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Abstract: Template-based and additive manufacturing techniques have demonstrated some
fabrication routes for creating pneumatic soft actuators. However, as the complexity and capability
of the actuators continue to develop, the limitations of these approaches are becoming evident.
These include difficulties for design variations, process speed and resolution, material compatibility
and scalability, which hinder and restrict both the possible capabilities of the technology and its
transition from research to industry. This body of work presents a computer-controlled, maskless
manufacturing process with a different approach to allow for high-speed, low-cost and flexible creation
of pneumatic soft actuation networks comprising multi-material construction. This was investigated
through a bespoke fabrication platform that provides computer-controlled localised plasma treatment
to selectively modify the chemical behaviour on the surface of silicone and polyethylene terephthalate
(PET) bodies. The altered surface chemistry facilitated selective bond formation between the treated
parts of the surface and, consequently, greater design variation and control over the pneumatic
chambers that were formed. Selective treatment patterns allowed nonlinear pneumatic chamber
designs to be created, and the strength of bonded silicone structures was shown to facilitate large
deformations in the actuators. Furthermore, the different interactions between the plasma and silicone
were leveraged to achieve feature sizes of <1 mm and treatment speeds of 20 mm2 per second of
exposure. Two multi-material pneumatic soft actuators were then fabricated to demonstrate the
potential of the platform as an automated manufacturing route for soft actuators.
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1. Introduction

Soft robots use compliant and elastic materials throughout their structure. The inherent properties
of the constituent materials result in fundamentally different behaviour compared to their rigid
counterparts. This has led to the development of novel devices such as locomotive robots capable of
navigating through passages smaller than their original shape [1], robots adept at manipulating fragile
or pliable objects [2–5] and wearable assistive devices to aid the rehabilitation of joint mobility [6–9],
to highlight a few. Key to their performance was the mechanism by which force was produced.
Several examples of soft actuators have employed phenomena such as phase change materials [10],
mechanical tension [11] or electrostatic forces [12] to initiate motion. Utilising pneumatic power offers
higher force production and displacement, rapid response times and more conventional operation.
Pneumatic actuators consist of a deformable body, which has a sealed air cavity that can be inflated
to induce actuation. The magnitude of the motion can be controlled by the pressure supplied to the
cavity, while the direction is dictated through anisotropic stiffness. The materials involved however
are difficult to shape into the geometries and structures desired in the developing field applications,
which has led to advancements of the fabrication tools and methods over recent years.
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Casting liquid elastomers into moulds that then solidify in the presence of a curing agent or catalyst
is one the simplest and most popular methods used to realise soft structures [13–15]. This approach is
compatible with many relevant materials and can be carried out with limited equipment while scaling
well to high-volume production; however, there are several drawbacks surrounding the practicality of
the process. In situations where designs are iterated, or applications that require personalisation of
dimensions such as joint mobility rehabilitation, progress is slowed, and waste is increased. Using high
resolution moulds such as those produced by soft lithography [16] or high accuracy 3D printers [13]
exacerbate this due to being expensive or slow, or requiring specialist facilities. Aside from this,
moulding also limits the geometry of the actuator and restricts it to a single material, which makes
it only suitable for the simplest of actuators. Utilising a digitally driven approach, such as direct 3D
printing, that directly deposits or bonds soft material removes the need for moulds, so it can save time,
increase geometric freedom and incorporate multiple materials. A variety of commercial 3D printing
techniques have been exploited including fused deposition modelling, stereolithography, selective laser
melting, material jetting and direct ink writing. These processes have provided examples of some of
the most advanced actuators to date, demonstrating multiple materials to achieve unique motion [17]
or integrated sensing [18]. Detailed reviews of these processes are available elsewhere [19], but to
summarise, these techniques face limitations surrounding resolution, speed, materials and scalability.
Many of these limitations are artefacts of the fundamental principles of the techniques. For example,
using a nozzle to control the deposition of material introduces an inverse proportionality between
speed and resolution that cannot be overcome by technical advances. As a result, approaches outside
of 3D printing have also been explored. Methods of selectively bonding solid soft materials offer an
effective method that bypasses the limitations that are presented with direct 3D printing. There are
two predominant approaches for bonding between soft materials, i.e., either using an adhesive or by
chemical bond formation [20]. The adhesive choice however is limited to uncured liquid elastomers to
achieve strong bonds, which when used selectively encounter the same issues as 3D printing because the
deposition of the liquid elastomer adhesive must be controlled. In contrast, chemical bond formation
does not require any material deposition, but rather a modification of the surface at a molecular level
to facilitate covalent bond formation between two different material surfaces. Plasma treatment in
particular has proven highly successful at bonding silicones, which are one of the most common soft
material groups used for soft actuators, to a range of materials including other silicones, various
plastics and metals [21]. In this method, the surfaces to be bonded are oxidised by highly reactive
oxygen species such as those created by UV lamps or plasma discharges. This oxidation then leads to
bonding between the silicone surfaces when two oxidised surfaces come into contact [20]. In order
to bond to non-silicone plastics, the material must be submerged in a silane solution after oxidation,
which implants silicone-like chemical structures on the surface [22]. The resulting bond between the
non-silicone plastic and the silicones can withstand pressures of 1000 kPa and has been demonstrated to
be suitable for pneumatic soft actuators [23]. In that prior work, selectivity of bonding was introduced
by using an ink-jet printer to mask areas of the plastic before surface treatment, preventing bonding.
This demonstrated a method that could fabricate pneumatic soft actuators in hours, with greater
material freedom, higher resolution and effective up-scaling. However, using a printed mask restricts
not only the size of actuators but also limits it to planar, single-layer designs unless a gantry-mounted
print head were to be used, which would dramatically increase the fabrication time.

