaceuticals at all 214 

the rivers. On the other hand, the 95% CI associated with clusters C and D are large (Figure 4) 215 

(due to limited number of measurements) indicating substantial uncertainty associated with 216 

these probabilities (Figure 4).  217 

4. Discussion 218 

4.1 Pattern in pharmaceutical detection rates 219 
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The high detection rates of 22 pharmaceuticals in clusters D to F (Figure 3) suggests that these 220 

pharmaceuticals were present ubiquitously in all the rivers included in this study. Many 221 

pharmaceuticals in clusters D to F are among the most widely consumed in the USA, UK and 222 

several other countries (Fuentes et al., 2018; Letsinger and Kay, 2019) and have exhibited high 223 

detection frequencies in previous global analyses of pharmaceuticals in surface water bodies 224 

(Fekadu et al., 2019; Hughes et al., 2013). The pharmaceuticals included by our model in 225 

clusters D to F do not belong to a single therapeutic group but come from diverse classes 226 

including analgesics, antibiotics, estrogens and beta-blockers (Table S1).  227 

Even though the overall detection rate of pharmaceuticals in clusters A, B and C (Figure 3) was 228 

lower, the detection rate for pharmaceuticals in these clusters were not similar across the river 229 

groups. Blocks 4-A, 5-A 3-B, 4-B and 5-B had much higher positive detection than blocks 1-A, 2-230 

A, 3-A, 1-B and 2-B (see figure 3). Most of the rivers with high detection rates of 231 

pharmaceuticals in clusters A and B were Asian. Among the European rivers, only Italian, French 232 

and Spanish exhibited high detection rates. Rivers from other European countries including 233 

England, Germany, Netherlands and Slovakia exhibited low detection rates for pharmaceuticals 234 

in clusters A and B. Our model output suggests, there are systematic country level differences 235 

in the rivers for clusters A and B pharmaceuticals. These differences might be attributable to 236 

multiple factors (e.g., pharmaceutical consumption pattern, WWTP removal processes, 237 

hydrological and social factors and/or a combination of these factors), that we discuss below.  238 

4.2 Factors governing the regional differences among the rivers  239 



13 
 

To explore the patterns observed above, we combined the rivers into their official UN regional 240 

group resulting in 13, 10 and 41 rivers belonging to Asia, Eastern Europe (EE) and Western 241 

Europe and others (WEOG) regional groups, respectively. For the WEOG group, 33 rivers were 242 

Western European and 8 were North American. We also combined pharmaceuticals in clusters 243 

A to C and D to F respectively in 2 groups as pharmaceuticals in clusters A to C and D to F have 244 

similar detection rates. We restrict our discussion to Asian and WEOG groups as the majority of 245 

the rivers in the EE group are from a single country (Slovakia, see Figures 3 and S2). 246 

4.2.1 Wastewater treatment plants 247 

In developed countries, WWTP effluent is considered a primary source of pharmaceuticals to 248 

aquatic environments (Andreozzi et al., 2003; Letsinger and Kay, 2019; Petrovic et al., 2002) and 249 

the degree of contamination of a river is linked to the pharmaceutical removal efficiency of 250 

WWTPs. In developing countries, untreated effluent could also be discharged directly due to 251 

absence of WWTPs and/or limited connectivity between houses and WWTPs. The removal rate 252 

of pharmaceuticals in WWTP varies significantly (Khamis et al., 2011; Verlicchi et al., 2012). 253 

Many of the clusters D to F pharmaceuticals such as diclofenac, acetylsalicylic acid, naproxen, 254 

and gemfibrozil are in ionic state at neutral pH, and therefore difficult to remove during waste 255 

water treatment processes (Khamis et al., 2011). In an extensive review, (Verlicchi et al., 2012) 256 

showed that the removal rate of several clusters D to F pharmaceuticals such as 257 

carbamazepine, sotalol, sulfamethoxazole, metoprolol, erythromycin and others are as low as 258 

40% even post-secondary treatment.  In contrast, many of the pharmaceuticals in clusters A to 259 

