
This is a repository copy of Verifying Graph Programs with First-Order Logic.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/168989/

Version: Published Version

Proceedings Paper:
Wulandari, Gia and Plump, Detlef orcid.org/0000-0002-1148-822X (2020) Verifying Graph
Programs with First-Order Logic. In: Graph Computation Models (GCM 2020), Revised
Selected Papers. Electronic Proceedings in Theoretical Computer Science . Open
Publishing Association , pp. 181-200.

https://doi.org/10.4204/EPTCS.330.11

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

B. Hoffmann and M. Minas (Eds.): Eleventh International

Workshop on Graph Computation Models (GCM 2020)

EPTCS 330, 2020, pp. 181–200, doi:10.4204/EPTCS.330.11

© G.S. Wulandari & D. Plump

This work is licensed under the

Creative Commons Attribution License.

Verifying Graph Programs

with First-Order Logic

Gia S. Wulandari*

University of York
York, United Kingdom

Telkom University
Bandung, Indonesia

gsw511@york.ac.uk

Detlef Plump

University of York
York, United Kingdom

detlef.plump@york.ac.uk

We consider Hoare-style verification for the graph programming language GP 2. In previous work,

graph properties were specified by so-called E-conditions which extend nested graph conditions.

However, this type of assertions is not easy to comprehend by programmers that are used to formal

specifications in standard first-order logic. In this paper, we present an approach to verify GP 2

programs with a standard first-order logic. We show how to construct a strongest liberal postcondition

with respect to a rule schema and a precondition. We then extend this construction to obtain strongest

liberal postconditions for arbitrary loop-free programs. Compared with previous work, this allows to

reason about a vastly generalised class of graph programs. In particular, many programs with nested

loops can be verified with the new calculus.

1 Introduction

Various Hoare-style proof systems for the graph programming language GP 2 have been developed by

Poskitt and Plump, see for example [17, 15]. These calculi use so-called E-conditions as assertions which

extend nested graph conditions [13] with support for expressions. However, a drawback of E-conditions

and nested graph conditions is that they are not easy to understand by average programmers who are

typically used to write formal specifications in first-order logic. To give a simple example, the following

E-condition expresses that every node is labelled by an integer: ∀(a1 , ∃(a1 | int(a)))∧∀(a1 , ∃(a1 |

int(a))) ∧∀(a1 , ∃(a1 | int(a))) ∧∀(a1 , ∃(a1 | int(a))) ∧∀(a1 , ∃(a1 | int(a))). Having to

write two quantifiers that refer to the same object appears unnatural from the perspective of standard

predicate logic where a single universal quantifier would suffice. In the logic we introduce in this paper,

the above condition is simply written as ∀Vx(int(lV(x))). Both E-conditions and first-order formulas

tend to get lengthy in examples, but our concern with nested graph conditions is that they require a non-

standard interpretation. We believe that programmers cannot be expected to think in terms of morphisms

and commuting diagrams, but should be allowed to work with a type of logic that they are familiar with.

In this paper we use assertions which are conventional first-order formulas enriched with GP 2 ex-

pressions. We believe that these assertions are easier to comprehend by programmers than E-conditions

and also offer the prospect of reusing the large range of tools available for first-order logic.

To use our assertions in Hoare-style verification, we show how to construct a strongest liberal post-

condition Slp(c,r) for a given conditional rule schema r and a precondition c. Based on this construction,

we can define strongest liberal postconditions for arbitrary loop-free graph programs and preconditions.

Moreover, for loop-free programs we give syntactic conditions on host graphs which express successful

*Supported by the Indonesia Endowment Fund for Education (LPDP)

182 Verifying Graph Programs with First Order Logic

execution resp. the existence of a failing execution. With these results we obtain a verification calculus

that can handle considerably more programs than the calculi in [17, 15]. In particular, many programs

with nested loops can now be formally verified, which has been impossible so far.

Nevertheless, our proof calculus is not relatively complete because first-order logic is not powerful

enough to express all necessary assertions. Therefore we present a semantic version of the calculus

which turns out to be relatively complete. The space available for this paper does not allow us to present

all technical details or the proofs of our results. These can be found in the long version [18].

The remainder of this paper is structured as follows. A brief review of the graph programming

language GP 2 can be found in Section 2. In Section 3, we introduce first-order formulas for GP 2

programs. In Section 4, we outline the construction of a strongest liberal postcondition for a given

rule schema and first-order formula. Section 5 presents the proof rules of a semantic and a syntactic

verification calculus, and identifies the class of programs that can be verified with the syntactic calculus.

In Section 6, we demonstrate how to verify a graph program for computing a 2-colouring of an input

graph. In Section 7, we discuss the soundness and completeness of our proof calculi. Then, in Section

8, we compare our approach with other approaches in the literature. Finally, we conclude and give some

topics for future work in Section 9.

2 The Graph Programming Language GP 2

In this section, we briefly review the graph programming language GP 2 which was introduced in [14].

2.1 GP 2 Graphs

A label in a GP 2 graph consists of a list expression and an optional mark. The set E of expressions is

defined by the grammar of Figure 1a. The set L of host graph lists is a subset of E and is defined by the

grammar of Figure 1b.

E ::= List

List ::= empty | Atom | List ‘:’ List | ListVar

Atom ::= Integer | String | AtomVar

Integer ::= [‘-’] Digit {Digit} | ‘(’Integer‘)’ | IntVar

| Integer (‘+’ | ‘-’ | ‘*’ | ‘/’) Integer

| (indeg | outdeg) ‘(’NodeId‘)’

| length ‘(’AtomVar | StringVar | ListVar‘)’

String ::= Char | String ‘.’ String | StringVar

Char ::= ‘ “ ’{Character}‘ ” ’ | CharVar

(a) Expressions (rule graph lists)

L ::= empty | GraphExp | L ‘:’ L

GraphExp ::= [‘-’] Digit {Digit} | GraphStr

GraphStr ::= ‘ “ ’ {Character} ’ ” ’ | GraphStr ‘.’ GraphStr

(b) Host graph lists

Figure 1: Abstract syntax of GP 2 lists

Here Digit is the set {0, . . . ,9} and Character is the set of all printable characters except ‘”’ (i.e.

the ASCII characters 32, 33, and 35-126). The variable sets ListVar, AtomVar, IntVar, StringVar, and

CharVar contain variables of type list,atom, int,string, and char, respectively. The domains of

int and string are the integers Z and the set Character∗, respectively, while atom represents the union

Z∪Character∗. The domain of list is (Z∪Character∗)∗, the set of heterogeneous lists of integers and

character strings. We identify lists and strings of length one with their contents and hence have the

following subtype relationships: list⊃ atom⊃ string⊃ char and atom⊃ int.

The colon operator ‘:’ is used to concatenate lists while the dot operator ‘.’ is used to concatenate

strings. The keyword empty represents the empty list. The functions indeg and outdeg take a node as

G.S. Wulandari & D. Plump 183

argument and return the indegree resp. outdegree of the node. The function length takes a list or string

variable as argument and returns the length of the list resp. string represented by the variable.

Definition 1 (Rule graph) Let MV = {none,red,green,blue,grey} be the set of node marks and

ME = {none,red,green,blue,dashed} be the set of edge marks.

A rule graph is a system G = 〈VG,EG,sG, tG, lG,mG, pG〉 comprising a finite set VG of nodes, a finite

set EG of edges, source and target functions sG, tG : EG→VG, partial node labelling functions lV
G : VG→E

and m
V
G : VG→MV ∪{any}, edge labelling functions l

E
G : EG→ E and m

E
G : EG→ME ∪{any}, and a

partial root function pG : VG→{0,1}. A rule graph is total if all of its functions are total functions. �

The marks red, green, blue and grey are graphically represented by the obvious colours while

dashed is represented by a dashed line. The wildcard mark any is represented by the colour magenta.

Node labels are undefined only in the interface graphs of rule schemata (see below). This allows

rules to relabel nodes. Similarly, the root function is undefined only for the nodes of interface graphs.

The purpose of root nodes is to speed up the matching of rule schemata [1, 2].

Given a node v in a graph G, we require that lV
G (v) is defined if and only if mV

G(v) is defined.

Definition 2 (Host graph) A host graph is a total rule graph G satisfying l
V
G (VG) ⊆ L, lE

G (EG) ⊆ L,

m
V
G(VG)⊆MV and m

E
G(EG)⊆ME . �

A graph morphism g : G→ H maps nodes to nodes and edges to edges such that sources, targets

and labels are preserved. We also require that both roots and non-roots are preserved (see [4] for the

root-reflecting mode of the GP 2 compiler). A premorphism is defined like a graph morphism except that

labels need not be preserved.

2.2 Conditional Rule Schemata

The basic computational unit in GP 2 are graph transformation rules labelled with expressions from E,

so-called rule schemata. They allow to modify the structure of host graphs and to perform computations

on labels, such as arithmetic or list manipulations. Rule schemata can be equipped with application

conditions to increase their expressiveness.