In this work, a new approach to achieving selective bonding of silicones to non-silicone plastics is
presented that utilised a localised plasma discharge to selectively oxidise their surfaces, facilitating
complex pneumatic designs to be created with very high bond strength. By localising the treatment,
the restrictions on substrate shape and size were removed, and processing times were reduced due to
eliminating the need for a masking step.
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2. Materials and Methods

2.1. Selective Plasma Treatment Platform

The manufacturing platform that was designed and created in this research is summarised
in Figure 1. Plasma was generated using a commercially available plasma jet (Piezobrush PZ2,
Reylon Plasma GmbH, Regensburg, Germany) which produced a localised source of the reactive
species responsible for the surface modification. This featured a nozzle that guided a gas flow over a
high-voltage electrode to generate the plasma.
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Figure 1. Selective plasma treatment platform overview.

Helium was supplied using a compressed gas bottle (UN 1046, BOC UK, Guildford, United
Kingdom). The mass flow rate of the gas was regulated using a manual flow regulator (BOC).
A cartesian 3-axis actuation platform with plasma jet mounted on the Z-axis was controlled using
a VK8200/SP (Velleman, Gavere, Belgium) control board. To synchronise and control the plasma jet
operation itself, a relay module was connected to an external power supply and the control board.
Using Repetier (Version 2.1.6 Windows, Hot-World GmbH, Willich, Germany), the motion and state
of the plasma jet could be controlled simultaneously using g-code. A post-processing script was
used to modify the g-code to include the commands for the plasma jet so that coding derived by
computer-aided design and manufacturing (CAD/CAM) tools could be used to operate the platform.
The exposure time, offset distance and gas flow rate could all be manipulated to control the interaction
of the plasma with the substrate. For all treatments, the plasma jet was operated while stationary
in discrete bursts at intervals along the tool path to avoid overheating. A constant offset from the
substrate of 3 mm and a helium gas flow rate of 1 L/min was used