C including doxycycline, chlortetracycline, estradiol, paroxetine, sulfamethizole etc. have been 260 
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shown to have higher removal rates (Verlicchi et al., 2012). The median removal rate of clusters 261 

A to C and D to F pharmaceuticals complied in Verlicchi et al (2012) is 62% and 48% respectively 262 

(see Figure S4). It is therefore possible that the patterns observed in our pharmaceutical 263 

clusters are related to their removal efficiency by WWTP. Since WWTP are more extensive and 264 

up to date in WEOG (includes secondary and tertiary treatment processes), we hypothesized 265 

that the differences in the detection rate for cluster A to C pharmaceuticals between Asian and 266 

WEOG rivers could be due to more efficient removal of clusters A to C pharmaceuticals in 267 

WEOG.   268 

For Asia as well as WEOG groups, the detection rates of pharmaceuticals in clusters D to F were 269 

high for both WWTP influent and effluent, with little difference between Asian and WEOG 270 

effluents (Figure 5c and 5d). This was not surprising as clusters D to F pharmaceuticals are 271 

difficult to remove using conventional WWTP processes(Verlicchi et al., 2012). As expected, for 272 

pharmaceuticals in clusters A to C, the median detection rates in WWTP effluent were lower 273 

than the influent detection rates for both Asia and WEOG groups (Figures 5a and 5b) suggesting 274 

that WWTP processes are more successful in removing these pharmaceuticals than D to F 275 

pharmaceuticals. However, the decrease in the detection rate from influent to effluent were 276 

not statistically different (t-test, p>0.05) for Asian and WEOG WWTP effluents. Therefore, our 277 

first order comparative analysis does not provide any compelling indication that there are 278 

systematic differences between the WWTPs in Asia and WEOG, or that WEOG WWTPs are 279 

removing pharmaceuticals more effectively compared to the Asian WWTPs. It is possible that 280 

WEOG WWTPs are better at lowering the concentration; however, our analysis suggests that 281 

even in that case, the concertation are high enough for the pharmaceutical to be detected in 282 
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WWTP effluents. A meta-analysis of pharmaceutical concertation in WWTP influent and 283 

effluent across the different countries can provide more detailed insight into these differences. 284 

We observe a substantial decrease in the detection rates of cluster A to C pharmaceuticals 285 

between WWTP effluents and downstream river sites for WEOG (Figure 5a) but not for Asia 286 

(Figure 5b). The higher detection rates in rivers compared to the WWTP effluent for Asia 287 

suggests additional input through combined sewer overflows and/or direct discharge of 288 

untreated sewage water to the rivers. Indeed, the degree of connectivity of households to 289 

WWTP in Asia are significantly lower compared to the WEOG and the observed pattern is not 290 

surprising and highlights the need of reducing discharge of untreated wastewater in rivers and 291 

other surface waterbodies in Asia (Isobe et al., 2004; Shrestha and Pandey, 2016; Thomes et al., 292 

2019). 293 

It would have been interesting to divide European WWTPs in two subgroups that included 294 

Germany, Netherlands, Austria, Switzerland, Belgium and England in one group and  France, 295 

Italy, Spain, Portugal and Greece in another, as the countries in latter group had less than 40% 296 

of the population served by WWTP with tertiary treatment process before 2005 297 

(https://www.eea.europa.eu/data-and-maps/indicators/urban-waste-water-treatment/urban-waste-298 

water-treatment-assessment-4) whereas more than 80% of the population in Germany, 299 