Definition 3 (Conditional rule schema) A rule schema r = 〈L← K → R〉 consists of two total rule

graphs L and R, and inclusion morphisms K→ L and K→ R. Graph K is the interface of r and consists

of nodes only, with labels and roots undefined. All expressions in L must be simple, that is, they do not

contain arithmetic operators, contain at most one occurrence of a list variable, and contain at most one

occurrence of a string variable in each occurrence of a string subexpression. Moreover, all variables in

R must also occur in L. A conditional rule schema 〈r, Γ〉 consists of a rule schema r and an application

condition Γ according to the grammar of Figure 2, where all variables occurring in Γ also occur in the

left-hand graph of r. �

A conditional rule schema 〈L← K → R, Γ〉 is applied to a host graph G in stages: (1) evaluate the

expressions in L and R with respect to a premorphism g : L→ G and a label assignment α , obtaining

an instantiated rule 〈Lg,α ← K → Rg,α〉; (2) check that g : Lg,α → G is label preserving and that the

evaluation of Γ with respect to g and α returns true; (3) construct two natural pushouts based on the

instantiated rule and g.

184 Verifying Graph Programs with First Order Logic

Condition ::= (int | char | string | atom) ‘(’Var‘)’

| List (‘=’ | ‘!=’) List | Integer (‘>’ | ‘>=’ | ‘<’ | ‘<=’) Integer

| edge ‘(’ NodeId ‘,’ NodeId [‘,’ List [EdgeMark]] ‘)’

| not Condition | Condition (and | or) Condition | ‘(’ Condition ‘)’

Var ::= ListVar | AtomVar | IntVar | StringVar | CharVar

EdgeMark ::= red | green | blue | dashed | any

Figure 2: Application conditions for rule schemata

Definition 4 (Label assignment) Consider a rule graph L and the set X of all variables occurring in L.

For each x ∈ X , let dom(x) denote the domain of x associated with the type of x. A label assignment for

L is a triple α = 〈αL, µV , µE〉 where αL : X → L is a function such that for each x ∈ X , αL(x) ∈ dom(x),
and µV : VL →MV\{none} and µE : EL →ME\{none} are partial functions assigning a mark to each

node and edge marked with any. �

Given a rule graph M, a host graph G, an injective premorphism g : M→ G, and a label assignment

α = 〈αL, µV , µE〉 for M, the instance Mg,α is obtained as follows: (1) replace each variable x in a list

expression with αL(x); (2) replace each any mark of a node v or edge e with µV (v) resp. µE(e); (3)

replace each node identifier n in a list expression with g(n); (4) evaluate all resulting list expressions

according to the meaning of the operators in Figure 1a (see [1] for details). Note that Mg,α is a host

graph.

The instance Γ
g,α of an application condition Γ is obtained by applying steps (1) and (3), and eval-

uating the resulting condition according to the meaning of the operators in Figure 2 (see [1] for details).

Note that Γ
g,α is either “true” or “false”.

Definition 5 (Conditional rule schema application) Consider a conditional rule schema r = 〈L←K→
R, Γ〉, host graphs G and H, and an injective premorphism g : L→ G. Then G directly derives H by r

and g, denoted by G⇒r,g H, if there exists a label assignment α for L such that

(i) g : Lg,α → G is a label preserving graph morphism,

(ii) Γ
g,α is true,

(iii) G⇒rg,α ,g H.

Here G⇒rg,α ,g H denotes the existence of the following natural double-pushout:1

KLα Rα

D HG

g∗g

�

Given r and g such that (i) and (ii) are satisfied, there exists a natural double-pushout as above if and

only if g satisfies the dangling condition: no node in g(L−K) must be incident to an edge in G−g(L).

In graph transformations, usually a derivation do not require the double-pushouts to be natural [8].

Here, we require them to be natural due to relabelling (see [1, 4] for the motivation of using natural

double-pushouts and for their construction).

A rule schema r without application condition can be considered as the conditional rule schema 〈r, ∆〉
where ∆ is a condition that is always true (such as 0=0). In this case, point (ii) in the above definition is

trivially satisfied.

1A pushout is natural if it is also a pullback.

G.S. Wulandari & D. Plump 185

2.3 Syntax and Semantics of Programs

A graph program consists of declarations of conditional rule schemata and procedures, and exactly one

declaration of a main command sequence, which is a distinct procedure named Main. Procedures must

be non-recursive, they can be seen as macros. The syntax of GP 2 programs is defined by the grammar in

Figure 3 (where we omit the syntax of rule schema declarations). In the following we describe the main

control constructs.

Prog ::= Decl {Decl}
Decl ::= MainDecl | ProcDecl | RuleDecl

MainDecl ::= Main ‘=’ ComSeq

ProcDecl ::= ProcId ‘=’ Comseq

ComSeq ::= Com {‘;’ Com}
Com ::= RuleSet | Proc

| if ComSeq then ComSeq [else ComSeq]

| try ComSeq [then ComSeq] [else ComSeq]

| ComSeq ‘!’ | ComSeq or ComSeq | ‘(’ ComSeq ‘)’

| break | skip | fail
RuleSet ::= RuleId | ‘{’ [RuleId { ‘,’ RuleId}] ‘}’

Proc ::= ProcId

Figure 3: Abstract syntax of GP 2 programs

The call of a rule set {r1, . . . ,rn} non-deterministically applies one of the rules whose left-hand graph

matches a subgraph of the host graph such that the dangling condition and the rule’s application condition

are satisfied. The call fails if none of the rules is applicable to the host graph.

The command if C then P else Q is executed on a host graph G by first executing C on a copy of

G. If this results in a graph, P is executed on the original graph G; otherwise, if C fails, Q is executed on

G. The try command has a similar effect, except that P is executed on the result of C’s execution.

The loop command P! executes the body P repeatedly until it fails. When this is the case, P! termi-

nates with the graph on which the body was entered for the last time. The break command inside a loop

terminates that loop and transfers control to the command following the loop.

In general, the execution of a program on a host graph may result in different graphs, fail, or diverge.

The operational semantics of GP 2 is defined by the inference rules of Figure 4, where R stands for a

rule set call; C,P,P′, and Q stand for command sequences; and G and H stand for host graphs. Given

a program P, the rules induce a semantic function which maps each host graph G to the set JPKG of all

possible outcomes of executing P on G. The result set may contain proper results in the form of graphs

and the special values “fail” and ⊥. The value “fail” indicates a failed program run while ⊥ indicates

a run that diverges. Hence the set of all configurations is (ComSeq× G (L))∪ G (L)∪ {fail}, where

ComSeq is the set of command sequences as defined in Figure 3 and G (L) is the set of all host graphs.

3 First-Order Formulas for Graph Programs

In this section, we define first-order formulas which specify classes of GP 2 graphs. We also show how

to represent concrete GP 2 graphs in rule schema applications.

186 Verifying Graph Programs with First Order Logic

[Call1]
G⇒R H

〈R, G〉 → H
[Call2]

G ;R

〈R, G〉 → fail

[Seq1]
〈P, G〉 → 〈P′, H〉

〈P;Q, G〉 → 〈P′;Q, H〉
[Seq2]

〈P, G〉 → H

〈P;Q, G〉 → 〈Q, H〉

[Seq3]
〈P, G〉 → fail

〈P;Q, G〉 → fail
[Break]

〈break;P, G〉 → 〈break, G〉

[If1]
〈C, G〉 →+ H

〈if C then P else Q, G〉 → 〈P, G〉
[If2]

〈C, G〉 →+ fail

〈if C then P else Q, G〉 → 〈Q, G〉

[Try1]
〈C, G〉 →+ H

〈try C then P else Q, G〉 → 〈P, H〉
[Try2]

〈C,G〉 →+ fail

〈try C then P else Q, G〉 → 〈Q, G〉

[Loop1]
〈P, G〉 →+ H

〈P!, G〉 → 〈P!, H〉
[Loop2]

〈P, G〉 →+ fail

〈P!, G〉 → G

[Loop3]
〈P, G〉 →∗ 〈break, H〉

〈P!, G〉 → H

Figure 4: Semantic inference rules for GP 2 core commands

3.1 Syntax of First-Order Formulas

To be able to express GP 2 graphs, we need to be able to express properties of a graph and GP 2 rule

schema conditions. Here, we only consider totally labelled graphs. Lists in GP 2 graphs can be expressed

by variables. In our first-order formulas, variables may express nodes or edges as well (see Table 1).