2.2. Material Processing

Bonding was carried out between Ecoflex 00-50 (Bentley Advanced Materials, Kidderminster,
United Kingdom) and 100 µm thick polyethylene terephthalate (PET) sheets (Write-on transparency
film, Office Depot UK Ltd., Leicester, United Kingdom). The difference in the stiffness of the two
materials was ideal for creating a bending motion in pneu-net style actuators. First, the Ecoflex parts A
and B were mixed in equal weight before being degassed in a centrifugal mixer degasser (ARE-250,
Thinky U.S.A Inc., Laguna Hills, CA, USA). Once degassed, the elastomer was poured into a mould
and degassed again under vacuum of 0.02 bar for 2 min. Finally, it was cured at 45 ◦C for 30 min.
The PET sheets were then treated using the selective plasma treatment platform according to the desired
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pattern and then submerged in a 1% concentration solution of 3-aminopropyltriethoxysilane (APTES,
Merck Life Science UK Ltd., Gillingham, United Kingdom) for 20 min before being removed and dried
with compressed air ready for bonding. While the PET was in the APTES solution, the Ecoflex layer
was plasma treated with a corresponding pattern. Once treatment was complete, the dried PET and
treated Ecoflex were aligned and placed in contact manually; no additional equipment was used to
align layers or apply pressure. Some degree of bonding took place instantaneously, but for the bonding
to complete, the samples were left at room temperature for 2 h. Care was taken throughout the process
to prevent surface contamination that could have interfered with treatment or bonding. This procedure
was used for all samples.

2.3. Plasma Treatment

In order to confirm that the surface of the Ecoflex underwent chemical modification, three metrology
methods were employed. First, optical emission spectroscopy was carried out on the plasma discharge
using a Flame Extended Range Spectrometer (Ocean Insight, Orlando, FL, USA). To accomplish this,
the probe was placed 10 mm away from the discharge laterally and 3 mm below the nozzle tip such that
the discharge was being analysed at the point of contact with the substrate. This provided the relative
intensity of electromagnetic radiation wavelengths emitted and was used to identify the specific species
that are directly created. Second, X-ray photoelectron spectroscopy (XPS) was used to analyse the
elemental composition changes that occurred due to the treatment for Ecoflex only. This was carried
out on an EnviroESCA device (Specs Group GmbH, Berlin, Germany) by the Bragg Center for Materials
Research at the University of Leeds, Leeds, United Kingdom. Finally, the surface was inspected with
a microscope (BX53M, Olympus UK & Ireland, Southend-on-Sea, United Kingdom) to identify any
visual changes. As the PET undergoes a chemical treatment with APTES, with a known modification
effect, the XPS was only carried out for Ecoflex.

2.4. Bonding Characterisation

Two different approaches to selective bonding were studied. They were made possible with this
apparatus, and are described in Figure 2. These concerned selective surface treatment to encourage
areas of bonding (termed Approach 1) or selective surface treatment to prevent areas of bonding
(termed Approach 2). This was intended to explore the effectiveness of the bonds created, and to
establish if different methods may be more appropriate according to the scale and design of the
pneumatic actuator to be created. Approach 1 is similar to that which was undertaken in previous
studies [22,23], with the substrates being treated such that sufficient oxygen is chemically added to the
surfaces to cause bonding. However, as a localised plasma source was used, selectivity could also be
achieved by overtreatment (Approach 2). This approach intentionally treated the Ecoflex surface to
form a ceramic silica layer, which other works stipulate to be in the order of 5 nm thickness [24,25],
that did not bond to PET. This is possible because a point source of plasma varies in reactive species
concentration radially away from its centre, and as a result so does the degree of treatment. Due to this,
zones of silica were formed as well as zones of treatment for bonding depending on the exposure level.

The level of treatment required to form silica was much higher than that to facilitate bonding,
and so it was first formed directly under the discharge where the concentration of reactive species was
highest. This meant that the region where silica formed was an order of magnitude smaller than that
of the treated area, making Approach 2 capable of fabricating actuators with smaller features at higher
resolutions compared to Approach 1, but with a corresponding increase in processing time. Due to
this, the resolution and uniformity of each approach were characterised separately. The bond strength
was only investigated for Approach 1 as this used lower treatment times with less oxygen implanted
on the surface, and so gave a minimum bond strength. To investigate the resolution, uniformity and
bond strength of Approach 1, a 30 × 60 × 0.1 mm PET sheet and a 30 × 60 × 3 mm Ecoflex sheet
were bonded entirely across their centres following the bonding procedure outlined in Section 2.2
(Figure 3A). The plasma treatment was conducted with a single pass at treatment intervals of 1mm
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with three different exposure levels, namely 0.5 s/mm, 0.75 s/mm and 1 s/mm. After bonding, samples
were inspected with the bond width measured across the bond before each underwent a 180◦ peel test
(Figure 3B). Three samples were created for each treatment level, with each sample undergoing both
bond width inspection and peel testing. Having then found the most suitable treatment level to be
1s/mm, three separate sealed chambers for inflation were made to directly test how suitable the bonding
was for the fabrication of pneumatic soft actuators (Figure 3C). This consisted of a 50 × 50 × 0.1 mm
PET sheet bonded to a cast 50 × 50 × 3 mm Ecoflex sheet that featured an air inlet. The tool path is
illustrated in Figure 3C. These were then inflated using a closed-loop pressure-controlled air supply
unit (Fisnar DC 100, Ellesworth Adhesives Europe, Glasgow, United Kingdom) until failure, recording
the maximum pressure and failure mechanism. The resolution and uniformity of Approach 2 were
investigated by treating Ecoflex samples with a 50 mm line at treatment levels 1.2 s/mm−1.45 s/mm
with an interval of 0.1 mm between each treatment. After treatment, samples were strained until they
produced cracks in the silica layer and then measured at 10 positions across the treatment path in a
relaxed state using a microscope (Olympus BX53M).
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2.5. Fabrication of Actuators

