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Abstract. Different theoretical mechanisms have been proposed for ex-
plaining complex social phenomena. For example, explanations for ob-
served trends in population alcohol use have been postulated based on
norm theory, role theory, and others. Many mechanism-based models of
phenomena attempt to translate a single theory into a simulation model.
However, single theories often only represent a partial explanation for
the phenomenon. The potential of integrating theories together, com-
putationally, represents a promising way of improving the explanatory
capability of generative social science. This paper presents a framework
for such integrative model discovery, based on multi-objective grammar-
based genetic programming (MOGGP). The framework is demonstrated
using two separate theory-driven models of alcohol use dynamics based
on norm theory and role theory. The proposed integration considers how
the sequence of decisions to consume the next drink in a drinking occasion
may be influenced by factors from the different theories. A new grammar
is constructed based on this integration. Results of the MOGGP model
discovery process find new hybrid models that outperform the existing
single-theory models and the baseline hybrid model. Future work should
consider and further refine the role of domain experts in defining the
meaningfulness of models identified by MOGGP.

Keywords: Inverse generative social science · Agent-based modeling ·
Multi-objective optimization · Grammar-based genetic programming

1 Introduction

1.1 Background

Agent-based modeling (ABM) is a bottom-up methodology that models a system
as a collection of heterogeneous agents and their interactions. Since ABM allows
the modeling of a complex system at a fine-grained resolution, it has become an
established tool for generative social science: how micro-level agent behaviours
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and their interactions can generate macro-level social phenomenon. Following
the motto of generative social science – “If you didn’t grow it, you didn’t explain
it.” [7] – the forward approach is where, if an agent-based model with a defined
set of mechanisms can produce the target social phenomenon, the model is a
candidate explanation for the phenomenon. However, this does not mean that
the candidate is unique – there can be other models that can generate the same
target phenomenon. In the inverse problem, from a target phenomenon, the aim
is to find possible explanatory agent-based models. This process is known as
inverse generative social science [18] or model discovery [10]. The literature on
model discovery is very limited and was reviewed by Vu and colleagues [17].

A social phenomenon can be explained by different theories. An agent-based
model encoded with mechanisms from a single social theory can be a candidate
explanation. But one can wonder which theory is better or what can be missing
from a theory. There is also a possibility that a single theory cannot explain
the phenomenon and there is a need to combine multiple theories. However,
the integration of multiples theories is a major endeavour. To address that gap,
this paper proposes using genetic programming to explore combinations of social
theories with the aim of better explanatory capability.

In genetic programming [14], a population of computer programs or candi-
dates is evolved over many generations using a fitness function. Computer pro-
grams with high fitness are selected probabilistically for crossover and mutation
operators to generate the next generation. To mitigate the problem of invalid
computer programs created by the random nature of the genetic operators, we
adopted grammar-based genetic programming (GGP) [12] in which a grammar
is employed for genotype-to-phenotype mapping to enforce a particular struc-
ture and guide the evolutionary process. In this paper, the GGP was used in the
model discovery process to explore the search space of multi-theory models.

1.2 Aim of the present study and organization of the paper

This paper aims to demonstrate how to use multi-objective GGP (MOGGP) to
integrate single-theory models into a hybrid model to provide better explanation
of a social phenomenon. As a case study, the paper uses two established agent-
based models based on social norm theory and social role theory for the inte-
gration and model discovery process. In Section 2, the integration and MOGGP
model discovery processes are both introduced. Section 3 briefly introduces the
existing models that form the basis for integration. Results and discussion of
the MOGGP process are provided in Section 4. Lastly, Section 5 concludes the
paper and suggests possible future works.

2 Model discovery process

The flow chart depicting the model discovery process is shown in Figure 1. This
is an extension of the recent approach by Vu and colleagues [17]. There are
three roles in the model discovery process: domain expert, analyst, and modeler.
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The domain expert is a person with deep knowledge about the social science
underpinning the model and who can assess the theoretical credibility of the
model structure. The analyst assesses commonalities and differences between
social theories with the domain expert, as well as abstracting and defining the
building blocks of entities and mechanisms. The modeler designs, implements,
verifies and validates the agent-based models.

Step 1. A human modeler uses the library to

develop a hybrid model to explain the

phenomenon in a complex social system.

Step 3. The human analyst abstracts a set of 

primitives from the initial model and define 

a grammar that guides the search.