Table 1: Kind of a variable and its domain in a graph G

kind of variables Node Edge List Atom Int String Character

domain VG EG (Z∪ (Char)∗)∗ Z∪Char∗ Z Char∗ Char

The syntax of first-order (FO) formulas is given by the grammar of Figure 5. In the syntax, NodeVar

and EdgeVar represent disjoint sets of first-order node and edge variables, respectively. We use ListVar,

AtomVar, IntVar, StringVar, and CharVar for sets of first-order label variables of type list,atom, int,string,

and char respectively. The nonterminals Character and Digit in the syntax represent the fixed character

set of GP 2 characters, and the digit set {0, . . . ,9} respectively, as what we have in the syntax of Figure 1.

The quantifiers ∃V,∃E, and ∃L in the grammar are reserved for variables of nodes, edges, and la-

bels respectively. The function symbols indeg,outdeg and length return indegree, outdegree, and length

of the given argument. Also, we have unary functions s, t, lV, lE,mV, and mE, which takes the argu-

ment and respectively return the value of its source, target, node label, edge label, node mark, and

edge mark. The predicate edge expresses the existence of an edge between two nodes. The predicates

int,char,string,atom are typing predicates to specify the type of the variable in their argument. When

a variable is not an argument of any typing predicate, then the variable is a list variable. We have the

predicate root to express rootedness of a node. For brevity, we sometimes write ∀Vx(c) for ¬∃Vx(¬c)
and ∃Vx1, . . . ,xn(c) for ∃Vx1(∃Vx2(...∃Vxn(c) . . .)) (also for edge and label quantifiers). Also, we define

’terms’ as the set of variables, constants, and functions in first-order formulas.

The satisfaction of a FO formula c in a host graph G relies on assignments. An assignment α of a

formula c on G is a pair 〈αG,αL〉 where αG is function that maps every free node (or edge) variable to a

node (or edge) in G, and αL is a function that maps every free char, string, integer, atom, and list variable

G.S. Wulandari & D. Plump 187

Formula ::= true | false | Cond | Equal

| Formula (‘∧’ | ‘∨’) Formula | ‘¬’Formula | ‘(’Formula‘)’

| ‘∃V’ (NodeVar) ‘(’Formula‘)’

| ‘∃E’ (EdgeVar) ‘(’Formula‘)’

| ‘∃L’ (ListVar) ‘(’Formula‘)’

Number ::= Digit {Digit}
Cond ::= (int | char | string | atom) ‘(’Var‘)’

| Lst (‘=’ | ‘6=’) Lst | Int (‘>’ | ‘>=’ | ‘<’ | ‘<=’) Int

| edge ‘(’ Node ‘,’ Node [‘,’ Lst] [‘,’ EMark] ‘)’ | root ‘(’ Node ‘)’

Var ::= ListVar | AtomVar | IntVar | StringVar | CharVar

Lst ::= empty | Atm | Lst ‘:’ Lst | ListVar | lV ‘(’Node‘)’ | lE ‘(’EdgeVar‘)’

Atm ::= Int | String | AtomVar

Int ::= [‘-’] Number | ‘(’Int‘)’ | IntVar | Int (‘+’ | ‘-’ | ‘*’ | ‘/’) Int

| (indeg | outdeg) ‘(’Node‘)’ | length ‘(’AtomVar | StringVar | ListVar‘)’

String ::= ‘ “ ’ Character ‘ ” ’ | CharVar | StringVar | String ‘.’ String

Node ::= NodeVar | (s | t) ‘(’ EdgeVar‘)’

EMark ::= none | red | green | blue | dashed | any
VMark ::= none | red | blue | green | grey | any
Equal ::= Node (’=’ | ‘6=’) Node | EdgeVar (’=’ | ‘6=’) EdgeVar

| Lst (’=’ | ‘6=’) Lst | mV‘(’Node‘)’ (’=’ | ‘6=’) VMark

| mE‘(’EdgeVar‘)’ (’=’ | ‘ 6=’) EMark

Figure 5: Syntax of first-order formulas

in c to a member of its domain based on Table 1. From an assignment α , we can obtain cα by replacing

every free variable x with α(x), and evaluate the functions based on the semantics of their associated

GP 2 syntax. G satisfies c by assignment α , denotes by G �
α c if and only if cα is true in G.

The truth value of cα is evaluated just like in standard logic, with respect to the semantics of the

predicates as described above, where (root(x))α is true in G if xα is rooted, or false otherwise. We then

write G � c if there exists an assignment α such that G �
α c.

3.2 Conditions for Rule Schema Applications

First-order formulas as defined above do not contain node or edge constants because we want to be able

to check the satisfaction of formulas on arbitrary host graphs. However, for rule schema applications we

will need to express properties of specific nodes and edges of the graphs in the rule schema. For this, we

define a condition over a graph that can be obtained from a first-order formula and an assignment.

Definition 6 (Conditions) A condition is a first-order formula without free node and edge variables. A

condition over a graph G is a first-order formula where every free node and edge variable is replaced

with node and edge identifiers in G. That is, if c is a FO formula and αG is an assignment of free node

and edge variables of c on G, then cαG is a condition over G. �

Checking if a graph satisfies a condition c over a graph is essentially similar to checking satisfaction

of a FO formula in a graph. However, the satisfaction of c in a graph G can be defined only if c is a

condition over G.

Given a rule schema 〈L← K→ R〉 and an injective morphism g : L→G for some host graph G. The

satisfaction of a condition c over L may not be defined in G. However, we can rename some nodes and

edges in G with respect to g so that c is a condition over the graph (with renamed nodes and edges).

188 Verifying Graph Programs with First Order Logic

Definition 7 (Replacement graph) Given an injective morphism g : L→ G for host graphs L and G.

Graph ρg(G) is a replacement graph of G w.r.t. g if ρg(G) is isomorphic to G with L as a subgraph. �

A conditional rule schema is not invertible because of the restrictions on the variables and the exis-

tence of the rule schema condition that is reserved only for the left-hand graph. However, an invertible

rule is sometimes needed to be able to derive properties from output graph to the input graph. Hence, we

define a generalisation of a rule schema. Here, we define an unrestricted rule schema as a rule schema

without any restriction on the occurring labels.

Definition 8 (Generalised rule) Given an unrestricted rule schema r = 〈L← K → R〉. A generalised

rule is a tuple w = 〈r,acL,acR〉 where acL is a condition over L and acR is a condition over R. We call

acL the left application condition and acR the right application condition. The inverse of w, written w−1,

is then defined as the tuple 〈r−1,acR,acL〉 where r−1 = 〈R← K→ L〉. �

The application of a generalised rule is essentially similar to the application of a rule schema. How-

ever in a generalised version, we need to consider the satisfaction of both left and right-application con-

dition in the replacement graph of input and output graphs. For a conditional rule schema r = 〈〈L←K→
R〉,Γ〉, we denote by r∨ the general version of r, that is the generalised rule r∨ = 〈〈L←K→ R〉,Γ∨, true〉
where Γ

∨ is obtained from Γ by replacing the notations !=, not,and,or,# with 6=,¬,∧,∨, ‘,’(comma

symbol) respectively.

4 Constructing a Strongest Liberal Postcondition

In this section, we show how to construct a strongest liberal postcondition from a given conditional rule

schema and a precondition. The condition expresses properties that must be satisfied by every graph

resulting from the application of the rule schema to a graph satisfying the given precondition [7]. Here,

a precondition is limited to a closed FO formula.

Definition 9 (Strongest Liberal Postcondition) An assertion d is a liberal postcondition with respect

to a precondition c and a graph program P, if for all host graphs G and H,

(G � c and H ∈ JPKG) implies H � d.

A strongest liberal postcondition w.r.t. c and P, denoted by SLP(c,P), is a liberal postcondition w.r.t. c

and P that implies every liberal postcondition w.r.t. c and P. �

To construct SLP(c,r), we use the generalised version of r to open a possibility of constructing a

strongest liberal postcondition over the inverse of a rule schema. SLP(c,r) is obtained by defining trans-

formations Lift(c,r∨), Shift(c,r∨), and Post(c,r∨). The transformation Lift transforms the given condi-

tion c into a left-application condition w.r.t. r∨, which is then transformed into a right-application con-

dition by Shift. Finally, the transformation Post transforms the right-application condition to SLP(c,r).
Similar approach has been used in [15, 9, 13] for constructing a weakest liberal precondition from a

given postcondition.

To give a better idea of the transformations we define in this section, we show a running example

for the construction. We use the conditional rule schema del of Figure 6 and the preconditions q =
¬∃Ex(mV(s(x)) 6= none) for the running example. We denote by Γ1 the GP 2 rule schema condition

d≥ e. In addition, a simple example of the construction can be seen in Section 6.