Netherlands, Austria, Switzerland, Belgium and England were served by WWTPs with tertiary 300 

treatment processes by 2005. However, due to limited WWTP samples, we did not further 301 

subdivide WEOG WWTPs data in subgroups. Given the fact that most European WWTPs have 302 

upgraded to tertiary treatment in recent years, and there have been large number of studies in 303 

recent years an analysis comparing detection rates in WWTP pre and post 2010 in Europe can 304 

https://www.eea.europa.eu/data-and-maps/indicators/urban-waste-water-treatment/urban-waste-water-treatment-assessment-4
https://www.eea.europa.eu/data-and-maps/indicators/urban-waste-water-treatment/urban-waste-water-treatment-assessment-4
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help to understand and document the effectiveness of the advanced techniques in removing 305 

pharmaceuticals and perhaps explain the differences in degree of contamination of European 306 

rivers. 307 

4.2.2 Regional variation in pharmaceutical consumption 308 

The majority of the pharmaceuticals in clusters A to C are antibiotics (48 out of 85, Table S2) 309 

and their consumption varies significantly across the globe. Indeed, antibiotics are used less 310 

often and are generally more difficult to obtain without prescription in WEOG whereas their 311 

consumption in Asia is widespread and they are easily available and often unregulated (Komori 312 

et al., 2013; Shimizu et al., 2013). Between 2000 and 2010, global antibiotic consumption 313 

increased by 35%, fueled dominantly by Asian countries (Van Boeckel et al., 2014) with India 314 

and China being the largest consumers. In comparison, the consumption of antibiotics was not 315 

only lower in European countries, but also declined (“Antimicrobial consumption - Annual 316 

Epidemiological Report for 2017,”; Van Boeckel et al., 2014).  317 

As mentioned previously, the majority of the rivers in groups 1 and 2 were German and 318 

Slovenian, whereas rivers in France, Italy and Spain belonged to groups 3 to 5. According to the 319 

latest OCED (Organization for Economic Co-operation and Development) report (2017), Italy 320 

and France are among the highest consumers of antibiotics in Europe. The defined daily dose 321 

(DDD) of antibiotics in Italy and France are approximately three times higher than Netherlands 322 

and twice that of Germany and Slovenia. For this reason, we believe that the pattern observed 323 

for pharmaceuticals in clusters A to C with much higher detection rate in Asia and some 324 
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European countries in part reflect the regional and country level variation in consumption of 325 

these pharmaceuticals.  326 

4.2.3 Effects of hydrologic and socio-environmental factors 327 

The differences observed in the detection rates among the rivers could also be due to local 328 

hydrological factors. The presence of pharmaceuticals will vary in rivers due to the prevailing 329 

hydrological conditions at the time of sampling. For instance, high river flows may dilute 330 

pharmaceutical residues emanating from wastewater treatment plants. Conversely, untreated 331 

effluent could be released from combined sewer overflows during storm events. Unfortunately, 332 

these hydrological characteristics are seldom described in published reports and scientific 333 

articles. Although pharmaceutical measurements in rivers are traditionally taken during low 334 

flow summer conditions close to the WWTP effluent outlet, many pharmaceutical datasets 335 

comprise a small number of samples taken with no consideration of flow conditions. As a result, 336 

our study, which focuses on general trends at large spatial scales based on a meta-analysis, 337 

unfortunately cannot account for how flow conditions may have affected the presence of 338 

pharmaceuticals in rivers. Nevertheless, it is important to note that it would be unlikely that 339 

high flow events would have discriminately diluted pharmaceuticals in clusters A to C in WEOG 340 

to an extent that they were not detected with a similar dilution effect missing for 341 

pharmaceuticals in clusters D to F.  342 

Keeping in mind the limitations of data available and the lack of detailed information associated 343 

with sampling events, we analyzed the relationship between basin size, river length and mean 344 

flow rates and river contamination index (RCI) of the river. These hydrologic metrics were 345 
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available (or obtained) for most of the basins, however our analysis did not result in any 346 

statistically meaningful relationship between RCI and these metrics. Indeed, many of the rivers 347 

in group 1 (most contaminated) and group 5 (least contaminated) were rivers with comparable 348 

mean flow rate and size. Whereas hydrology is a critical factor in determining the degree of 349 

contamination of a river as highlighted by several studies (Kay et al., 2017; Keller et al., 2014; 350 

Kolpin et al., 2004), the lack of relationship between mean flow rate and the detection rates 351 

highlights the complexity of interaction between hydrology and pharmaceuticals in water and 352 

the inability of seasonally and basin averaged mean flow values to capture this relationship. Our 353 

analysis highlights the need for long-term catchment scale spatiotemporal studies to 354 

understand these relationships. 355 

We observe an increasing trend in RCI with increasing population density within the basin 356 