Step 4. Calibration of model parameters.

Step 5. Clone the best calibrated human 

model to create initial population of 

candidate model structures.

Step 6a. Select parent model structures 

according to multiple criteria.

Step 6b. Apply genetic programming 

operators to parents to produce new 

child structures.

Step 6e. Select new population of

model structures from parent and child.

Step 6d. Evaluate model structures for 

fitness.

Step 6c. Calibration of model parameters 

for each child model structure.

Step 6f.

Convergence

achieved?
yes

no

Step 7. The human expert assesses  

the new structures in terms of 

theoretical credibility.

Step 2. The model is evaluated for its 

theoretical credibility by a human expert in 

the social science that underpin the model.

Step 8. Credible model structures are 

interpreted for knowledge discovery.

Sufficient

credibility?
yes

no

Step 0. Human modelers contribute to a

library of model components from different

theoretical perspectives according to a

common meta-theoretical model architecture.

Fig. 1. Model discovery process

Step 0 represents a pre-condition for the model integration process. We as-
sume that a library of theory building blocks, implemented as model components
according to a common meta-theoretical software architecture is available [19]. In
Step 1, a human modeler uses the library to develop an initial hybrid model. In
Step 2, the theoretical credibility of the model is evaluated by a human expert.
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The model may need to be adjusted and redeveloped (returning to Step 1). In
Step 3, the human analyst abstracts a set of primitives from the hybrid model
and defines the grammar for the genetic programming. In Step 4, model param-
eters are calibrated. In Step 5, the hybrid model built by the human modeler
with the best calibrated setting is cloned for the whole initial population.

The evolutionary process is performed in Step 6. Parent candidates are se-
lected based on fitness in Step 6a. In Step 6b, a new population of child structures
is produced using genetic operators (crossover and mutation). In Step 6c, the
model parameters are re-calibrated. However Step 6c was omitted due to the
computational intensity of such a nested calibration approach and limits on the
available computing resources. In Step 6d, all candidates are evaluated for fitness
(such as model error when comparing simulated data with empirical data). A
new population is selected in Step 6e. The evolutionary process is continued until
a stopping condition, such as convergence or maximum iteration, is achieved.

In Step 7, the domain expert discusses with the modeler and the analyst
about the theoretical credibility of the new models. If the new structures are not
credible, the grammar can be changed (Step 3) to better guide the search or have
more meaningful operations. In Step 8, the new structures are interpreted for
knowledge discovery and theory development. Due to the limited space in this
paper, we omitted steps 7 and 8 to focus on demonstrating the methodology.

3 A hybrid model of norm theory and role theory

3.1 Alcohol use modeling

In this paper, the integration process is performed on generative models of alco-
hol use behavior in the US population. Each model uses concepts from a theory
of alcohol use and expresses them as equations to generate alcohol use behav-
iors in simulated individuals. We use empirical data from the Behavioral Risk
Factor Surveillance System (BRFSS) [6] to generate alcohol use targets to cali-
brate our models. Specifically, prevalence of alcohol use in the past 12 months,
average quantity of alcohol consumed per day (grams of ethanol) and average
frequency of alcohol use (drinking days per month). Models are built according
to a mechanism-based social systems modeling (MBSSM) software architecture,
following a general micro-macro scheme which describes the dynamic interplay
between individuals and social structures, leading to emergent population-level
patterns in alcohol use [19]. Individuals in the models are from a representative
population-level US microsimulation model 1980-2015 that accounts for births,
deaths and migration over time [2]. Individuals in the microsimulation have
socio-demographic properties and alcohol use variables at baseline that are gen-
erated from several US data sources including the BRFSS, US Census [16] and
American Community Survey [13].