G.S. Wulandari & D. Plump 189

del(a,b,c : list; d,e : int)

a

1

b
2

c

3

de

where d≥ e

⇒ a

1

b
2

d+e

Figure 6: GP 2 conditional rule schema del

4.1 From Precondition to Left-Application Condition

Now, we start with transforming a precondition c to a left-application condition with respect to a gener-

alised rule w = 〈r,acL,acR〉. Intuitively, the transformation is done by:

1. Find all possibilities of variables in c representing nodes/edges in an input and form a disjunction

from all possibilities, denoted by Split(c,r);

2. Express the dangling condition as a condition over L, denoted by Dang(r);

3. Evaluate terms and Boolean expression in Split(c,r), Dang(r), and Γ
∨, then form a conjunction

from the result of evaluation, and simplify the conjunction.

A possibility of variables in c representing nodes/edges in an input graph as mentioned above refers

to a way variables in c can represent node or edge constants in the replacement of the input graph. A

simple example would be for a precondition c = ∃Vx(c1) for some FO formula c1 with a free variable x,

c holds on a host graph G if there exists a node v in G such that cα
1 where α(x) = v is true in G. In the

replacement graph of G, v can be any node in the left-hand graph of the rule schema, or any node outside

it. Split(c,r) is obtained from the disjunction of all these possibilities.

Definition 10 (Transformation Split) Given an unrestricted rule schema r = 〈L ← K → R〉. where

VL = {v1, . . . ,vn} and EL = {e1, . . . ,em}. Let c be a condition over L sharing no variables with r (note

that it is always possible to replace the label variables in c with new variables that are distinct from

variables in r). We define the condition Split(c,r) over L inductively as follows:
- Base case.

If c is true, false, a predicate int(t),char(t),string(t),atom(t), root(t) for

some term t, or in the form t1⊖ t2 for ⊖ ∈ {= . 6= . <,≤,>,≥} and some

terms t1, t2,

Split(c,r) = c

- Inductive case.

Let c1 and c2 be conditions over L.

1) Split(c1∨ c2,r) = Split(c1,r)∨Split(c2,r),
2) Split(c1∧ c2,r) = Split(c1,r)∧Split(c2,r),
3) Split(¬c1,r) = ¬Split(c1,r),

4) Split(∃Vx(c1),r) = (
∨n

i=1Split(c
[x 7→vi]
1 ,r))∨∃Vx(

∧n
i=1 x 6=vi∧Split(c1,r),

5) Split(∃Ex(c1),r) = (
∨m

i=1Split(c
[x 7→ei]
1 ,r))∨∃Ex(

∧m
i=1 x 6=ei∧ inc(c1,r,x)),

where

inc(c1,r,x) =
∨n

i=1(
∨n

j=1 s(x) = vi∧ t(x) = vj∧Split(c
[s(x)7→vi,t(x)7→vj]

1 ,r))

∨(s(x) = vi ∧
∧n

j=1 t(x) 6= vj∧Split(c
[s(x) 7→vi]
1 ,r))

∨(
∧n

j=1 s(x) 6= vj ∧ t(x) = vi∧Split(c
[t(x)7→vi]
1 ,r))

∨(
∧n

i=1 s(x) 6= vi ∧
∧n

j=1 t(x) 6= vj∧Split(c1,r))
6) Split(∃Lx(c1),r) = ∃Lx(Split(c1,r))

where c[a7→b] for a variable a and constant b represents the condition c after the replacement of all occurrence of a

with b. Similarly, c[d 7→b] for d ∈ {s(x), t(x)} is also a replacement d with b. �

190 Verifying Graph Programs with First Order Logic

In constructing Split(c,r), the replacement for an edge quantifier is not as simple as the replacement

for a node quantifier. For an edge variable x in a precondition, x can represent any edge in G. Moreover,

if the condition contains the term s(x) or t(x), it may represent a node in the image of the match. Hence,

we need to check these possibilities as well.

Example 1 (Transformation Split)

Split(q,del) = ¬(mV(s(e1)) 6= none∨mV(s(e2)) 6= none

∨ ∃Ex(x 6= e1∧ x 6= e2 ∧ ((s(x) = 1∧mV(1) 6= none)∨ (s(x) = 2∧mV(2) 6= none)
∨(s(x) = 3∧mV(3) 6= none)
∨(s(x) 6= 1∧ s(x) 6= 2∧ s(x) 6= 3∧mV(s(x)) 6= none))))

Besides obtaining Split(c,r), we also need to express the dangling condition as a condition over L.

The dangling condition must be satisfied by an injective morphism g if G⇒r,g H for some rule schema

r = 〈L← K → R〉 and host graphs G,H. Since we want to express properties of ρg(G) where such

derivation exists, we need to express the dangling condition as a condition over the left-hand graph. For

every node v ∈ L−K, the dangling condition is satisfied if and only if v is not incident to any edge not in

L. Therefore, the indegree and outdegree of v in ρg(G) must be equal to the indegree and outdegree of v

in L. Hence, if we have VL−VK = {v1, . . . ,vn}, we can have:

(i) Dang(r) = true if VL−VK = /0, and

(ii) Dang(r) =
∧n

i=1 indeg(vi) =indegL(vi) ∧ outdeg(vi) =outdegL(vi) otherwise.

Example 2 (Dangling Condition) Dang(del) = indeg(3) = 1∧outdeg(3) = 0

Since we have information about some properties of L from the rule, we can put the information in

the condition by evaluating the condition we obtained from Split and Dang with respect to L. For this,

we construct of Val(d,r) for a condition d over L where L is the left-hand graph of r. Intuitively, Val(d,r)

is obtained from d by replacing every term with its value in L where possible. Possible here means if

the argument of the term contains a constant. We then simplify the resulting condition so that there is no

subformula in the form ¬ true,¬(¬a) ¬(a∨b), ¬(a∧b) for some conditions a,b. We can simplify them

to false,a,¬a∧¬b,¬a∨¬b respectively.

There is a special case when the term is in the form indeg(x) or outdeg(x) because unlike the other

terms, their value in L is different with their value in the replacement graph of the input graph. For more

information about handling this case, we refer readers to [18].

Example 3 (Valuation of a Graph Condition)

1. Val(Split(q,del),del)
= ¬(none 6= none∨none 6= none

∨ ∃Ex(x 6= e1∧ x 6= e2 ∧ ((s(x) = 1∧none 6= none)∨ (s(x) = 2∧none 6= none)
∨(s(x) = 3∧none 6= none)
∨(s(x) 6= 1∧ s(x) 6= 2∧ s(x) 6= 3∧mV(s(x)) 6= none))))

≡ ¬∃Ex(x 6= e1∧ x 6= e2∧ s(x) 6= 1∧ s(x) 6= 2∧ s(x) 6= 3∧mV(s(x)) 6= none)
Here, we replace the terms s(e1),s(e2) with node constant 1, then replace mV(1),mV(2),mV(3)
with none. Then, we simplify the resulting condition by evaluating none 6= none which is equiva-

lent to false.

2. Val(Γ1,del) = d≥ e (for this case, we change nothing.)

Finally, we define the transformation Lift, which takes a precondition and a generalised rule as an

input and gives a left-application condition as an output. The output should express the precondition, the

dangling condition, and the left-application condition that is given by the generalised rule.

G.S. Wulandari & D. Plump 191

Definition 11 (Transformation Lift) For a precondition c and a generalised rule w = 〈r,acL,acR〉 with

an unrestricted rule schema r = 〈L← K→ R〉,
Lift(c,w) = Val(Split(c∧acL,r)∧Dang(r),r). �

Example 4 (Transformation Lift)

Lift(q,del∨) = ¬∃Ex(x 6= e1∧ x 6= e2∧ s(x) 6= 1∧ s(x) 6= 2∧ s(x) 6= 3∧mV(s(x)) 6= none)∧ d≥ e

4.2 From Left to Right-Application Condition

To obtain a right-application condition from the obtained left-application condition, we need to con-

sider properties that could be different in the initial and result graphs. Recall that in constructing a

left-application condition, we evaluate all functions with a node/edge constant argument so that the sat-

isfaction of the condition is no longer independent of the properties of the left-hand graph.

The Boolean value for x= i for any node/edge variable x and node/edge constant i not in R must be

false in the resulting graph. Analogously, x 6= i is always true. Also, all variables in the left-application

condition should not represent any new node and edge in the right-hand side. Hence, to obtain the right-

application condition Shift(c,w), we have some adjustment to the obtained left-application condition,

denoted by Adj(d,r) where d = Lift(c,w).

To obtain Adj(d,r), we follow the following steps:

1. Replace every term representing indegree or outdegree if any (see [18] for detail);

2. Replace every subformula in the form x1 6= x2 with true and x1 = x2 with false if x1 or x2 is in

VL−VK or EL−EK ;

3. Replace every ∃Vx(c1) with ∃Vx(x 6= v1 ∧ . . .∧ x 6= vn ∧ c1) and every ∃Ex(c1) with ∃Ex(x 6= e1

∧ . . .∧ x 6= em∧ c1) for VR−VK = {v1, . . . ,vn} and ER−EK = {e1, . . . ,en}.

