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ABSTRACT 29 

Characterizing the mycobacterial transporters involved in the uptake and/or catabolism of host-30 

derived nutrients required by mycobacteria may identify novel drug targets against 31 

tuberculosis. Here, we identify and characterize a member of the amino acid-polyamine- 32 

organocation superfamily, a potential γ-aminobutyric acid transport protein, GabP, from 33 

Mycobacterium smegmatis. The protein was expressed to a level allowing its purification to 34 

homogeneity and Size Exclusion Chromatography-Multi Angle Laser Light Scattering analysis 35 

of the purified protein showed that it was dimeric. We showed that GabP transported γ-36 

aminobutyric acid in vitro and when over-expressed in E. coli. Additionally, transport was 37 

greatly reduced in the presence of β-alanine, suggesting that it could be either substrate or 38 

inhibitor of GabP. Using GabP reconstituted into proteoliposomes, we demonstrated that γ-39 

aminobutyric acid uptake is driven by the sodium gradient and is stimulated by membrane 40 

potential. Molecular docking showed that γ-aminobutyric acid binds MsGabP, another 41 

Mycobacterium smegmatis putative GabP and the Mycobacterium tuberculosis homologue in 42 

the same manner. This study represents the first expression, purification and characterization 43 

of an active γ-aminobutyric acid transport protein from mycobacteria. 44 

  45 
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IMPORTANCE 46 

The spread of multidrug resistant tuberculosis increases its global health impact in humans. As 47 

there is transmission both to and from animals, the spread of the disease also increases its 48 

effects in a broad range of animal species. Identifying new mycobacterial transporters will 49 

enhance our understanding of mycobacterial physiology and furthermore provides new drug 50 

targets. Our target protein is the gene product of msmeg_6196, annotated as GABA permease, 51 

from Mycobacterium smegmatis strain MC2 155. Our current study demonstrates that it is a 52 

sodium-dependent GABA transporter that may also transport β-alanine. As GABA may well 53 

be an essential nutrient for mycobacterial metabolism inside the host, this could be an attractive 54 

target for the development of new drugs against tuberculosis.  55 

  56 
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INTRODUCTION 57 

Tuberculosis (TB), one of the oldest and deadliest human diseases, is caused by Mycobacterium 58 

tuberculosis (Mtb). Mtb is a leading infectious killer, claiming the lives of about 1.2 million 59 

people annually (1). It is a re-emerging pathogen, due to the development of multiple-drug 60 

resistant (MDR) and extensively-drug resistant (XDR) strains (2). In addition, animal 61 

tuberculosis is a globally distributed zoonotic chronic disease, posing a significant impact on 62 

the costs in global agricultural losses (3). Since transmission between humans and animals has 63 

been demonstrated in both directions, TB has been described as a One Health issue, having 64 

similar consequences for humans and animals (4), and causing huge socioeconomic impact 65 

both in terms of human lives and resources. 66 

The unique cell wall composition of Mtb is believed to be the major determinant of its 67 

resistance to a large range of antibiotics (5), leading to a continuing need to discover new ones. 68 

A new approach to developing therapeutics against TB is through comprehensive discovery 69 

and characterization of metabolic pathways, their impact on key features of Mtb pathogenesis 70 

(6) and their contribution to drug resistance. Because Mtb has a reduced genome (7), it has 71 

neither extended de novo synthesis pathways nor duplicated transporters – the essential 72 

transmembrane proteins that mediate the nutrient uptake and metabolite efflux (8), meaning 73 

that there are many essential metabolites. The transporters, required for the uptake of essential 74 

nutrients, enable mycobacteria to persist in the harsh intracellular host environments by 75 

scavenging nutrients. They thus represent potential new drug targets. Characterizing unique 76 

mycobacterial transporters provides another route to discover novel therapeutics to treat TB 77 

(9). 78 

Despite considerable progress in the development of genetic methods for mycobacteria the 79 

function of many transporters is still unknown. Nonetheless, AnsP1, an aspartate importer, was 80 

https://paperpile.com/c/VLFpd2/wtyk
https://paperpile.com/c/VLFpd2/rqdX
https://paperpile.com/c/VLFpd2/1K9Q
https://paperpile.com/c/VLFpd2/zVZ9
https://paperpile.com/c/VLFpd2/sjzr
https://paperpile.com/c/VLFpd2/Th47
https://paperpile.com/c/VLFpd2/fa4c
https://paperpile.com/c/VLFpd2/QzD6
https://paperpile.com/c/VLFpd2/TrQb
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identified by targeted mass-spectrometry based metabolomics. This method targets a pre-81 

defined group of compounds and aims to determine which one is transported. A mixture of 82 

biomolecules is introduced into the mass spectrometer either directly or following a separation 83 

procedure. In particular, liquid chromatography-mass spectrometry-based targeted 84 

metabolomics achieves high level sensitivity and accuracy (10). AnsP1 was shown to be 85 

involved in nitrogen metabolism and essential for mycobacterial infection and survival (11-86 

13). This provides evidence that Mtb relies on amino acid uptake and degradation pathways to 87 

thrive inside the host and confirms a strong link between nutrition and pathogenicity in Mtb. 88 

To identify the substrates of other orphan transporters from mycobacteria, we adopted a similar 89 

approach for five homologous genes of AnsP1 from three different mycobacterial species. 90 

From this initial screen, the annotated GABA permease from Mycobacterium smegmatis MC2 
91 

155, (MsGabP hereafter), proved promising for further studies. M. smegmatis is widely used 92 

as a convenient model system to study Mtb biology, cell structure and persistence under 93 

conditions of nutrient starvation (14) because it has a faster growth rate and lower biosafety 94 

level than M. tuberculosis. Based on its sequence, this putative permease belongs to the group 95 

of amino acid-polyamine-organocation (APC) superfamily of transport proteins (15), which is 96 

widely found in all living organisms. To date, no in vivo or in vitro information is available for 97 

Mycobacterium smegmatis GabP despite it being annotated as a probable GABA permease 98 

based on its sequence identity to E. coli GabP (16). The hydropathic profile produced by 99 