3.2 Social norms model

The social norms model is described in detail in [15]. This model uses concepts
from social norm theory to generate a disposition to consume alcohol for each
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modeled individual. Disposition (NormDisp) is determined by three variables:
descriptive norm, injunctive norm and autonomy, which all range between 0 and
1. The descriptive norm is an individual’s appraisal of drinking behavior in their
reference group (age group and sex) in terms of whether individuals are drinking
at all (prevalence) and how much they are drinking (quantity). The descriptive
norm is determined by calculating the prevalence and quantity of drinking in the
reference group and applying a perception bias that adjusts the descriptive norm
to be closer to the agent’s own drinking. A descriptive norm of 1 would indicate
that 100% of individuals in the reference group are perceived to be drinking.
The injunctive norm refers to the perceived acceptability of drinking in society
for an individual like them (i.e., in their reference group), initialized using data
from the US National Alcohol Survey [9]. An injunctive norm of 1 would indicate
that it is completely acceptable for an individual in a reference group to drink.
Autonomy refers to the individual’s desire to ignore the norms; an autonomy
of 0.7 would indicate that the agent only pays attention to norms 30% of the
time. These concepts are combined in Equation 1 to determine, for individual i,
disposition NormDisp to consume drink k. The injunctive norms I are combined
with descriptive norms D and weighted by the inverse of autonomy a. This
term is combined with the individual’s desire u to consume drink k weighted
by autonomy. Over time, the injunctive and descriptive norms are updated in
response to individuals’ drinking behavior in the model.

NormDispi[k] = ui[k]ai + (1− ai)
√

Di[k]Ii[k] (1)

3.3 Social roles model

The social roles model is described in detail in [17] and is based on social role
theory [1] that describes how individuals’ marital, parental and employment
responsibilities affect their desire and ability to drink. Disposition to drink ac-
cording to social role theory (RoleDisp) is generated using Equation 2 and is
determined by an individual’s desire to drink, u, for drink k multiplied by their
probability of having the opportunity to drink inside (ProbOpIn) and outside
(ProbOpOut) the home. Social role theory suggests that the roles individuals
hold affect their ability to participate in drinking situations and therefore regu-
late the daily opportunities to consume alcohol [11]. Opportunity to drink in and
out of the home is determined by role load (the stress that results from needing
to perform a role), which is calculated using each individual’s role status and
their level of involvement in that role. Role strain – “the experience of stress
associated with positions or expected role” [1] – is suggested to lead to alcohol
use as a means of coping with a set of roles that are too complex (role load) or
lacking roles that provide meaning (role deprivation). Role strain (RoleStrain)
is weighted by β, describing the size of the effect role strain has on drinking
behavior. On each day, RoleDisp is calculated for each individual for k = 1 and
compared to a uniform random number between 0 and 1 to determine if they
will drink. For each individual that drinks, disposition is calculated for k = 2,
and continues for progressive values of k until they stop drinking.
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RoleDispi[k] = ui[k](ProbOpOuti[k]+ProbOpIni[k])(1+βRoleStraini[k]) (2)

3.4 Integration: a hybrid model of norm theory and role theory

We postulated that the social theories have different influence on an individual’s
kth drink. For example, let us imagine an employed individual, Agent Alan,
engages in a drinking occasion. Agent Alan’s first two drinks are based solely on
social norms. Agent Alan’s chance of consuming a third drink is lower because he
is aware he has to go to work the next day – the balance of probabilities being
based on both norms and roles. Agent Alan never drinks four drinks because
of his prospective employment commitments, so the disposition to consume a
fourth drink is based only on roles. Extending this hypothesis, we decided to
perform model discovery on the drinking disposition of individual agents.

Both the social norms and social roles models operate by calculating a dispo-
sition (Disp) for each agent on each day to determine whether to drink and, if so,
how much to drink. In the hybrid model, the social norms and roles dispositions
are calculated on each day. The models are combined by using a weighting (w,
bounded between 0 and 1) of the two calculated dispositions (NormDisp and
RoleDisp) as shown in Equation 3. The hybrid model was implemented using
MBSSM [19] and Repast HPC libraries [4].

Dispi[k] = wRoleDispi[k] + (1− w)NormDispi[k] (3)

3.5 Parameter calibration

The hybrid model contains 65 parameters that represent unknown effect sizes
from social role theory and social norm theory plus the weighting for combining
the dispositions. Each parameter is assigned a prior distribution reflecting the
range of acceptable values. We sampled 10,000 parameter settings from the joint
prior distribution using the lhs R package [3]. Each model setting was run once
for the years 1984–2004 and an implausibility metric (Equation 4) was calculated
to compare the model output to alcohol use BRFSS target data for prevalence,
quantity and frequency of male and female drinking.

z1 =
1

KM

K
∑

k=1

M
∑

m=1

|y⋆
m
[k]− ym[k]|

√

(sm[k])2 + (dm)2
, (4)

where M is the number of output measures, K is the number of observations,
sm[k] is the observed standard error for output m at time point k, and (dm)2 is
the variance of the model discrepancy 1 for output m, which is taken as 10% of
the possible output range for each output.