Using parameters derived from experiments in Sections 2.3 and 2.4, two demonstrator actuators
were fabricated, one for each selectivity approach. The designs and treatment profiles for each actuator
are displayed in Figure 4. Additionally, Video S1 (Supplementary Materials) shows the fabrication of
the actuator made via Approach 1. Both the Ecoflex and PET layers were treated using these profiles.
Approach 1 used a 2 mm thick Ecoflex layer to mitigate the reduced actuation speed, which resulted
from a large inflation volume by reducing the pressure needed to induce deformation. Approach 2
used a 3 mm Ecoflex layer as the inflation volume was much smaller. In Approach 1, the area to be
bonded was directly exposed to the plasma, whereas in Approach 2 this was the area not to be bonded
via silica formation. Once fabricated, the actuators were marked with red ink along their edges to aid
with visual tracking of the deformation and inflated up to 16 kPa and 63 kPa for Approaches 1 and
2, respectively.
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3. Results

3.1. Plasma Treatment

The emissions from the plasma discharge were dominated by nitrogen and hydroxyl species,
as can be seen in Figure 5. The emissions from 200−300 nm indicate that NO was formed [26], while the
various peaks from 300−450 show that N2 transitions occurred [27]. The peak at 308 nm confirms OH
species were present. The peaks at 477.1 nm, 587 nm and 667 nm show that helium transitions [27]
took place. It is clear from this spectrum that, although only He was supplied to the plasma jet, various
species were subsequently created due to the interactions with atmospheric air. It is important to note
that no emissions were detected at 777 nm or 844 nm, which would indicate the presence of atomic
oxygen [27].
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However, this technique can only detect species that undergo electron energy level transitions,
and so species created by the subsequent reactions, such as ozone, could not be detected but could
interact with the substrate. As such, it is more important to look at the effect on the substrate, shown by
the XPS analysis results in Table 1.

Table 1. XPS results from the treatment of Ecoflex 00-50.

Treatment Time(s) Oxygen (%) Carbon (%) Silicon (%)

0 14.86 46.53 38.63
0.5 15.04 49.06 35.9
1 15.52 45.46 39.02

1.5 18.01 39.4 42.59

This shows that, despite the nitrogen-dominated discharge, the oxygen content increased with
treatment time, whereas the carbon content decreased. This is likely due to downstream interactions
that created reactive oxygen species and this trend correlates with those reported elsewhere [28].
This confirmed that plasma treatment was appropriate for the bonding as no nitrogen was detected
on the surfaces that would have interfered with the bonding. Notably, at a treatment time of 0.5 s,
the carbon content increased by 2.53% and the silicon content decreased by 2.73%, which opposes the
trend of the rest of the data and the secondary data available in the literature, and as such this is unlikely
to be a result of the plasma treatment. These results were intended to be purely qualitative as the spatial
resolution for the XPS analysis was too low compared to that of the treatment to calculate concentrations
of oxygen across the treated surface or draw any further conclusions about the relationship between
treatment time and oxygen content. At a treatment time of 1.5 s, there was a prominent change in the
Si:C ratio, which indicates overtreatment and silica formation. This was confirmed by inspection under
a microscope, where clear cracking of the surface can be seen in Figure 6. No silica formation was
observed under microscope inspection for either a 0.5 s or 1 s treatment time.
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The optical emission spectrum suggests that the proportion of reactive oxygen species was
relatively low. Increasing this could lead to shorter treatment times as more oxygen would react with
the silicone surface per unit time. One method of doing this is by including oxygen in the feed gas [29];
however, this would require integrating additional mass flow controllers and mixers. As the XPS shows
that oxidation of the surface was already occurring, and in fact overtreatment was occurring within
1.5 s, this sort of modification would only provide a fractional reduction in the overall process time.