TMHMM2 predicted that MsGabP has twelve transmembrane-spanning helices (17). 100 

Homology modelling of the protein shows that it adopts an arrangement known as the LeuT 101 

fold (18) (Fig. S1). 102 

In eukaryotes, besides its primary function as an inhibitory neurotransmitter (19), GABA may 103 

have a role in the modulation of immune responses (20) but it is unclear whether and how 104 

https://paperpile.com/c/VLFpd2/FEkj+HNYa+fS8G
https://paperpile.com/c/VLFpd2/FEkj+HNYa+fS8G
https://paperpile.com/c/VLFpd2/HZmg
https://paperpile.com/c/VLFpd2/2iJP
https://paperpile.com/c/VLFpd2/syhZ
https://paperpile.com/c/VLFpd2/sA2Mz
https://paperpile.com/c/VLFpd2/LkLg
https://paperpile.com/c/VLFpd2/VSoH
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GABAergic signalling regulates antimicrobial host defences during infections. GABA does, 105 

however, act as a specific cytotoxicity and virulence regulator of Pseudomonas aeruginosa 106 

(21). Bacteria, such as Bacillus subtilis (22), P. syringae (23) and isolated E. coli mutants (24), 107 

can use GABA as a sole nitrogen source. Furthermore, GABA is known to be important for 108 

acid resistance in bacteria including E. coli (25) and Lactobacillus (26). In the Mtb vaccine 109 

strain M. bovis BCG, uptake of GABA was not induced by carbon and nitrogen starvation (27). 110 

Beyond this, the mechanism and implications of GABA transport and metabolism have not 111 

been extensively examined in mycobacteria.  112 

We report here the successful expression of M. smegmatis MC2155 GabP in E. coli. SEC-113 

MALLS analysis of the purified protein showed that it is a homodimer. In vitro and in live 114 

recombinant bacteria functional experiments allowed us to confirm predictions that it is a 115 

GABA transporter. We also showed that substrate uptake by MsGabP is sodium-driven and 116 

depends on the membrane potential. 117 

  118 

https://paperpile.com/c/VLFpd2/exPm
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RESULTS 119 

MsGabP is expressed in E. coli. 120 

MsGabP was inducibly expressed in E. coli under the control of the IPTG inducible promotor 121 

Tac. The expression level was tested by western blot in five strains and three different media 122 

(Fig. 1). In strains C41 (DE3) ΔacrB pRARE2 or C43 (DE3) ΔacrB pRARE2, we observed 123 

only a very low level of expression in SB medium (Fig. 1, panel 1S and 2S). Conversely, in the 124 

other strains, the expression level was higher when the cells were cultures in SB (Fig. 1, panel 125 

3S, 4S and 5S) than in LB medium (Fig. 1, panel 3L, 4L and 5L). Densitometry measurements 126 

(Fig. S2) confirmed that MsGabP expresses best with BL21 Gold (DE3) pRARE2 as the strain 127 

in SB auto-induction medium. The expression level with C41 (DE3) ΔacrB and SB auto-128 

induction medium was about 65% of that level (Fig. 1, panel 3S and 5S). We nonetheless chose 129 

this last condition for further optimization, since AcrB, which is a known contaminant of 130 

purified membrane protein from E. coli, is deleted in this last strain. Following further 131 

optimization (data not shown), we determined that the optimal expression conditions in C41 132 

(DE3) ΔacrB strain was SB auto-induction medium for 24 hours at 37 °C. 133 

The protein eluted at approximately 36 kDa on sodium dodecyl sulfate-polyacrylamide gel 134 

electrophoresis (SDS-PAGE), though the predicted molecular mass is 50.7 kDa. (see 135 

Purification of MsGabP below). 136 

 137 

Targeted Metabolomics suggest GABA and serine as potential substrates of MsGabP. 138 

We used targeted metabolomics to identify potential substrates (see Materials and Methods). 139 

We expressed MsGabP in E. coli using the pL33 plasmid and tested for uptake of following 140 

amino acids: GABA, arginine, lysine, aspartate, asparagine, glutamine, glutamate and serine. 141 
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The rationale was as follows: GABA because MsGabP is annotated as a GABA permease; 142 

arginine and lysine because it belongs to the APC superfamily of transporters; aspartate, 143 

asparagine, glutamine, glutamate because it has about 35-36% identity to Mtb AnsP1 and 144 

AnsP2, which transport asparagine; and serine, which is polar but not charged, as a negative 145 

control. We observed a two-fold differential in internal GABA concentration with 1 mM 146 

GABA in energized E. coli cells containing MsGabP (Fig. 2A). Similarly, with 5 mM serine, 147 

there was about a seven-fold differential (Fig. 2B), suggesting these two amino acids could 148 

represent potential substrates. No transport of the other tested amino acids was detected. For 149 

instance, neither 1 mM nor 5 mM arginine and aspartate increased the concentration of the 150 

respective amino acid in the MsGabP cells compared to control cells (Fig. S3).  151 

 152 

MsGabP transports radiolabelled GABA into cells.  153 

To confirm the uptake of potential amino acids by MsGabP, we next performed radiolabelled 154 

transport assays on intact cells. Consistent with the metabolomics study results, E. coli cells 155 

overexpressing MsGabP are able to uptake radioactive GABA (Fig. 3). As control, cells (empty 156 

plasmid) only showed a negligible uptake of radioactive GABA. This clearly shows that the 157 

uptake of GABA was indeed due to the overexpressed MsGabP and not linked to E. coli 158 

endogenous GABA transporters. In contrast, radioactive serine was not transported by 159 

MsGabP, suggesting that serine is not a true substrate of the transporter (data not shown). 160 

Interestingly, β-alanine, a structural analogue of GABA, competed with the uptake of 161 

[3H]GABA into energized E. coli whole cells (Fig. 3), suggesting that it might bind as a 162 

competitive inhibitor of GABA. GABA uptake was also significantly decreased when a 163 

protonophore, 50 μM of carbonylcyanide m-chlorophenylhydrazone (CCCP), was added with 164 
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GABA to the assay (Fig. 3), indicating that the transport depends on the proton gradient and/or 165 

on the membrane potential. 166 

 167 

Purification of MsGabP. 168 

We next wanted to study the transport of amino acids with purified and reconstituted MsGabP 169 

and we therefore tested a range of detergents for solubilization efficiency. n-Decyl-β-D-170 