1 Model discrepancy is the error in a model output that arises because the model is
not a perfect representation of reality.
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3.6 Multi-objective Grammar-based Genetic Programming

In the hybrid model, an agent can have maximum of 30 drinks within a day, so
k is ranged from 1 to 30. After parameter calibration, agents used the follow-
ing calibrated equation to calculate all the drinking dispositions: Dispi[k] =
0.99667RoleDispi[k] + (1 − 0.99667)NormDispi[k]. For model discovery, the
MOGGP can be set up to work with 30 equations for each of the kth drinks.
However, for simplification, we decided to use only six equations by grouping
the drinks into the following categories: drink 1, drink 2, drink 3 to 4, drink 5
to 7, drink 8 to 11, drink 12+. For the primitives, terminals consist of norms
disposition and role disposition and the allowed functions are weighted sum and
geometric mean. Additionally, a list of both arbitrary and calibrated constants
are included. The design of the MOGGP is captured in the grammar:

<p> ::= mediatedFirstDrink=<e>; mediated2Drinks=<e>;

mediated3to4Drinks=<e>; mediated5to7Drinks=<e>;

mediated8to11Drinks=<e>; mediated12MoreDrinks=<e>;

<v> ::= RoleDisp | NormDisp

<e> ::= (<c>*<e>+<c>*<e>) | sqrt(<e>*<e>) | <v>

<c> ::= 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |

0.99667 | 0.00333

For the initial population, we used the same structure designed and calibrated
by the modeler. Then a MOGGP was configured to minimize both model error
and complexity. The first objective, model error, represents the ability of the
simulation model to reproduce the pattern observed in the real world and is
captured by Equation 4. The second objective, complexity, is defined by the
number of nodes in the structures and discourages complex structures that overfit
the data and are difficult for humans to interpret. In this paper, we used the
NSGA-II optimizer [5] to develop an even, sample-based representation of the
Pareto front representing the trade-off between model error and complexity.

The MOGGP was implemented using the PonyGE2 toolkit [8], which sup-
ports both NSGA-II optimization and the complexity evaluation of a structure
via number of nodes in the tree. Model error evaluation of a new model struc-
ture required additional scripting: (i) modifying the source code of the drinking
disposition in agent decision making; (ii) re-compiling the Repast HPC model;
(iii) running the simulation; and (iv) calculating the model error by comparing
simulated data against empirical data.

The evolutionary setup was as follows: 500 candidates per population for 50
generations, 75% subtree crossover, 25% subtree mutation, tree depth maximum
of 17, and other default settings of PonyGE2. The source code is available at
https://bitbucket.org/r01cascade/emo2021_hybrid_norms_roles_gp and is li-
censed under the GNU General Public License version 3. It is computationally
intensive to do a complete run of MOGGP; the process took 2.5 days on an Intel
i9 9980XE processor with 36 cores.
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4 Results and Discussion

Both model error and complexity reduced over the generations. The search con-
verged at generation 36, showing no change to the Pareto front. Figure 2 shows
the final 14 non-dominated structures found by the MOGGP, the structure of the
human hybrid model, and the two single-theory models (before integration into
the hybrid model). From this point onward, the structures found by MOGGP
will be referred to by their complexity value, i.e. the structure with complexity
19 will be called GP19. On the Pareto front, there are six extremely complex
structures but with minimal improvement on the model errors (GP231, GP235,
GP247, GP259, GP283, GP287). We decided to exclude these models from the
discussion because it is very challenging to interpret them. Table 1 shows the
structures of the human hybrid model and the remaining eight structures dis-
covered by MOGGP.
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Fig. 2. Pareto front of the structures discovered by the MOGGP process versus the
original baseline hybrid structure developed by the modeler

All the dispositions in the simplest model GP19 equate to NormDisp which
means that for a single theory, the social norms model performs better than
the roles model. This is the same when comparing the two single-theory models
before integration in Figure 2. Another observation is that GP19 has the same
higher error even though its mechanisms are the same as the single-theory norms
model. This is because GP19 used the calibrated parameters from the hybrid
model. It would perform the same if we recalibrate GP19 in Step 6c. Additionally,
Figure 2 shows that the two single theory models and GP19 performed poorly in
term of model error when compared to the other hybrid models. Thus it can be
concluded that, in this case study, integration of multiple theories better explains
the phenomenon than a single theory.
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Table 1. Hybrid model structures in detail, excluding six extremely complex struc-
tures. Each row of a structure relates to the ordinal drinking categories: drink 1, drink
2, drink 3 to 4, drink 5 to 7, drink 8 to 11, drink 12+.