Definition 12 (Adjusment) Given an unrestricted rule schema r = 〈L← K→ R〉 and a condition c over
L. Let c′ be a condition over L that is obtained from c by changing every term incon(x) (or outcon(x))
for x ∈ VK with indeg(x)−indegR(x) (or outdeg(x)−outdegR(x)). Let also {v1, . . . ,vn} and {e1, . . . ,em}
denote the set of all nodes and edges in R−K respectively. The adjusted condition of c w.r.t r, denoted
by Adj(c,r), is a condition over R that is defined inductively, where c1,c2 are conditions over L:

1. If c is true or false, Adj(c,r) = c′;

2. If c is the predicates int(x),char(x),string(x) or atom(x) for a list variable x, Adj(c,r) = c′;

3. If c = root(x) for some term x representing a node, Adj(c,r) = c′

4. If c = x1⊖ x2 for some terms x1,x2 and ⊖ ∈ {=, 6=,<,≤,>,≥},

Adj(c,r) =

false , if ⊖ ∈ {=} and x1 ∈VL−VK ∪EL or x2 ∈VL−VK ∪EL,

true , if ⊖ ∈ {6=} and x1 ∈VL−VK ∪EL or x2 ∈VL−VK ∪EL,

c′ ,otherwise

5. Adj(c1∨ c2,r) = Adj(c1,r)∨Adj(c2,r)
6. Adj(c1∧ c2,r) = Adj(c1,r)∧Adj(c2,r)
7. Adj(¬c1,r) = ¬Adj(c1,r)
8. Adj(∃Vx(c1),r) = ∃Vx(x 6= v1∧ . . .∧ x 6= vn∧Adj(c1,r))
9. Adj(∃Ex(c1),r) = ∃Ex(x 6= e1∧ . . .∧ x 6= em∧Adj(c1,r))

10. Adj(∃Lx(c1),r) = ∃Lx(Adj(c1,r)) �

Example 5 (Adjusment)

Let p denotes Lift(q,del∨). Then,

Adj(p,del) = ¬∃Ex(x 6= e1∧ s(x) 6= 1∧ s(x) 6= 2∧mV(s(x)) 6= none)∧ d≥ e

192 Verifying Graph Programs with First Order Logic

Although Adj(Lift(c,w),r) can be considered as a right-application condition, we need a stronger

condition to have a strongest liberal postcondition. Hence, we add a condition over R expressing the

specification of the right-hand graph. A specification of a graph R, denoted by Spec(R), can be easily

obtained by forming conjunction of predicates, equality of functions and their value in R, and type of

label variables in R.

Definition 13 (Specifying a Totally Labelled Graph) Given a totally labelled graph R with the set of

nodes VR = {v1, . . . ,vn} and the set of edges ER = {e1, . . . ,em}. Let X = {x1, . . . ,xk} be the set of all

list variables in R, and Type(x) for x ∈ X is int(x), char(x), string(x), atom(x), or true if x is an integer,

char, string, atom, or list variable respectively. Let also RootR(v) for v ∈ VR be a function such that

RootR(v) = root(v) if pR(v) = 1, and RootR(v) = ¬root(v) otherwise. A specification of R, denoted by

Spec(R), is the condition over R:
∧k

i=1Type(xi) ∧
∧n

i=1 lV(vi) = lR(vi) ∧ mV(vi) =mR(vi) ∧ RootR(vi)
∧

∧m
i=1 s(ei) =sL(ei) ∧ t(ei) =tR(ei) ∧ lE(ei) = lL(ei) ∧ mE(ei) =mR(ei) �

Basically, Spec(R) explicitly shows us node and edge identifiers in R, label, mark, and rootedness of

each node in R (if defined), also the source, target, label, and mark of each edge in R.

Lemma 1 For every totally labelled rule graph R, there exists a condition Spec(R) such that for every

host graph G, G �Spec(R) if and only if there exists assignment αL such that g : RαL→G is an inclusion.

Definition 14 (Shifting) Given a generalised rule w = 〈r,acL,acR〉 for an unrestricted rule schema r =
〈L← K→ R〉, and a precondition c. Right application condition w.r.t. c and w, denoted by Shift(c,w),
is defined as:

Shift(c,w) =Adj(Lift(c,w),r)∧ acR∧Spec(R)∧Dang(r−1). �

Example 6 (Obtaining Right-Application Condition)

Shift(q,del∨) = ¬∃Ex(x 6= e1∧ s(x) 6= 1∧ s(x) 6= 2∧mV(s(x)) 6= none)∧ d≥ e

∧ lV(1) = a∧ lV(2) = b∧ lE(e1) = d+ e∧mV(1) = red

∧mV(2) = none∧mE(e1) = none∧ s(e1) = 1∧ t(e1) = 2

∧¬root(1)∧¬root(2)∧ int(d)∧ int(e)

4.3 From Right-Application Condition to Postcondition

The right-application condition we obtained from transformation Shift is strong enough to express prop-

erties of the replacement graph of any resulting graph. To be able to check the satisfaction of the condition

in the resulting graph, we need to change it to a FO formula. This can be done by replacing every node

and edge constant to a fresh variable and state that each new variable is not equal to other new variables.

Lemma 2 For a rule graph G and a condition c over G, there exists a first-order formula Var(c) so that

for every graph H that is isomorphic to G, G � c implies H �Var(c).

To obtain a closed FO formula from the obtained right-application condition, we only need to variab-

lise the node/edge constants in the right-application condition, then put an existential quantifier for each

free variable in the resulting FO formula. In [18], we show that the obtained formula defines a strongest

liberal postcondition.

Definition 15 (Formula Post) Given a generalised rule w = 〈r,acL,acR〉 for an unrestricted rule r =
〈L← K→ R〉 and a precondition c. Let {x1, . . . ,xn}, {y1, . . . ,ym}, and {z1, . . . ,zk} denote the set of free

node, edge, and label (resp.) variables in Var(Shift(c,w)). We define Post(c,w) as the FO formula:

G.S. Wulandari & D. Plump 193

Post(c,w)≡ ∃Vx1, . . . ,xn(∃Ey1, . . . ,ym(∃Lz1, . . . ,zk(Var(Shift(c,w))))).
For a rule schema r, we denote by Slp(c,r) and Slp(c,r−1) the formulas Post(c,r∨) and Post(c,(r∨)−1)
respectively. �

Example 7 (Obtaining Strongest Liberal Postcondition)

Slp(q,del) = ∃Vu,v(u 6= v∧∃Ew(∃La,b,d,e(
¬∃Ex(x 6= w∧ s(x) 6= u∧ s(x) 6= v∧mV(s(w)) 6= none)∧ d≥ e

∧ lV(u) = a∧ lV(v) = b∧ lE(w) = d+ e∧mV(u) = red

∧mV(v) = none∧mE(w) = none∧ s(w) = u∧ t(w) = v

∧¬root(u)∧¬root(v)∧ int(d)∧ int(e))))

Theorem 1 (Strongest liberal postconditions) Given a precondition c and a conditional rule schema

r = 〈〈L← K→ R〉,Γ〉. Then, Slp(c,r) is a strongest liberal postcondition w.r.t. c and r.

5 Proof Calculi

In this section, we introduce a semantic and a syntactic partial correctness calculus. As pre- and post-

conditions, we use arbitrary assertions for the former, and first-order formulas for the latter.

Given a graph program P and assertions c and d, a triple {c}P{d} is partially correct, denoted by

� {c} P {d}, if for every graph G satisfying c, all graphs in JPKG satisfy d [16].

5.1 Semantic Partial Correctness Calculus

Besides strongest liberal postconditions, it will be useful to consider weakest liberal preconditions.

Definition 16 (Weakest liberal precondition) An assertion c is a liberal precondition with respect to a

graph program P and a postcondition d, if for all host graphs G and H,

G � c and H ∈ JPKG implies H � d.

A weakest liberal precondition w.r.t. P and d, written WLP(P,d), is a liberal precondition w.r.t. P and d

that is implied by all liberal postconditions w.r.t. P and d. �

To prove that a triple {c} P {d} is partially correct, we only need to show that SLP(c,P) implies

d or WLP(P,d) implies c. However, if P contains a loop, obtaining SLP(c,P) or WLP(P,d) may be

difficult because P may diverge. In [9, 13], divergence is represented by infinite formulas while in [10]

approximations of these assertions are used. We take a different approach by considering SLP and WLP

only for loop-free programs. Programs with loops are verified using the proof rule [alap] in the calculi

introduced below.

Before we define our proof rules, we define assertions expressing that a program can produce a

result graph or may fail, respectively. These assertions are needed in the proof rules for the branching

commands if then else and try then else.