Maltopyranoside (DM), n-Undecyl-β-D-Maltopyranoside (UDM), n-Undecyl-β-D-171 

Thiomaltopyranoside (UDTM) and n-Dodecyl-β-D-Maltoside (DDM) at 1% all extracted 172 

MsGabP from the membranes with similar efficiencies (~80%), as quantified after western blot 173 

analysis (Fig. 4A). Since DDM has a lower critical micellar concentration (CMC) than DM, 174 

we decided to proceed with DDM for solubilizing the protein in large scale purification. 175 

Preliminary purifications in DDM showed that the purified protein was unstable and contained 176 

contaminants (not shown). We therefore used the HRV-3C-His-tag to perform on-column 177 

detergent exchange followed by on-column cleavage to elute MsGabP to identify detergents 178 

that stabilized the purified protein. To identify the best one, small scale purifications were 179 

conducted with 12 different detergents (Table 1). The stability was then assessed by microscale 180 

fluorescent thermal stability assay (28). The protein unfolded cooperatively in DDM, Decyl 181 

Maltose Neopentyl Glycol (DMNPG), UDTM, n-Dodecyl-β-D-Thiomaltopyranoside (DDTM) 182 

and n-Tridecyl-β-D-Maltopyranoside (13M) (Fig. 4B) under the buffer conditions tested. This 183 

suggests that MsGabP is correctly folded in all of these detergents. However, it was most stable 184 

in 13M or DMNPG (Tm of 51.4 ± 0.1°C and 51.2 ± 0.2°C) (Fig. 4B), which is about 4°C higher 185 

than in DDM (Fig. 4B). As the final yield from DMNPG was higher than from 13M (Table 1), 186 

we used DMNGP for further experiments. Yields of ~0.7 mg protein per litre of bacterial 187 

culture were typically achieved. 188 

https://paperpile.com/c/VLFpd2/IuzR
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Fractions collected during the protein elution from the resin showed the presence of two bands, 189 

migrating at ~36 kDa and ~70kDa respectively (Fig. 5A). Peptides generated by tripsin 190 

digestion of the protein bands were analyzed using mass spectrometry. The acquired spectra 191 

were analyzed in PEAKS software, which allowed us to identify MsGabP with 12 unique 192 

peptides and a total sequence coverage of 14% in the lower band at 36 kDa and 2 unique 193 

peptides and a total sequence coverage of 3% in the upper band at 70 kDa (Fig. S4). In the 194 

lower 36 kDa band we are able to detect peptides from the N-terminus, the middle of the 195 

MsGabP and the C-terminus, consistent with a full-length protein, as is shown by the fact that 196 

it is active in GABA transport (see below). The 70 kDa band is either a protein homodimer or 197 

a partially folded monomer, but most likely the latter (29). 198 

 199 

Purified MsGabP is a dimer.  200 

The absolute molecular weight of the purified protein-detergent complex was determined by 201 

SEC-MALLS (Fig. 5B). The protein eluted as a single, symmetrical peak at ~0.4 column 202 

volume, demonstrating its homogeneity and mono-dispersion (Fig. 5B). Using the three-203 

detector method (30), the molecular  mass of MsGabP in the main peak was found to be 204 

79.2 ± 5.7% kDa, indicating the protein is dimeric in the protein-detergent complex. 205 

 206 

MsGabP-driven GABA transport depends on both Na+ and membrane potential. 207 

To study MsGabP function free from E. coli metabolism and interference by its endogenous 208 

amino-acid transporters, we reconstituted purified MsGabP into liposomes. The migration 209 

(‘flotation’) of proteoliposomes on a discontinuous sucrose gradient demonstrated successful 210 

reconstitution of the protein into liposomes with an efficiency of ~90% (Fig. S5), as a majority 211 

https://paperpile.com/c/xtUK4K/FHfe
https://paperpile.com/c/xtUK4K/Uyi8E
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of the proteoliposomes float into the 5% and 2.5% fractions of the gradient. We were therefore 212 

able to use these to study the transport mechanism of MsGabP. 213 

Radioactive transport assays showed there was a significantly higher accumulation of 3H-214 

GABA in proteoliposomes containing MsGabP as compared to protein-free liposomes 215 

(MsGabP vs control), when proteoliposomes loaded with K+ were diluted into a buffer with 216 

Na+ (Fig. 6A). We were unable to measure any transport of 3H-GABA into proteoliposomes 217 

using pH gradients alone (Fig. 6B/CCCP). In contrast, the addition of the potassium-conducting 218 

ionophore valinomycin (31) in the transport buffer (with Na+ present) established a negative 219 

inside potential that led to increased GABA transport compared to the uptake level in the 220 

absence of valinomycin (Fig. 6B/Val). When the membrane potential generated by 221 

valinomycin is abolished by the addition of CCCP, the uptake activity was negligible (Fig. 222 

6B/Val and CCCP). Importantly, when choline chloride was used in place of NaCl in the 223 

presence of valinomycin, GABA uptake was abolished completely indicating that Na+ was 224 

essential for transport (Fig. 6B/Val, compare Na+ out vs ChoCl out). To confirm that the pH 225 

gradient does not contribute to GABA transport, we trapped a membrane impermeant 226 

fluorescent pH indicator, pyranine, in the proteoliposomes. No change in pH was recorded in 227 

upon the addition of GABA in MsGabP containing proteoliposomes. This confirms that protons 228 

are not involved in GABA uptake (Fig. 6C).  229 

 230 

Phylogenetic analysis shows that E. coli GabP and B. subtilis GabP are closely related to 231 

MsGabP and MtbGabP 232 

A tblastn search against mycobacterial genomes using E. coli GabP and an E-value of e-100, 233 

retrieved sequences across the whole span of Mycobacteria, including sequences from the 234 

pathogenic species M. tuberculosis, M. ulcerans, M. avium and M. abscessus. The primary 235 

https://paperpile.com/c/VLFpd2/B2uw
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sequences of MsGabP and MtbGabP (Rv0522) are 47% identical (56% BLOSUM62 score 236 

similar), while MsGabP and E. coli GabP are 43% identical (62% similar). We also noted that 237 

the gene product of msmeg_5473 (Ms5473 hereafter) shares 49% identity with MtbGabP and 238 