ID Complexity Model error Simplified structure of the dispositional equations

Human 67 0.3629 (0.964*RoleDisp + 0.036*NormDisp);
(0.964*RoleDisp + 0.036*NormDisp);
(0.964*RoleDisp + 0.036*NormDisp);
(0.964*RoleDisp + 0.036*NormDisp);
(0.964*RoleDisp + 0.036*NormDisp);
(0.964*RoleDisp + 0.036*NormDisp);

GP19 19 1.2089 NormDisp;
NormDisp;
NormDisp;
NormDisp;
NormDisp;
NormDisp;

GP27 27 0.3382 0.964*RoleDisp+0.036*NormDisp;
RoleDisp;
RoleDisp;
RoleDisp;
RoleDisp;
RoleDisp;

GP35 35 0.1974 0.036*NormDisp + 1.7005*RoleDisp;
RoleDisp;
RoleDisp;
NormDisp;
NormDisp;
NormDisp;

GP39 39 0.1843 0.036*NormDisp + 0.9293*RoleDisp
+ 0.7712*sqrt(NormDisp*RoleDisp);

RoleDisp;
RoleDisp;
NormDisp;
RoleDisp;
NormDisp;

GP43 43 0.1799 0.036*NormDisp + 1.7005*RoleDisp;
RoleDisp;
NormDisp;
0.1*NormDisp + 0.964*RoleDisp;
RoleDisp;
NormDisp;

GP83 83 0.1709 0.036*NormDisp + 1.83006*RoleDisp;
0.036*NormDisp + 0.964*RoleDisp;
0.964*NormDisp + 0.036*RoleDisp;
1.1581*NormDisp;
0.7*NormDisp + 0.964*RoleDisp;
NormDisp;

GP87 87 0.1684 0.036*NormDisp + 1.71438*RoleDisp;
0.964*RoleDisp + 0.036*sqrt(NormDisp*NormDisp);
0.036*NormDisp + 0.964*RoleDisp;
1.89459*NormDisp;
0.036*NormDisp + 0.036*RoleDisp;
RoleDisp;

GP99 99 0.1648 0.036*NormDisp + 1.71438*RoleDisp;
0.036*NormDisp + 0.964*RoleDisp;
0.036*NormDisp + 0.964*RoleDisp;
1.89459*NormDisp;
0.036*NormDisp + 0.9*RoleDisp;
0.7712*NormDisp + 0.8072*RoleDisp;
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Interestingly, in GP27 (the next model after GP19 in term of complexity),
the first equation is the same as the baseline model, 0.964 ∗RoleDisp+ 0.036 ∗
NormDisp, and the remaining equations are RoleDisp. This means that just by
including a fraction of the norm disposition into the first drink disposition, the
roles model was improved (into a hybrid model) and outperformed the norms
model. The next structure is GP35 where the first three equations are dominated
by role disposition and the last three equations are only influenced by norm
disposition. This suggests that the first four drinks are driven by roles and the
heavy drinking of 5+ drinks is driven by norms. Figure 3 shows the 1984–2012
time series of the four structures discussed (human, GP19, GP27, GP35).

For the remaining structures (GP39, GP43, GP83, GP87, GP99), the roles
and norms disposition alternate between different categories. Since the domain
expert asserted that there is no theory supporting this behavioral approach, we
conclude that these structures are not theoretical plausible. In future work, the
next iteration of the grammar should include this restriction.

5 Conclusion

This paper presents a novel method that utilizes multi-objective grammar-based
genetic programming to integrate multiple social theories and discover new
model structures. The case study of alcohol use modeling has shown that a multi-
theory model can better explain the real world phenomenon than a single-theory
model and our model discovery method offers a promising approach to generate
novel combinations of multiple mechanisms of these theories. In the research
frontier of inverse generative social science, our work shows the feasibility of in-
tergating multiple social theories to better explain the targeted phenomenon in
the social system. This work also highlights the challenge of meaningful integra-
tion, requiring the involvement of the domain expert during grammar design as
well as the subsequent theoretical credibility assessment. Future research should
systematically develop the role of domain experts in the discovery process.
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