(Figure 6) albeit with significant variability. Most of the pharmaceuticals analyzed in our study 357 

were used primarily for human consumption and the positive trend between population 358 

density and pharmaceutical detection was expected. The effect of population on the degree of 359 

contamination was appropriately highlighted for the rivers Ebro, LLobregat and Ter. These 360 

rivers are comparable in size, situated within the Iberian Peninsula, Spain (thus experiencing 361 

similar climatic regime and country level pharmaceutical policies) and have more than 30 362 

unique measurements on each river. In our analysis, the detection of pharmaceuticals was 363 

much lower for the River Ter (RCI = 0.25) compared to the Llobregat (RCI = 0.78) and Ebro (RCI = 364 

0.80) which might be due to the lower population density of the River Ter (Céspedes et al., 365 

2006). A recently conducted independent study (Osorio et al., 2016) within the same region 366 

comparing four rivers (Llogregat, Ebro, Jucar and Guadalquivir) also highlighted the positive 367 
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correlation between human population and pharmaceutical concentration in  these rivers and 368 

showed that the degree of contamination of the LLobregat and Ebro were higher than Jucar and 369 

Guadalquivir, most likely due to their higher population density (Osorio et al., 2016).  370 

The presence of substantial scatter around the relationship between RCI and population density 371 

in our analysis could be due to multiple factors that can vary on basin, local and national scales 372 

including access to pharmaceuticals, pharmaceutical consumption habits, mean age of the 373 

population, seasonal variability, per capita domestic water consumption, and sampling 374 

strategies (Murata et al., 2011; Osorio et al., 2012b). Our result highlights the relationship 375 

between contamination and population and the growing need to quantify the presence of 376 

pharmaceuticals in densely populated areas especially in developing countries where public 377 

health and aquatic ecosystems might be acutely affected due to elevated presence of several 378 

pharmaceuticals. 379 

4.4 A novel approach for selecting pharmaceuticals to be studied in rivers 380 

Currently, more than 3000 pharmaceuticals are being used globally (Donnachie et al., 2016) and 381 

the list is growing. Given that our understanding of the eco-toxicological effects of most 382 

pharmaceuticals in surface water is not fully developed(Fent et al., 2006) , it is important to 383 

determine their environmental concentration. However, monitoring or modelling concentration 384 

of pharmaceuticals in surface water is challenging due to limited resources, time and costs 385 

associated with these studies. Most monitoring efforts have been limited to fewer than 10 386 

pharmaceuticals per study (Gros et al., 2006). To circumvent these challenges, researchers have 387 

complemented field measurements with estimated concentrations in surface water using 388 
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pharmaceutical sales and wastewater production rates and have developed ranking schemes to 389 

prioritize pharmaceuticals for analysis in a given location (Al-Khazrajy and Boxall, 2016; 390 

Berninger et al., 2016; Bu et al., 2020; De Voogt et al., 2009; Fick et al., 2010; Huggett et al., 391 

2003; Kostich and Lazorchak, 2008; Kumar and Xagoraraki, 2010; Sui et al., 2012),  the output of 392 

such models varies substantially (Roos et al., 2012)  limiting their utility for analytical 393 

prioritization purposes.  394 

The SBM enables the identification of pharmaceuticals with similar occurrence patterns in 395 

surface water. For example, in our dataset for all the rivers where both diclofenac and 396 

carbamazepine were measured, they were positively detected 90% of the time. Similar patterns 397 

were also observed for pharmaceuticals that were not detected when measured concurrently. 398 