41% identity with MsGabP, suggesting that it is also closely related to MtbGabP. A 239 

phylogenetic tree of bacterial protein sequences related to E. coli, B. subtilis and M. 240 

tuberculosis GabP shows there are two different groups of GabP sequences, each containing 241 

members from Proteobacteria, Bacilli and Actinobacteria. The first group includes the 242 

sequences from E. coli (P25527), Pseudomonas syringae (Q87UE3), Bacillus subtilis GabP 243 

(P46349), Streptomyces coelicolor (Q9L202) and Corynebacterium glutamicum AroP 244 

(Q46065), a protein characterised as an aromatic amino acid transporter. The second group has 245 

a less varied taxonomic distribution and comprises mainly Actinobacteria sequences, including 246 

MsGabP and MtbGabP, but also Bacillales, − and -Proteobacteria (Fig. S6).  247 

 248 

Docking studies suggest that the residues involved in GABA binding are conserved 249 

between MsGabP, MtbGabP and Ms5473.  250 

To identify potential substrate binding sites in the MsGabP, MtbGabP and Ms5473 models (see 251 

Methods and Materials), molecular docking of GABA to the models with Grid-based Ligand 252 

Docking with Energetics (Glide) software (32) was performed. All predicted GABA binding 253 

poses exhibited clusters located in the same area of the protein (Fig. S7), corresponding to the 254 

outward-facing occluded conformation of the transporter as found in L-arginine/agmatine 255 

antiporter AdiC (33). The residues that interact with GABA are strongly conserved and form 256 

conserved interactions with the ligand, suggesting that they are involved in substrate binding, 257 

consistent with GABA binding to all three transporters. The side chain of E119 (in 258 

MsGabP)/E89 (in MtbGabP) appears to hydrogen bond to the -amino group in GABA, while 259 
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this interaction is absent in Ms5473. Instead, it appears to interact with S297, which would be 260 

a weaker interaction (Fig. S7). 261 

  262 
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DISCUSSION 263 

The ability of Mtb to adapt its metabolism to environmental changes, including various stress 264 

conditions, is believed to be critical for its pathogenicity (34). It is known that amino acids 265 

support growth of Mtb in vitro (12). However, we lack knowledge about the regulation of 266 

amino acid transport and metabolism in mycobacteria. The identity of many transporters 267 

involved in this process in Mtb is still unknown. 268 

Here we characterize, for the first time, the putative mycobacterial GABA permease from M. 269 

smegmatis strain MC2 155. MsGabP is closely related to MtbGabP and M. bovis GabP (27) 270 

(47% sequence identity) and to the previously characterized GABA permeases from B. subtilis 271 

(35) and E. coli (24) (48% and 43% sequence identity) respectively. GABA transport is an 272 

important aspect of GABA metabolism and is regulated in concert with GABA catabolism 273 

enzymes in other bacteria. Although nitrogen-limited culture conditions induce GABA 274 

permease expression in E. coli and B. subtilis (36, 37) the regulatory mechanisms are different. 275 

As in B. subtilis (22) GabP and metabolic enzymes in mycobacteria are not physically 276 

clustered, suggesting it might exhibit functional characteristics distinct from the E. coli GabP, 277 

where there is coordinated regulation of the gab gene cluster (24, 38). 278 

MsGabP was successfully expressed in C41 (DE3) ΔacrB cells grown in SB auto-induction 279 

(Fig. 1) medium with a yield of 0.7 mg/L culture, extending the success of using pTTQ18 based 280 

plasmids for the expression of a range of membrane transporters (39). This provided us with a 281 

platform for our metabolomics and other studies. We initially used in vivo (using a heterologous 282 

host) targeted metabolomics to identify potential MsGabP substrates. Our metabolomics 283 

analysis suggested that GABA and serine might both be substrates of MsGabP (Fig. 2), but not 284 

asparagine, aspartate or lysine (Fig. S3).  285 

https://paperpile.com/c/VLFpd2/QQhV
https://paperpile.com/c/VLFpd2/HNYa
https://paperpile.com/c/VLFpd2/3Glw
https://paperpile.com/c/VLFpd2/HZZ8
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Further functional characterization, using radiolabelled uptake assays with energized E. coli 286 

whole cells (Fig. 3), clearly demonstrated MsGabP mediated GABA uptake, and therefore 287 

confirmed that MsGabP is a GABA transporter. Uptake rate was in the range of ~0.05 µmol/mg 288 

cells, but it was essentially abolished, to ~0.01 µmol/mg cells in the presence of 50 μM CCCP 289 

(Fig. 3). Similarly, CCCP inhibited GABA uptake by non-homologus GabP in C. glutamicum 290 

(40). We have shown however that GABA uptake does not involve protons, therefore 291 

suggesting that transport is dependent on membrane potential rather than proton gradient. 292 

GABA uptake by MsGabP was also sensitive (~70%) to competition with β-alanine (Fig. 3), 293 

as previously observed for both eukaryotic (41) and prokaryotic (42) GABA transporters. 294 

Unfortunately, we could not measure uptake of β-alanine as we could not obtain it 295 

radiolabelled. Therefore, we could not determine if β-alanine is only a competitor or if it is a 296 

true MsGabP substrate. Interestingly, B. subtilis GabP transports β-alanine 500 times more 297 

efficiently than the E. coli transporter, reflecting the differences in binding domains of various 298 

GABA permeases (42).   299 

We next aimed to purify MsGabP, to perform more reliable transport measurements in 300 

proteoliposomes. We screened for conditions that maintain protein stability and 301 

monodispersity prior to reconstitution. Membrane protein purification strategy success depends 302 

on the type of detergent used for solubilization and the subsequent purification steps. The on-303 

column detergent exchange method adopted here represents a fast, versatile and economical 304 

approach to screen a series of detergents (43–44). Solubilization trials (Fig. 4A) of membrane 305 

preparation from cells with amplified expression of MsGabP using 12 different detergents at a 306 

concentration of 1% identified DDM as the best detergent. Though DDM can extract MsGabP 307 

efficiently from the membrane, DMNPG was preferred for its ability to stabilize the protein 308 

and was therefore used in downstream experiments.  309 

https://paperpile.com/c/VLFpd2/NGKX
https://paperpile.com/c/VLFpd2/IE6f
https://paperpile.com/c/VLFpd2/JhbD
https://paperpile.com/c/VLFpd2/JhbD
https://paperpile.com/c/VLFpd2/UBYa+hu4z+Fy9e
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Purified MsGabP was found to be dimeric in DMNPG (Fig. 5). This is not uncommon amongst 310 

this family: mouse GAT1 appears to form both dimers and high-order oligomers as shown by 311 

in vivo FRET experiments (45). Li and colleagues (46) showed that Fos-Choline 12 purified 312 