Definition 17 (Assertions SUCCESS and FAIL) For a graph program P, SUCCESS(P) and FAIL(P)
are the predicates defined on all host graphs G by

G � SUCCESS(P) if and only if there exists a host graph H with H ∈ JPKG, and

G � FAIL(P) if and only if fail ∈ JPKG. �

We also define a predicate Break to deal with loops containing the break command.

Definition 18 (Predicate Break) Given a graph program P and assertions c and d, Break(c,P,d) holds

if and only if for all derivations 〈P,G〉 →∗ 〈break,H〉, G � c implies H � d. �

194 Verifying Graph Programs with First Order Logic

Here P is a loop body whose execution on graph G encounters the break command, and H is the

graph that has been reached at that point.

Definition 19 (Semantic partial correctness proof rules) The semantic partial correctness proof rules

for GP 2 commands, denoted by SEM, are defined in Figure 7a, where c,d, and d′ are assertions, r is a

conditional rule schema, R is a set of rule schemata, and C,P, and Q are graph programs. �

The assertions SUCCESS and FAIL are needed to prove a triple about an if command, because P

may be executed on G if G � SUCCESS(C), and Q may be executed on G if G � FAIL(C). Similarly,

for a try command, P may be executed on a graph C′ if G � SUCCESS(C) and C′ ∈ JCKG, and Q may

be executed on G if G � FAIL(C). Finally the execution of a loop P!, it terminates if at some point the

execution of P yields failure, or reaches the command break.

[ruleapp]slp {c} r {SLP(c,r)}

[ruleapp]wlp {WLP(r,d)} r {d}

[ruleset]
{c} r {d} for each r ∈R

{c}R {d}

[comp]
{c} P {e} {e} P {d}

{c} P;Q {d}

[cons]
c implies c′ {c′} P {d′} d′ implies d

{c} P {d}

[if]
{c∧S(C)} P {d} {c∧F(C)} Q {d}

{c} if C then P else Q {d}

[try]
{c∧S(C)}C;P {d} {c∧F(C)} Q {d}

{c} try C then P else Q {d}

[alap]
{c} P {c} Break(c,P,d)

{c} P! {(c∧F(P))∨d}

(a) Calculus SEM

[ruleapp]slp {c} r {Slp(c,r)}

[ruleapp]wlp
{¬Slp(¬d,r−1)} r {d}

[ruleset]
{c} r {d} for each r ∈R

{c}R {d}

[comp]
{c} P {e} {e} P {d}

{c} P;Q {d}

[cons]
c implies c′ {c′} P {d′} d′ implies d

{c} P {d}

[if]
{c∧Success(C)} P {d} {c∧Fail(C)} Q {d}

{c} if C then P else Q {d}

[try]
{c∧Success(C)}C;P {d} {c∧Fail(C)} Q {d}

{c} try C then P else Q {d}

[alap]
{c} S {c} Break(c,S,d)

{c} S! {(c∧Fail(S))∨d}

(b) Calculus SYN

Figure 7: Semantic (a) and syntactic (b) partial correctness proof calculus, where S(C) is SUCCESS(C)

and F(C) is FAIL(C)

5.2 Syntactic Partial Correctness Calculus

Defining a first-order formula for SUCCESS(r) with a rule schema r is easier than defining FO formula

for SUCCESS(P) with a program P with loops. This is because the existence of a result graph can

be known after some execution of P, which really depends on the program. Moreover, it may diverge.

However if we consider loop-free programs, we can construct a first-order formula for SUCCESS, FAIL

and SLP. In addition, we can construct a FO formula of FAIL(P) for bigger class of programs because

some commands cannot fail (see [1]).

Definition 20 (Non-failing commands) The class of non-failing commands is inductively defined as

follows:

1. break and skip are non-failing commands

2. Every call of a rule schema with the empty graph as its left-hand graph is a non-failing command

3. Every rule set call {r1, . . . ,rn} for n≥ 1 where each ri has the empty graph as its left-hand graph,

is a non-failing command

G.S. Wulandari & D. Plump 195

4. Every command P! is a non-failing command

5. if P and Q are non-failing commands, then P;Q, ifCthenPelseQ, and tryCthenPelseQ are

non-failing commands. �

Now, let us consider P in the form C;Q. For any host graph G, fail ∈ JC;QKG iff fail ∈ JCKG or

H ∈ JCKG∧ fail∈ JQKH for some host graph H, which means G � FAIL(C)∨(SUCCESS(C)∧FAIL(Q)).
We can construct both Fail(C) and Success(C) if C is a loop-free program (see [18] for the detail of

construction), and we can construct Fail(Q) if Q is a loop-free program or a non-failing command. Here,

we introduce the class of iteration commands for which we can obtain Fail of the commands.

Definition 21 (Iteration commands) The class of iteration commands is inductively defined as follows:

1) every loop-free program and non-failing command is an iteration command, and 2) a command in the

form C;P is an iteration command if C is a loop-free program and P is an iteration command. �

If S is a loop-free program, we can construct Fail(S) as stated above (see the full construction in [18].

Meanwhile, if S is a non-failing command, there is no graph G such that fail∈ JSKG, so we can conclude

that Fail(S) ≡ false. If S is in the form of C;P for a loop-free program C and a non-failing program P,

fail∈ JSKG for a graph G only if fail∈ JCKG (because P cannot fail), so that Fail(S)≡ Fail(C).

Definition 22 Let Faillf(C) denotes the formula Fail(C) for a loop-free program C. For any iteration
command S,

Fail(S) =

false if S is a non-failing command

Faillf(S) if S is a loop-free program

Fail(C) if S =C;P for a loop-free program C, a non-failing program P

�

Theorem 2 For any loop-free program P and precondition c, there exists first-order formula Success(P)
and Slp(c,P) such that G � Success(P) if and only if G � SUCCESS(P) and G � Slp(c,P) if and only

if G � SLP(c,P). Also, for any iteration command S, G � Fail(S) if and only if G � FAIL(S).

The construction of Slp(c,P) and Success(P) to show that Theorem 2 holds can be found in [18].

Since we only have a construction for Success(C) for a loop-free program C and Fail(S) for an iteration

command S, we cannot define the syntactic proof calculus for arbitrary graph programs. We call the class

of programs we can handle by our syntactical calculus as control programs.

Definition 23 (Control programs) A control command is a command where the condition of every

branching command (e.g. the command C of if C then P else Q) is loop-free and every loop body is

an iteration command. Similarly, a graph program is a control program if all its command are control

commands. �

As in [9], a First-order formula of WLP(r,d) of a postcondition d and a rule schema r can be easily

constructed from the construction of a strongest liberal postcondition.

Lemma 3 Given a closed FO formula d and a rule schema r. Then for all host graphs G,

G � ¬Slp(¬d,r−1) if and only if G � WLP(r,d).

Definition 24 (Syntactic partial correctness proof rules) The syntactic partial correctness proof rules,

denoted by SYN, are defined in Figure 7b, where c,d, and d′ are conditions, r is a conditional rule

schema, R is a set of rule schemata, C is a loop-free program, P and Q are control commands, and S is

an iteration command. �

In the following section, we give a graph verification example using the calculus SYN we defined in

this section.

196 Verifying Graph Programs with First Order Logic

Main= (init;Colour!)!;if Illegal then unmark!

Colour= {col blue,col red}
Illegal= {ill blue,ill red}

init(a : list)

a

1

⇒ a

1

col blue(a,b,c : list)

a

1

b

2

c
⇒ a

1

b

2

c

col red(a,b,c : list)

a

1

b

2

c
⇒ a

1

b

2

c

unmark(a : list)

a

1

⇒ a

1

ill blue(a,b,c : list)

a

1

b

2

c
⇒ a

1

b

2

c

ill red(a,b,c : list)

a

1

b

2

c
⇒ a

1

b

2

c

Figure 8: Graph program 2-colouring

Table 2: Conditions inside proof tree of 2−colouring

symbol and its first-order formulas

c≡ ∀Vx(mV(x) = none∧¬root(x))∧∀Ex(mE(x) = none)
d ≡ ∀Vx((mV(x) = red∨mV(x) = blue))∧¬∃Ex(s(x) 6= t(x)∧mV(s(x)) =mV(t(x)))
e≡ ∀Vx((mV(x) = red∨mV(x) = blue)∧¬root(x))∧∀Ex(mE(x) = none)
f ≡ ∀Vx((mV(x) = red∨mV(x) = blue∨mV(x) = none))∧¬root(x))∧∀Ex(mE(x) = none)
Slp(f ,init)
≡ ∃Vy(∀Vx(x= y∨ ((mV(x) = red∨mV(x) = blue∨mV(x) = none)∧¬root(x)))∧mV(y) = red∧¬root(y))∧∀Ex(mE(x) = none)
Slp(f ,c blue) =Slp(f ,c red)
≡ ∃Vu,v(∀Vx(x= u∨x= v∨ ((mV(x) = red∨mV(x) = blue∨mV(x) = none)∧¬root(x)))