Our model provides a probabilistic estimate of positively detecting unstudied pharmaceuticals 399 

in rivers (Figure 4), which can complement existing mechanistic/process-based models such as 400 

those proposed by (Huggett et al., 2003; Kumar and Xagoraraki, 2010; Roos et al., 2012) to 401 

choose the pharmaceuticals needed to be included in a study. For example, if diclofenac is 402 

positively detected in a river, it might not be useful to measure carbamazepine in the same 403 

river as it is very likely to be positively detected. A cross-validation exercise (results not shown) 404 

suggests that, by grouping pharmaceuticals with similar co-occurrence pattern in rivers, we can 405 

make reasonable predictions on the presence/absence of all the pharmaceuticals within a 406 

group by performing field measurement of few ‘selected’ pharmaceuticals, a very useful 407 

feature given the high costs associated with measuring concentration of these pharmaceuticals. 408 

As an example, we provide estimates of the probability of detecting few selected 409 

pharmaceuticals that were not studied in River Colorado, Elbe and Rhine (Table 1).Indeed 410 
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Diclofenac was positively detected in all the water ways of Elbe River catchment (Marsik et al., 411 

2017; Meyer et al., 2016). Although this example is for illustrative purposes, the goal is to 412 

highlight the applicability of statistical analyses of big pharmaceutical datasets in providing 413 

useful information on environmental pharmaceutical contamination. We encourage 414 

researchers to validate the robustness and accuracy of the method by comparing the 415 

pharmaceutical detection rates to our model output. We hope that this paper would motivate 416 

users to use our method or develop newer statistical methods that can be applied to the 417 

emerging field of environmental pharmaceutical contamination. Our analysis has highlighted 418 

and confirmed some of the patters (effect of population, consumption patterns) that have been 419 

suggested before but never explored globally. 420 

As the number of studies measuring pharmaceuticals in environmental matrix using 421 

standardized protocol, composite sampling and concurrent measurements of WWTP and 422 

receiving water is increasing rapidly, for example see (Challis et al., 2018; Cui et al., 2019; Grill 423 

et al., 2016; Kay et al., 2017), in future we plan to perform similar analysis using concentration 424 

rather than presence/absence data yielding results that are more useful from eco-toxological 425 

and policy point of view. Such analysis will be especially appropriate for comparing river basins 426 

within a country as in-country variation in pharmaceutical consumption behavior and WWTP 427 

efficiency is likely to be smaller than between country variation. We believe that combining 428 

process-based rankings with results from sophisticated statistical model would maximize the 429 

information that can be obtained on the toxicity of pharmaceuticals in different environmental 430 

matrices and could help in developing sustainable strategies to minimize the effects of 431 

pharmaceuticals on aquatic ecosystems.  432 
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5. Conclusions 433 

Previous works have suggested the presence of numerous pharmaceuticals from a wide 434 

spectrum of therapeutic classes in environmental waters (Beek et al., 2016; Daughton, 2001; 435 

Hughes et al., 2013; Loos et al., 2010). However, to our knowledge, none of them except (Loos 436 

et al., 2010) have conducted a systematic assessment of the detection rate of pharmaceuticals 437 

across multiple rivers. Our meta-analysis highlights the differences in the detection rate of 112 438 

pharmaceuticals and their variation across Asia, Europe and North America. We identify some 439 

of the possible factors including consumption rate, local hydrology and population that could 440 

be driving this pattern. Whereas we could detect a first order relationship between 441 

pharmaceutical detection rates and pharmaceutical use, the effect of hydrological factors could 442 

not be resolved in this analysis. Importantly, our approach informs the probability of detecting 443 

unanalyzed pharmaceuticals and supports analyte prioritization for future. 444 

Many of our findings have been suggested before, however here we show these empirically 445 

using a large dataset analyzed within a statistical framework. Future analysis could leverage 446 

much larger datasets and more sophisticated statistical techniques to acquire more detailed 447 

and improved information on pharmaceutical contamination in surface water. 448 
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 685 

Figure 1. Schematic representing simultaneous clustering of 10 (hypothetical) rivers and 14 686 

(hypothetical) pharmaceuticals studied on those rivers. (a): Detection rate (how often a pharmaceutical 687 

was positively detected when analyzed for) of the 14 pharmaceuticals (columns) measured across 10 688 

rivers (rows) arranged in alphabetical order. Pharmaceuticals that are not studied in a river are shown as 689 

blank. (b) Rearranged blocks of pharmaceuticals and rivers that exhibit high degree of similarity. The 690 