GABA transporter from E. coli is monomeric in solution. The difference in oligomerisation 313 

state is probably due to the FC-12, which is zwitterionic and much harsher than DMNPG, and 314 

so presumably denatures the protein (47, 48).  315 

We reconstituted MsGabP into proteoliposomes with 90% efficiency (Fig. S5). The presence 316 

of proteoliposomes in the upper fractions upon flotation on discontinuous sucrose gradient 317 

reflects successful protein incorporation (49). Like other secondary active transporters, 318 

substrate uptake by GABA transporter is driven by electrochemical ion gradients (50) and the 319 

co-transported ions vary among different organisms. Direct measurement of GABA transport 320 

with proteoliposomes showed that GABA uptake was tightly coupled with sodium cations 321 

(Na+) (Fig. 6), as previously seen in a non-homologus C. glutamicum transporter (40).  322 

A phylogenetic analysis (Fig. S6) of closely related sequences to GabP shows that this group 323 

of transporters is present across different classes of bacteria and includes the experimentally 324 

characterized GABA transporters of E. coli, B. subtilis and P. syringae, although at least one 325 

member, Ncgl1062 from C. glutamicum, has been shown to be an aromatic amino acid 326 

transporter. All Mycobacterium species analysed have one GabP sequence for which the 327 

phylogenetic distribution follows the evolutionary history of the genus, suggesting that it was 328 

present in the last common ancestor of all mycobacteria. It is reasonable to assume that in this 329 

orthologous cluster, the ability to transport GABA is preserved and that the annotation of 330 

Rv0522 as a GABA permease is appropriate. Some mycobacteria have a second GabP 331 

sequence that was probably acquired by lateral gene transfer, from within the same group of 332 

transporters: this includes M. smegmatis. Here we have shown that this second member is also 333 

a GABA transporter. Finally, structural analysis of the docked complexes revealed a similar 334 

https://paperpile.com/c/VLFpd2/mpg7
https://paperpile.com/c/VLFpd2/RE5K
https://paperpile.com/c/VLFpd2/KL9H+p45G
https://paperpile.com/c/VLFpd2/0sNR
https://paperpile.com/c/VLFpd2/D39w
https://paperpile.com/c/VLFpd2/NGKX
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binding pocket for GABA in all three homologues, with GABA being recognized by conserved 335 

amino acids residues (Fig. S7). The poses for MsGabP and MtbGabP are more similar than that 336 

of Ms5473, supporting our argument that both MsGabP and MtbGabP are GABA transporters. 337 

We can only speculate, but MsGabP and Ms5473 may differ in when they are expressed, and/or 338 

in their relative affinities for GABA, as is the case in S. aureus, which has two proline 339 

transporters (51). 340 

GABA may be an important metabolite required for mycobacterial pathogenesis, raising the 341 

therapeutic potential of inhibitors towards GABA permease. We hope these studies will lead 342 

to structural and further biochemical exploration of this novel mycobacterial transporter, 343 

resulting in the discovery of new potent drugs against TB.  344 

  345 
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MATERIALS AND METHODS. 346 

General. The primers used for PCR were from Sigma-Aldrich (St. Louis, MO, USA), enzymes 347 

for cloning from New England Biolabs (Ipswich, MA, USA), the reagents for the bicinchoninic 348 

acid (BCA) assay from Thermo Fisher Scientific (Waltham, MA, USA), His tag horseradish 349 

peroxidase-conjugated antibody from Bio-Techne (Minneapolis, MN, USA), detergents from 350 

Anatrace (Maumee, OH, USA), and radiolabelled γ-[2,3-3H(N)]-aminobutyric acid 351 

([3H]GABA) from Perkin Elmer (Waltham, MA, USA). All other chemicals were from Sigma-352 

Aldrich (St. Louis, MO, USA) and were of analytical grade or better. The Mycobacterium 353 

smegmatis MC2 155 strain was purchased from ATCC (Manassas, VA, USA), C41 (DE3) 354 

ΔacrB from Lucigen Corporation (Middleton, WI, USA), BL21 Gold (DE3) from Stratagene 355 

(La Jolla, CA, USA), BL21 Star (DE3) from Thermo Fisher Scientific (Waltham, MA, USA) 356 

and plasmid pRARE2 from Novagen (the Merck Group, Darmstadt, DE). All media, buffers 357 

and other solutions were prepared using deionized water. All media were sterilized by 358 

autoclaving or for thermally sensitive solutions by passage through 0.2 µM filters from 359 

Millipore. 360 

Cloning. An expression vector pL33 for the production of MsGabP was constructed by using 361 

the vector pTTQ18 (52). pL33 encodes a C-terminal His tag preceded by an HRV-3C protease 362 

cleavage site (53). The gene msmeg_6196 encoding GabP was amplified with M. smegmatis 363 

MC2 155 genomic DNA as template by PCR using the upstream primer with NheI site, 5’-364 

GCTAGCCTCGAATCGAGATCCGATCTG-3’, and downstream primer with SbfI site 5’-365 

CCTGCAGGCTCATCGGTTCTCGCAGC-3’. The amplified fragment was digested with 366 

NheI and SbfI and inserted between the corresponding sites of plasmid pL33 to construct the 367 

expression plasmid pL33-MsGabP. 368 

https://paperpile.com/c/VLFpd2/ZVuE
https://paperpile.com/c/VLFpd2/Phbn
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Cell growth and membrane preparation. Expression tests for MsGabP were performed using 369 