3.2. Bonding Characterisation

The bond uniformity data gathered from the samples described in Section 2.4 (Figure 3A) are
presented in Figure 7. They show that the process was inconsistent for treatment levels 0.5 s/mm
and 0.75 s/mm with bond widths ranging from 11.9 mm to 14.6 mm and from 15.6 mm to17.6 mm,
respectively. For pneumatic soft actuators, this level of variation would be unacceptable as it would
lead to unintended deformation when inflated. At a treatment level of 1 s/mm, however, this range
was improved to 19.8−20.4 mm. When designing a pneumatic actuator to be fabricated using this
method, this situation must be considered. For example, if an actuator with a target chamber width of
4 mm was fabricated using the approach, then the resulting chamber would vary in width between
3.4 and 4.6 mm. This would produce actuation behaviour different from that which the actuator was
designed for. Therefore, this approach is only suitable for large actuators where the impact of the
variability is minimized.

In the 180◦ peel tests, all samples from every treatment level underwent failure in their Ecoflex
layer, not at the bond suggesting suitable bond strength for pneumatic soft actuators. This was then
further corroborated by inflating the chambers described in Section 2.4. (Figure 3C), made using a
1 s/mm treatment level. All samples inflated failed in the Ecoflex layer at pressures ranging from
34 to 36 kPa. An example of one of these samples just prior to bursting can be seen in Figure 8.
While this confirms that the strength of the bond is suitable to operate pneumatic soft actuators, it does
not address any fatigue failure mechanisms that may be incurred through repeated cycling of the
actuators, which requires further study. This will need to be studied as part of a further process and
device development.
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The results from Approach 2, selective bonding by overtreatment, showed a much higher resolution
than that of Approach 1. Feature sizes ranged from 0.94 mm to 2.18 mm and were controllable with
exposure level, as seen in Figure 9.

The silica formation width became uniform at treatment levels of 1.25 s/mm and above where
deviations from the mean did not exceed 0.1 mm; however, below this exposure level the silica
formation width was highly variable and unsuitable for the fabrication of pneumatic soft actuators.
This level of variability improves in Approach 1 by more than 3 times, making it more reliable for
the fabrication of small-scale actuators. The two approaches demonstrated here represent a highly
adaptable process that is capable of producing both 20 mm features quickly and sub −1 mm details
without a modification to the hardware. These capabilities cannot be found in any other digitally
driven technique to date such as 3D printing. As many applications often have features ranging across
these scales, this technique is in a unique position where it could reduce the complexity, time and
cost of fabricating many of these devices. The feature sizes achieved here were larger than those
made possible by using masks [23], and some applications require a resolution and uniformity beyond
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what is demonstrated. Nonetheless, this could also be achievable using a plasma jet method with a
slightly different configuration. Treatment resolutions under 1 µm [30] have been demonstrated using
a custom-made plasma jet with a nanocapillary nozzle.Actuators 2020, 9, x FOR PEER REVIEW 10 of 13 
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3.3. Fabricating Pneumatic Soft Actuators

The actuators fabricated using Approach 1 can be seen in Figure 10A, whereas the actuator
fabricated using Approach 2 is in Figure 10B. Approach 1 used an exposure level of 1s/mm, and Approach
2 used 1.25 s/mm as these showed the lowest dimension variation, as discussed in Section 3.2. The large
actuator was inflated to 16 kPa, whereas the small actuator was inflated to 63 kPa. Neither actuator
failed, but plastic deformation in the Ecoflex layer was observed once deflated for both, suggesting that
each was approaching failure. It can be seen in Figure 10A that each chamber did not inflate equally.
This was a result of the dimensional variation of the bonding approach. The small actuator showed a
more even inflation across its single chamber, which further highlights the more uniform bonding of
Approach 2. Both actuators were capable of large deformations limited by collision with the clamps in
which they were mounted.