SBM divides the 14 pharmaceuticals in 4 clusters (A to D, separated by blue vertical lines). The algorithm 691 

also divides the 10 rivers in three groups (1 to 3, separated by magenta horizontal lines). Each color 692 

represents a river-pharmaceutical block. As an example,  “pharmaceutical cluster A – river group 1” 693 

reveals that the detection rates of pharmaceuticals in cluster A have the lowest detection rates for river 694 

group 1 and “pharmaceutical cluster D – river group 3” reveals that the detection rates of 695 

pharmaceuticals in cluster D have the highest detection rates for river group 3. (c) The probability of 696 

positively detecting an unstudied pharmaceutical (for example, pharma 8 at river 1) is 0.9 (as they 697 

belong to “pharmaceutical cluster D – river group 3” block).  698 
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 699 

Figure 2. RCI of the rivers grouped by the total number of measurements on the river. The color palette 700 

represents lower to higher RCI (blue to red). 701 

 702 
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 703 

Figure 3. Detection rate of the 112 pharmaceuticals (columns) studied across the 64 rivers (rows). White 704 

square represents pharmaceuticals that were not studied at that river. The matrix has been ordered 705 

according to the river-pharmaceutical block. Rows 1-9, 10-21, 22-35, 36-60 and 61-64 represents river 706 

groups 1,2,3,4, and 5 (partitioned by magenta lines). Columns 1-67, 68-81, 82-85, 86-91, 92-103 and 707 

104-112 represents pharmaceutical clusters A, B, C, D, E and F (partitioned by blue lines). The 708 

pharmaceuticals clusters are arranged according to the detection rate. Each rectangle enclosed by the 709 

magenta and blue lines is a pharmaceutical-river block. Blocks “A–4” and “E–3” are highlighted (lightly 710 

shaded) for illustrative purposes. Mean detection rate (and the 95% credible interval) for each river-711 

pharmaceutical block is shown in figure 4. The name of the rivers in Asia are highlighted in (blue), 712 

Western Europe and North America (purple) and Eastern Europe (orange). 713 

 714 
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 715 

Figure 4. Mean probability (shown by red circle) and 95% credible interval (Shown as error bar) of 716 

positively detecting unstudied pharmaceuticals in each pharmaceutical cluster-river group. 717 

 718 
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 719 

Figure 5. Detection rate of pharmaceuticals in rivers, WWTP-effluents and WWTP-influents. (a): 720 

pharmaceuticals in clusters A to C in WEOG, (b):  pharmaceuticals in clusters A to C in Asia, (c): 721 

pharmaceuticals in clusters D to F in WENA and (d):  pharmaceuticals in clusters D to F in Asia.  722 
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 725 

Figure 6. Relationship between river contamination index (RCI) and population density for the rivers 726 

analyzed in this study. Population density has been divided into 5 sub-classes (<50, 50-100, 100-200, 200-727 

500 and >500 persons/square kilometer). Correlation between population density and RCI are 728 

statistically significant (p <0.05). The color palette represents lower to higher RCI (blue to red). 729 
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Table 1: Mean probability and 95% credible interval (values in bracket) of the detection rate of selected 734 

pharmaceuticals for River Colorado, Rhine and Elbe. 735 

River Pharmaceutical Probability of detection 

Colorado Estradiol 35% (20-50%) 

Colorado Ciprofloxacin 65% (60-85%) 

Colorado Erythromycin 90% (80-100%) 

Colorado Diclofenac 98% (95-100%) 

Rhine Estradiol 10% (0-20%) 

Rhine Ciprofloxacin 40% (20-60%) 

Rhine Erythromycin 60% (40-80%) 

Rhine Diclofenac 90% (80-95%) 

Elbe Estradiol 0% (0-5%) 
Elbe Ciprofloxacin 3% (0-10%) 

Elbe Erythromycin 95% (65-100%) 

Elbe Diclofenac 97% (95-100%) 
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