E. coli strains: C41 (DE3) ΔacrB, C41 (DE3) ΔacrB pRARE2, C43 (DE3) ΔacrB pRARE2, 370 

BL21 Gold (DE3) pRARE2 and BL21 Star (DE3) pRARE2 and three different types of media 371 

for cell growth (Lysogeny broth (LB), Superbroth (SB) and M9 auto-induction media) in 24 372 

deep-well plates (Whatman plc, GE Healthcare, IL, USA) at 37°C for 24 h with shaking at 373 

1,300 rpm (54). Isopropyl β-D-1-thiogalactopyranoside (IPTG) induction and auto-induction 374 

were compared to determine which condition produced more of the target protein. 10 μg of 375 

lysed cells (54) was loaded onto SDS-PAGE and protein expression determined by western 376 

blot using His tag horseradish peroxidase-conjugated antibody. Large-scale expression of 377 

MsGabP was performed in a 30 L fermentor (Infors HT). The cells were grown in SB auto-378 

induction medium at 37°C for 24 h and harvested by centrifugation (6000 x g, 20 min, 4°C). 379 

The cells were resuspended in 1 × PBS buffer (10 mM Na2HPO4, 1.8 mM KH2PO4, 137 mM 380 

NaCl, 4 mM KCl, pH 7.4) with a ratio of 6 ml buffer/g cells. Membranes were prepared 381 

following the protocol in (54), resuspended with 1 × PBS buffer and total protein concentration 382 

in the membrane was measured by BCA assay (55). 383 

Solubilization and purification of MsGabP. The solubilization test was carried out at 4°C 384 

with 12 different detergents (Table 1). The membrane fraction of E. coli/MsGabP adjusted to 385 

2 mg/ml was incubated in 20 mM Tris (pH 8.0), 150 mM NaCl, 10% (v/v) glycerol and 1% 386 

(w/v) of the tested detergent at 4°C for 1 h. Samples before and after centrifugation at 387 

100,000  × g for 1 h were analyzed by western blot. Purification was started with 100 mg of 388 

total membrane protein that was homogenized and solubilized for 1 h at 4°C in solubilization 389 

buffer (10 mM Na2HPO4, 1.8 mM KH2PO4, 4 mM KCl, 287 mM NaCl, 7.5 mM imidazole, 390 

10% (v/v) glycerol, pH 7.4) with 1% (w/v) DDM at a protein concentration of 5 mg/ml, 391 

followed by removal of insoluble material by centrifugation at 100,000 × g for 1 h. The 392 

supernatant was incubated with 1 ml HisPurTM cobalt resin (50% slurry) (Thermo Fisher 393 

https://paperpile.com/c/VLFpd2/dxVF
https://paperpile.com/c/VLFpd2/dxVF
https://paperpile.com/c/VLFpd2/dxVF
https://paperpile.com/c/VLFpd2/1Y0T
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Scientific, Waltham, MA, USA), pre-equilibrated with wash buffer 1 (same composition as the 394 

solubilization buffer) containing 0.05% (w/v) DDM at 4°C, for 2 h with gentle mixing. 395 

Immobilized-metal affinity chromatography (IMAC) was performed by mixing the supernatant 396 

with the equilibrated resin for 2 h with gentle mixing. The resin was then packed into the 397 

Econo-Pac® disposable gravity-flow chromatography column (Bio-Rad, Hercules, CA, USA). 398 

Unbound material was collected followed by washing of the column with ~10 x column 399 

volumes of wash buffer 1 and 2 (differing from wash buffer 1 only by the imidazole 400 

concentration, which was 10 mM). 401 

On-column detergent exchange. Detergent was exchanged on-column from DDM into 402 

CYMAL 6, β-OG, OGNPG, DMNPG, LMNPG, DM, UDM, UDTM, DDTM, 13M and 14M 403 

by replacing DDM in the wash buffer 2 with 3 × CMC of each detergent. The resin then was 404 

washed with a wash buffer 3 (20 mM HEPES, (pH 7.0), 100 mM NaCl, 5% (v/v) glycerol, 3 × 405 

CMC of detergent) for 8 x column volume to remove imidazole. HRV-3C protease was then 406 

added at a molar ratio of 1:1 to the target protein to the resin with a minimal volume of wash 407 

buffer 3 and incubated at 4°C overnight to cleave the His tag. The following day, the protein 408 

was eluted from the column using ~7 ml of a wash buffer 3 and then concentrated to a volume 409 

of ~100 µl by centrifugation using a concentrator with a MW cut off of 50 kDa (Vivaspin 2, 410 

Sartorius). 411 

Microscale fluorescent thermal stability assay. The stability of the protein purified in 412 

different detergents was checked by microscale fluorescent thermal stability assay as described 413 

in (28) with the following modifications. The buffer used for dilution of the dye N-[4-(7-414 

diethylamino-4-methyl-3-coumarinyl)phenyl] maleimide (CPM) was the same as the buffer 415 

that the protein sample was eluted with. After briefly mixing the dye and the protein sample, 416 

the mixture was equilibrated at room temperature for 10 min while protecting it from light, and 417 

https://paperpile.com/c/VLFpd2/IuzR
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then placed into the Stratagene Mx3005P Real Time PCR machine (Agilent Technologies, 418 

Santa Clara, CA, USA). The ramp rate was 4°C/min and the starting and ending temperatures 419 

were 25°C and 90°C. Data were processed with GraphPad Prism program (GraphPadPrism for 420 

Mac, GraphPad Software, San Diego, CA, USA [http://www.graphpad.com/scientific-421 

software/prism/]). 422 

Size Exclusion Chromatography-Multi Angle Laser Light Scattering. The molecular mass 423 

and the oligomerization state of the purified MsGabP was determined via size exclusion 424 

chromatography coupled to light scattering, absorbance and differential refractive index 425 

detectors method. The refractive index and light scattering detectors were from Wyatt 426 

Technology (Goleta, CA, USA) and the UV detector and chromatography pumps from 427 

Shimadzu Corporation (Kyoto, Japan). The Superose 6 column (WTC-MP030S5 (Wyatt 428 

Technology, Goleta, CA, USA)) was equilibrated with 20 mM HEPES (pH 7.0), 100 Mm 429 