The actuators fabricated here featured simple designs to demonstrate the robust nature and
designed selectivity of the bonding. However, this approach could fabricate actuators of far higher
complexity. For example, there is no theoretical limit on the number, shape or thickness of the layers
that can be processed, which means that actuators can be efficiently fabricated with dimensional flexibly.
This can enable actuators with many separate pneumatic chamber networks, or networks within
networks that would be difficult to produce using other methods. Beyond the additional freedom
of design granted by this approach, it could also be used synergistically with other manufacturing
processes. For example, combination is possible with a process that can deposit functional materials
to make state-of-the-art pneumatic soft actuators capable of sensing their position and interactions.
While the two-hour wait time for bonding to be completed was the longest part of this process, this has
been decreased to 20 min by applying heat and pressure to the bonded area [23].



Actuators 2020, 9, 136 11 of 13

Actuators 2020, 9, x FOR PEER REVIEW 11 of 13 

 

 
Figure 10. (A) Large actuator fabricated using Approach 1 in an inflated and deflated state. (B) 
Actuator fabricated using Approach 2 in an inflated and deflated state. 

The actuators fabricated here featured simple designs to demonstrate the robust nature and 
designed selectivity of the bonding. However, this approach could fabricate actuators of far higher 
complexity. For example, there is no theoretical limit on the number, shape or thickness of the layers 
that can be processed, which means that actuators can be efficiently fabricated with dimensional 
flexibly. This can enable actuators with many separate pneumatic chamber networks, or networks 
within networks that would be difficult to produce using other methods. Beyond the additional 
freedom of design granted by this approach, it could also be used synergistically with other 
manufacturing processes. For example, combination is possible with a process that can deposit 
functional materials to make state-of-the-art pneumatic soft actuators capable of sensing their 
position and interactions. While the two-hour wait time for bonding to be completed was the longest 
part of this process, this has been decreased to 20 min by applying heat and pressure to the bonded 
area [23]. 

4. Conclusions 

This body of work demonstrated a fabrication method for pneumatic soft actuators that has 
several advantages over those being currently used. The approach maintains the benefits of being 
digitally driven like 3D printing methods, but also offers far quicker processing with a wider range 
of materials and the ability to realise much more complex actuators. It also has a unique characteristic 
of being able to increase the resolution of the process by a factor of 20 with minor changes to the 
processing parameters. While the treatment’s resolution using this plasma apparatus is not currently 
suitable for those requiring feature sizes smaller than 1 mm, it could make the fabrication of larger 
actuators significantly easier than current methods. Additionally, there is a clear path for the 
improvement of resolution and potential for the combination with other processes to make a 
fabrication platform with capabilities extending beyond those of current techniques. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Video S1: Fabrication 
of pneumatic soft actuator using approach 1. 

Author Contributions: Conceptualization, L.J.T. and R.A.H.; methodology, L.J.T.; software, L.J.T.; validation, 
L.J.T.; formal analysis, L.J.T.; investigation, L.J.T.; resources, L.J.T.; data curation, L.J.T.; writing—original draft 

Figure 10. (A) Large actuator fabricated using Approach 1 in an inflated and deflated state. (B) Actuator
fabricated using Approach 2 in an inflated and deflated state.

4. Conclusions

This body of work demonstrated a fabrication method for pneumatic soft actuators that has several
advantages over those being currently used. The approach maintains the benefits of being digitally
driven like 3D printing methods, but also offers far quicker processing with a wider range of materials
and the ability to realise much more complex actuators. It also has a unique characteristic of being
able to increase the resolution of the process by a factor of 20 with minor changes to the processing
parameters. While the treatment’s resolution using this plasma apparatus is not currently suitable
for those requiring feature sizes smaller than 1 mm, it could make the fabrication of larger actuators
significantly easier than current methods. Additionally, there is a clear path for the improvement of
resolution and potential for the combination with other processes to make a fabrication platform with
capabilities extending beyond those of current techniques.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-0825/9/4/136/s1,
Video S1: Fabrication of pneumatic soft actuator using approach 1.
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