∧mV(u) = red∧mV(v) = blue∧¬root(u)∧¬root(v)∧∃Ey((s(y) = u∧ t(y) = v)∨ (t(y) = u∧ s(y) = v)))∧∀Ex(mE(x) = none)
Slp(f,unmark)

≡∃Vy(∀Vx(x= y∨ ((mV(x) = red∨mV(x) = blue∨mV(x) = none)∧¬root(x)))∧mV(y) = none∧¬root(y))∧∀Ex(mE(x) = none)
Fail(Colour)
≡ ¬∃Ex((((mV(s(x)) = red∨mV(s(x)) = blue)∧mV(t(x)) = none)∨ ((mV(t(x)) = red∨mV(t(x)) = blue)∧mV(s(x)) = none))

∧¬root(s(x))∧¬root(t(x)))
Fail(init;Colour!)≡ ¬∃Vx(mV(x) = none∧¬root(x))
Fail(unmark)≡ ¬∃Vx(mV(x) 6= none∧¬root(x))
Fail(Illegal)≡ ¬∃Ex(s(x) 6= t(x)∧ ((mV(s(x)) = red∧mV(t(x)) = red)∨ (mV(s(x)) = blue∧mV(t(x)) = blue)))
Success(Illegal)≡ ∃Ex(s(x) 6= t(x)∧ ((mV(s(x)) = red∧mV(t(x)) = red)∨ (mV(s(x)) = blue∧mV(t(x)) = blue)))

6 Example: Verifying a 2-Colouring Program

In this section, we show how to verify the 2-colouring graph program given in Figure 8. The 2-colouring

problem is the problem to assign to each node of a graph one of two colours such that each two adjacent

nodes have different colours.

The program expects input graphs without any roots or marks. It starts by marking any unmarked

node with red, then repeatedly colours uncoloured nodes adjacent to a coloured node with the other

colour. Finally, the program checks if the produced graph contains two adjacent nodes with the same

colour. If that is the case, the program unmarks all nodes to restore the input graph. Note the nested

loop which allows to process disconnected graphs, by colouring each connected component in turn. This

program cannot be verified with the proof calculi in [17, 15] as there exists a nested loop in the program.

Let us consider the precondition “every node and edge is unmarked and every node is unrooted” and

the postcondition “the precondition holds or every node is marked with blue or red, and no two adjacent

nodes marked with the same colour”, that can be represented by c and c∨d where

c = ∀Vx(mV(x) = none∧¬root(x))∧∀Ex(mE(x) = none), and

d = ∀Vx((mV(x) = red∨mV(x) = blue))∧¬∃Ex(s(x) 6= t(x)∧mV(s(x)) =mV(t(x)))

By using the conditions in Table 2, we then have a proof tree as in Figure 9 for the partial correctness

of 2−colouring with respect to c and c∨d.

G.S. Wulandari & D. Plump 197

Subtree I Subtree II
[comp]

{ f} 2colouring {c∨d}
[cons]

{c} 2colouring {c∨d}

where subtree I is:

[ruleapp]slp
{ f}init{Slp(f ,init)}

[cons]
{ f}init{ f}

[ruleapp]slp
{ f} c blue {Slp(f ,c blue)}

[cons]
{ f} c blue { f}

[ruleapp]slp
{ f} c red {Slp(f ,c red)}

[cons]
{ f} c red { f}

[cons]
{ f} Colour { f}

[alap]
{ f} Colour! { f ∧Fail(Colour)}

[cons]
{ f} Colour! { f}

[comp]
{ f} init;Colour! { f}

[alap]
{ f} (init;Colour!)! { f ∧Fail(init;Colour!)}

[cons]
{ f} (init;Colour!)! {e}

and subtree II is:

[ruleapp]slp
{ f} unmark {Slp(f ,unmark)}

[cons]
{ f} unmark { f}

[alap]
{ f} unmark! { f ∧Fail(unmark)}

[cons]
{e∧Success(Illegal)} unmark! {c∨d}

[ruleapp]slp
{d} skip {d})

[cons]
{e∧Fail(Illegal)} skip {c∨d}

[if]
{e} if Illegal then umark! {c∨d}

Figure 9: Proof tree for partial correctness of 2colouring

Note that there is no command break in the program, so Break(c,P, false) always holds regardless

c and P for this program. For this reason and for simplicity, we omit premise Break(c,P, false) in the

inference rule [alap] of the proof tree.

For an example of constructing Slp, let us consider the rule r = init of program 2−colouring

and the formula f of Table 2. Note that ∀x(c) is an abbreviation of ¬∃x(¬c) so that we need to change

universal quantifiers to existential quantifiers.
Split(f ,r) = ¬((mV(1) 6= red∧mV(1) 6= blue∧mV(1) 6= none)∨ root(1))

∧¬∃Vx(x 6= 1∧ (mV(x) 6= red∧mV(x) 6= blue∧mV(x) 6= none)∨ root(x))
∧¬∃Ex(mE(x) 6= none)

Dang(r) = true

Lift(f ,r∨) = ¬∃Vx(x 6= 1∧ (mV(x) 6= red∧mV(x) 6= blue∧mV(x) 6= none)∨ root(x))
∧¬∃Ex(mE(x) 6= none)

Adj(Lift(f ,r∨),r) = Lift(f ,r∨)

Shift(f ,r∨)=Lift(f ,r∨) ∧ lV(1) = a∧mV(1) = red∧¬root(1)
Slp(f ,r) ≡ ∃Vy(¬∃Vx(x 6= y∧ (mV(x) 6= red∧mV(x) 6= blue∧mV(x) 6= none)∨ root(x))

¬∃Ex(mE(x) = none)∧∃La(lV(y) = a)∧mV(y) = red∧¬root(y))

In the proof tree of Figure 9, we apply some inference rule [cons] which means we need to give

proof of implications applied to the rules. Some implications are obvious, e.g. c implies c∨ d. Other

implications, are also obvious if we check their formulas. The implications have the form ∃y(∀x((x =
y∨ c)∧ x = y⇒ c)) for some variables x,y and FO formula c with no variable y, which implies ∀x(c).
For an example, Post(f ,init) expresses that there exists an unrooted red node y, labelled with a list,

where all nodes beside y are unmarked or marked red or blue, which implies all nodes are unmarked or

marked red or blue, such that f holds. Other proof of implications use a similar method (see [18]).

198 Verifying Graph Programs with First Order Logic

7 Soundness and Completeness of the Proof Calculi

In [18], we show that both SEM and SYN are sound. That is, if a triple {c} P {d} can be proven by SEM

or SYN (denoted by ⊢SEM or ⊢SYN), then the triple is partially correct.

Theorem 3 (Soundness) Given a graph program P and assertions c,d. Then, ⊢SEM {c} P {d} implies �

{c} P {d}. Moreover, if c and d are first-order formulas, ⊢SYN {c} P {d} implies � {c} P {d}.

A proof calculus is complete if every partially correct triple can be proved by the calculus. Neither

SEM nor SYN are complete because GP 2’s expressions include Peano arithmetic which is known to be

incomplete [12]. However, the notion of relative completeness allows to separate the incompleteness

in proving valid assertions from the power of the inference rules for programming constructs [5]. That

means, we assume that the implications in the [cons] rules of SEM and SYN can be proved outside the

calculi.

Theorem 4 (Relative completeness of SEM) Given a graph program P and assertions c,d. Then, �

{c} P {d} implies ⊢SEM {c} P {d}.

The proof of Theorem 4 can be seen in [18]. The proof relies on the existence of WLP(P,c) for

arbitrary programs P and assertions c. Even if we omit [ruleappslp] from the calculus, SEM is still

relative complete. However, for SYN to be relative complete, it would be necessary to express WLP(P,c)

or SLP (c,P) as first-order formulas. There is strong evidence that this is impossible. For example,

consider the triple {c} P {d} with c = ∀Vx(mV(x) = none∧¬∃Ey(s(y) = x∨ t(y) = x)) (all nodes are

unmarked and isolated), d = ∀Vx(false) (the graph is empty), and the following program:

Main= duplicate!; delete!

duplicate(a : list)

a

1

⇒ a

1

a

delete(a : list)

a a ⇒ /0

It is obvious that � {c} duplicate!;delete! {d} holds: duplicate! duplicates the number of

nodes while marking the nodes grey, hence its result graph consists of an even number of isolated grey

nodes. Then delete! deletes pairs of grey nodes as long as possible, so the overall result is the empty

graph. Note that “consists of an even number of isolated grey nodes” is both the strongest postcondition

with respect to c and duplicate!, and the weakest precondition with respect to delete! and d.

Using SYN one can prove ⊢ {c} duplicate! {e} where e expresses that all nodes are grey and

isolated. However, we believe that our logic cannot express that a graph has an even number of nodes.