NaCl, 5% (v/v) glycerol, 0.0102% (w/v) DMNPG overnight. 30 µl of MsGabP (3 mg/ml) was 430 

injected and the sample eluted from the column was analyzed by three detectors (30). Data 431 

obtained were analyzed using ASTRA software package, version 6.1 (Wyatt Technology, 432 

Goleta, CA, USA). The program calculated MW,protein, MW,detergent and MW,total throughout the 433 

peak and also provides information on the monodispersity of the peak (56). 434 

Targeted metabolomics study. E. coli strain C41 (DE3) ΔacrB harbouring pL33 or pL33-435 

MsGabP were cultured in 50 ml LB medium at 37°C for 8 h in 250 ml shaker flasks. 108 cells 436 

were transferred onto mixed cellulose filters (pore size: 0.22 μm, Merck Millipore, Billerica, 437 

MA, USA) by vacuum filtration and then incubated overnight at 30°C in agar plates (1.5% 438 

(w/v) containing minimal medium (50 mM Na2HPO4, 50 mM KH2PO4, 25 mM (NH4)2SO4, 439 

2  mM MgSO4, trace metals, vitamins, 0.5% glucose) supplemented with ampicillin (100 μg 440 

ml− 1). The cells were adapted for 1 h at 37°C. Filters with the cells were transferred onto 441 

https://paperpile.com/c/VLFpd2/oIuI
https://paperpile.com/c/VLFpd2/rTUT
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minimal medium agar (1.5% (w/v)) plates supplemented with the specific amino acid tested 442 

(1 mM or 5 mM), 0.5 mM IPTG and ampicillin (100 μg ml− 1), and incubated for 0.5 h at 37°C. 443 

The cells were harvested and transferred to 1 ml acetonitrile/methanol/water (2:2:1 v/v/v) 444 

solution. The cells were then disrupted using a bead beater and polar metabolites were 445 

extracted. After centrifugation, supernatants were collected and filtered with 0.22 μm spin-X 446 

column filters (Costar, Corning Inc., NY, USA). Extracts were stored at -80°C before analysis. 447 

The amino acids tested were arginine, aspartate, asparagine, GABA, glutamate, glutamine, 448 

lysine, and serine. The liquid chromatography-mass spectrometry was performed as described 449 

(57). Aqueous normal phase liquid chromatography was performed using an Agilent 1200LC 450 

system with a flow rate of 0.4 ml/min. Elution of polar compounds was performed using a 451 

gradient of solvents A (Milli-Q water and 0.2% acetic acid) and B (acetonitrile and 0.2% acetic 452 

acid). Accurate mass spectrometry was performed using an Agilent Accurate Mass 6230 TOF 453 

apparatus equipped with Multi-mode Ion source. Data were analyzed using Qualitative 454 

Analysis B.07.00 software and the metabolites were identified comparing the accurate m/z 455 

(error less than 10 ppm) and the retention time with the accurate m/z and the retention time of 456 

standard solutions for the specific metabolite. The ions counts were recorded and normalized 457 

to the residual protein content (detected by BCA assay) present in each extract. 458 

Whole-cell radiolabeled assay. C41 (DE3) ΔacrB E. coli was grown in M9 minimal medium 459 

supplemented with glycerol (20 mM) and carbenicillin (100 μg ml− 1) in volumes of 50 ml at 460 

37°C in 250 ml baffled conical flasks with aeration at 200  rpm to an OD680 of ∼0.4–0.6. The 461 

cells were then either un-induced or induced with IPTG (0.5 mM) for further 1 h. Harvested 462 

cells (by centrifugation at 2500 x g for 10  min) were washed three times with 40  ml of buffer 463 

(5 mM MES, pH 6.6, 100 mM NaCl and 50 mM KCl) and then resuspended to a cell density 464 

of A680 ~2.0. Cell suspension (196 μl) containing 20 mM glycerol was aerated in a bijou bottle 465 

held in a water jacket at 37°C for 3 min, and then [3H]GABA (50 μM) with a specific activity 466 

https://paperpile.com/c/VLFpd2/6hRDp
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of 10 μCi/ml was added with brief mixing. Exactly 10 min after adding the [3H]GABA, 80 μl 467 

aliquots were transferred to cellulose nitrate filters (0.45 μm pore size), pre-soaked in transport 468 

buffer, on a vacuum manifold and washed with transport buffer (6  ml). The filters were 469 

transferred to scintillation vials with 10 ml Emulsifier-Safe liquid scintillation fluid (Perkin 470 

Elmer) and incubated overnight. The level of [3H] radioactivity was measured by liquid 471 

scintillation counting (Packard Tri-Carb 2100TR instrument, Perkin Elmer, Waltham, MA, 472 

USA). The measured value of disintegrations per minute was converted into μmol/mg cells. 473 

Background counts were measured by washing filters under vacuum in the absence of cells or 474 

radiolabeled substrate. Standard counts were measured by transferring 1, 2.5, 5 and 10 μl 475 

radiolabeled substrate stock solution directly to a washed filter in the vial.  476 

To test the effect of CCCP on transport, it was added at a final concentration of 50 µM. To test 477 

the effect on [3H]GABA uptake, unlabelled β-alanine (final concentration 5 mM) was added to 478 

the cells prior to energizing the proteoliposomes. [3H]GABA was added 5 min after and 80 μl 479 

aliquot was taken to measure the radioactivity. 480 

Protein reconstitution and liposome flotation assay. The E. coli lipid extract (Avanti Polar 481 

Lipids, Inc.) dissolved in chloroform was dried under nitrogen and the lipid film was 482 

resuspended by vortexing to 10 mg/ml with reconstitution buffer (25 mM HEPES (pH 6.8), 483 

including 200 mM KCl and 1 mM DTT). The dissolved lipid was then passed eleven times 484 

through 0.4 μm and then 0.2 μm pore size filters (polycarbonate Nucleopore Track Etch 485 

membrane filters) placed inside the barrel of the extruder. To destabilize the liposomes and 486 

allow the insertion of the membrane protein, 1.1% β-octyl glucoside (OG) was added to 1 ml 487 

of liposomes. The purified protein was added at 500:1 lipid to protein ratio and incubated at 488 