This is because pure first-order logic (without built-in operations) cannot express this property [11] and

it is likely that this inexpressiveness carries over to our logic. As a consequence, one can only prove

⊢ {e} delete! { f} where f expresses that the graph contains at most one node (because otherwise

delete would be applicable). But we cannot use SYN to prove ⊢ {c} duplicate!;delete! {d}.

8 Related Work

Hoare-style verification of graph programs with attributed rules was introduced in [17, 15], using E-

conditions which generalise the nested graph conditions of Habel and Pennemann [9, 13]. E-conditions

do not cover rooted rules or the break command, which are considered in our first-order formulas. More

importantly, the approach of [17, 15] can only handle programs in which the conditions of branching

commands and loop bodies are rule set calls. Our syntactic calculus SYN covers a larger class of graph

G.S. Wulandari & D. Plump 199

programs, viz. programs where the condition of each branching command is a loop-free program, and

each loop body is an iteration command. This allows us, in particular, to verify many programs with

nested loops. Besides this increased power, we believe that assertions in the form of first-order formulas

are easier to comprehend by programmers than nested graph conditions of some form.

As argued at the end of the previous section, we cannot express SLP(c,P) or WLP(P,c) for arbitrary

assertions c and graph programs P as first-order formulas. In [9, 13], there is a construction of Wlp(c,P!)
by using an infinite formula. Here, we do not use a similar trick but stick to standard finitary logic. The

papers [7, 10] do not give constructions for syntactic strongest liberal postconditions or weakest liberal

postconditions either. Instead, similar to the consequent of our inference rule [alap], the conjunction

of a loop invariant and a negated loop condition is considered as an “approximate” strongest liberal

postcondition.

In [3], the authors design an imperative programming language for manipulating graphs and give a

Hoare calculus based on weakest preconditions. Programs manipulate the graph structure only and do

not contain arithmetic. Assertions are formulas of the so-called guarded fragment of first-order logic,

which is decidable. This relatively weak logic makes the correctness of programs decidable.

Our goal is different in that we want a powerful assertion language that can specify many practical

algorithms on graphs. (In fact, we plan to extend our logic to monadic second-order logic in order to

express non-local properties such as connectedness, colourability, etc.) In our setting, it is easily seen that

correctness is undecidable in general, even for trivial programs. For example, consider Hoare triples of

the form {true}skip{d} where d is an arithmetic formula (without references to nodes or edges). Such

a triple is partially (and totally) correct if and only if d is true on the integers. But our formulas include

Peano arithmetic and hence are undecidable in general [12]. Thus, even for triples of the restricted form

above, correctness is undecidable.

9 Conclusion and Future Work

We have shown how to construct a strongest liberal postcondition for a given conditional rule schema and

a precondition in the form of a first-order formula. Using this construction, we have shown that we can

obtain a strongest liberal postcondition over a loop-free program, and construct a first-order formula for

SUCCESS(C) for a loop-free program C. Moreover, we can construct a first-order formula for FAIL(P)
for an iteration command P. Altogether, this gives us a proof calculus that can handle more programs

than previous calculi in the literature, in particular we can now handle certain nested loops.

However, the expressiveness of first-order formulas over the domain of graphs is quite limited. For

example, one cannot specify that a graph is connected by a first-order formula. Hence, in the near future,

we will extend our formulas to monadic second-order formulas to overcome such limitations [6].

Another limitation in current approaches to graph program verification is the inability to specify

isomorphisms between the initial and final graphs [19]. Monadic second-order transductions can link

initial and final states by expressing the final state through elements of the initial state [6]. We plan to

adopt this technique for graph program verification in the future.

References

[1] Christopher Bak (2015): GP 2: Efficient Implementation of a Graph Programming Language. Ph.D. thesis,

Department of Computer Science, University of York. Available at http://etheses.whiterose.ac.uk/

12586/.

200 Verifying Graph Programs with First Order Logic

[2] Christopher Bak & Detlef Plump (2012): Rooted Graph Programs. In: Proc. Int. Workshop on Graph Based

Tools (GraBaTs 2012), Electronic Communications of the EASST 54, doi:10.14279/tuj.eceasst.54.780.

[3] Jon Haël Brenas, Rachid Echahed & Martin Strecker (2018): Verifying Graph Transformations with Guarded

Logics. In: Proc. Int. Symposium on Theoretical Aspects of Software Engineering (TASE 2018), IEEE, pp.

124–131, doi:10.1109/TASE.2018.00024.

[4] Graham Campbell, Jack Romö & Detlef Plump (2020): The Improved GP 2 Compiler. ArXiv e-prints

arXiv:2010.03993 [cs.PL]. Available at https://arxiv.org/abs/2010.03993.

[5] Stephen A. Cook (1978): Soundness and Completeness of an Axiom System for Program Verification. SIAM

Journal on Computing 7(1), pp. 70–90, doi:10.1137/0207005.

[6] Bruno Courcelle & Joost Engelfriet (2012): Graph Structure and Monadic Second-Order Logic: A Language-

Theoretic Approach. Cambridge University Press, doi:10.1017/CBO9780511977619.

[7] Edsger W. Dijkstra & Carel S. Scholten (1990): Predicate Calculus and Program Semantics. Texts and

Monographs in Computer Science, Springer, doi:10.1007/978-1-4612-3228-5.

[8] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange & Gabriele Taentzer (2006): Fundamentals of Algebraic Graph

Transformation. Monographs in Theoretical Computer Science. An EATCS Series, Springer, doi:10.1007/3-

540-31188-2.

[9] Annegret Habel & Karl-Heinz Pennemann (2009): Correctness of high-level transformation systems relative

to nested conditions. Math. Struct. Comput. Sci. 19(2), pp. 245–296, doi:10.1017/S0960129508007202.

[10] Clifford B. Jones, A.W. Roscoe & Kenneth R. Wood, editors (2010): Reflections on the Work of C.A.R. Hoare.

Springer, doi:10.1007/978-1-84882-912-1.

[11] Leonid Libkin (2004): Elements of Finite Model Theory. Texts in Theoretical Computer Science, Springer,

doi:10.1007/978-3-662-07003-1.

[12] James Donald Monk (1976): Mathematical Logic. Graduate Texts in Mathematics 37, Springer,

doi:10.1007/978-1-4684-9452-5.

[13] Karl-Heinz Pennemann (2009): Development of Correct Graph Transformation Systems. Ph.D. thesis,

Department of Computing Science, University of Oldenburg. Available at http://formale-sprachen.

informatik.uni-oldenburg.de/~skript/fs-pub/diss_pennemann.pdf.

[14] Detlef Plump (2012): The Design of GP 2. In: Proc. Workshop on Reduction Strategies in Rewriting and

Programming (WRS 2011), EPTCS 82, pp. 1–16, doi:10.4204/EPTCS.82.1.

[15] Christopher M. Poskitt (2013): Verification of Graph Programs. Ph.D. thesis, The University of York. Avail-

able at http://etheses.whiterose.ac.uk/4700/.

[16] Christopher M. Poskitt & Detlef Plump (2010): A Hoare Calculus for Graph Programs. In: Proc. Int.

Conference on Graph Transformation (ICGT 2010), LNCS 6372, Springer, pp. 139–154, doi:10.1007/978-3-

642-15928-2 10.

[17] Christopher M. Poskitt & Detlef Plump (2012): Hoare-Style Verification of Graph Programs. Fundamenta

Informaticae 118(1-2), pp. 135–175, doi:10.3233/FI-2012-708.

[18] Gia Wulandari & Detlef Plump (2020): Verifying Graph Programs with First-Order Logic (Extended Ver-

sion). ArXiv e-prints arXiv:2010.14549 [cs.LO]. Available at https://arxiv.org/abs/2010.14549.

[19] Gia S. Wulandari & Detlef Plump (2018): Verifying a Copying Garbage Collector in GP 2. In: Software

Technologies: Applications and Foundations – STAF 2018 Collocated Workshops, Revised Selected Papers,

LNCS 11176, Springer, pp. 479–494, doi:10.1007/978-3-030-04771-9 34.

	1 Introduction
	2 The Graph Programming Language GP2
	2.1 GP2 Graphs
	2.2 Conditional Rule Schemata
	2.3 Syntax and Semantics of Programs

	3 First-Order Formulas for Graph Programs
	3.1 Syntax of First-Order Formulas
	3.2 Conditions for Rule Schema Applications

	4 Constructing a Strongest Liberal Postcondition
	4.1 From Precondition to Left-Application Condition
	4.2 From Left to Right-Application Condition
	4.3 From Right-Application Condition to Postcondition

	5 Proof Calculi
	5.1 Semantic Partial Correctness Calculus
	5.2 Syntactic Partial Correctness Calculus

	6 Example: Verifying a 2-Colouring Program
	7 Soundness and Completeness of the Proof Calculi
	8 Related Work
	9 Conclusion and Future Work