4°C for 1 hour. This was then diluted to 15 ml with a reconstitution buffer and centrifuged at 489 

100,000 x g for 1 h at 4°C. Liposome pellets were resuspended in 1 ml of the reconstitution 490 
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buffer. Proteoliposomes were analyzed using a flotation assay in sucrose gradient made of 491 

layers containing 60%, 30%, 10%, 5% and 2.5% (mass/vol.) sucrose. 250 μl of 492 

proteoliposomes were added to 250 μl of 60% sucrose (in 1 x HEPES buffer, pH 6.8). This 493 

fraction was overlaid with 0.5 ml of 30% sucrose, 20%, 10%, 5% and finally 0.4 ml of 2.5% 494 

sucrose. After centrifugation at 259,000 x g for 16 h, the fractions were collected from the 495 

gradient, and analyzed for protein by SDS-PAGE.  496 

Fluorimetric transport assay. The proteoliposomes (5 μL) loaded with 25 mM HEPES 497 

(pH 6.8) 200 mM KCl and 1mM pyranine dye were diluted in a buffer (1 mL) containing 498 

25 mM HEPES (pH 6.8), 200 mM NaCl and equilibrated in a stirred cuvette in the Photon 499 

Technology International QM-1 spectrophotometer (PTI, U.K.) for 3 min. Fluorescence was 500 

monitored using 400 and 450 nm excitation and 509 nm emission. To induce membrane 501 

potential, valinomycin was added (5 nM) at ~60 sec, followed by the addition of 30 mM GABA 502 

at ~160 sec and 0.03 mM CCCP at ~200 sec. The internal pH change was monitored as a 503 

change in the ratio of 450:400 nm pyranine fluorescence (58). 504 

Radiolabeled assay with proteoliposomes. GABA transport was initiated by diluting 6.6 μl 505 

of proteoliposomes loaded with 25 mM HEPES (pH 6.8) 200 mM KCl buffer into 330 μl of 506 

external transport buffer: either 25 mM HEPES (pH 6.8) 200 mM NaCl buffer or 25 mM 507 

HEPES (pH 6.8) 200 mM choline chloride. To determine whether the presence of membrane 508 

potential (ΔΨ) was needed to drive GABA uptake, 5 nM valinomycin and/or 0.03 mM CCCP 509 

were added to the transport buffers. The incubation time was about 60 seconds before starting 510 

the reactions by addition of [3H]GABA (specific activity 10μCi/mL ) at a final concentration 511 

of 50 μM. 10 min after adding the radiolabeled substrate, 80 μl aliquots were transferred to 512 

cellulose nitrate filters (0.45 μm pore size) pre-soaked in transport buffer on a vacuum manifold 513 

and washed immediately with transport buffer (6  ml). The filters were transferred to 514 

https://paperpile.com/c/VLFpd2/wYLy
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scintillation vials and radioactivity measured as described for the whole cell assay. The 515 

measured value of disintegrations per minute was converted into pmol/mg protein/min. 516 

Phylogenetic analysis. The sequences of Cluster of Orthologous Groups 1113 were 517 

downloaded from EggNOG (59) and clustered using an 80% identity threshold with CD-HIT 518 

(60). An alignment was calculated using Mafft v7.310 FFT-NS-2 (61). Sequences with less 519 

than 400 residues were removed and the alignment was simplified to less than 85% redundancy 520 

with Jalview 2.11 (62). Both termini were truncated to the first and the last column with 100% 521 

occupancy. 522 

Independently, in-house scripts and BLAST+ (63) were used to mine mycobacterial and 523 

selected model bacteria sequences using the sequence of E. coli GABA permease as query and 524 

an expect threshold of e-100. Matches were aligned with MUSCLE (64) and the alignment was 525 

truncated and simplified to less than 95% redundancy as previously explained. Both alignments 526 

were combined using Mafft and checked for redundancy and partial/truncated and very 527 

divergent entries were removed. 528 

The cluster of GabP sequences was then extracted leaving behind those of related the 529 

transporters, e.g. AnsP (P9WQM7), CycA (O33203), YifK (P27837), ProY (P0AAE2), pheP 530 

(P24207), LysP (P25737) and yvbW (O32257).  A final alignment of this cluster was calculated 531 

using Mafft G-INS-I and consisted of 273 sequences. The best-fit evolutionary model for the 532 

alignment was LG+F+R6 as calculated by ModelFinder (65). Maximum likelihood 533 

phylogenetic analysis was done using IQ-TREE v1.6.11 (66) with 100 standard bootstrap 534 

replicates. Phylogenetic trees were visualized with Dendroscope (67). 535 

  536 
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Molecular model of GabPs and molecular docking of GABA. De novo protein modelling 537 

of MsGabP was performed using the Robetta server (68). The protein structures of MtbGabP 538 

and Ms5473 were homology-modelled by Phyre2 (69), using MsGabP protein sequence as 539 

query. The rank matches for both models had 50% identity and 100% confidence, indicating 540 

high probability of modelling success. The graphical user interface Maestro (version 12.4, 541 

Schrodinger LLC, New York, NY, 2020) was used to visualise the three protein models, which 542 

were prepared for molecular modelling using the Protein Preparation Wizard (default settings). 543 

The GABA ligand was drawn in Maestro and a low energy, zwitterionic conformation was 544 

generated using Ligprep (version 12.4 Schrodinger LLC, New York, NY, 2020). A 36 Å 545 

receptor grid encompassing the protein structure was generated centred on a user-defined 546 

residue (MsGabP G223, MtbGabP T193, Ms5473 V210). Molecular docking of the GABA 547 

ligand was performed on each protein model using Glide in SP mode using default settings but 548 

outputting 15 poses (version 12.4, Schrodinger LLC, New York, NY, 2020). The predicted 549 

binding poses of the GABA ligand were ranked by docking score and the list visually inspected 550 

for predicted hydrogen bonding and their associated directionality and length, steric 551 

clashes/unfavourable interactions, and ligand conformations. A GABA binding pose within 552 

each protein model was chosen based on the above criteria.  553 

  554 
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FIGURES 1 

 2 

FIG 1 Expression of MsGabP. The expression of MsGabP in E. coli was analysed by western 3 

blotting (band migrating at ~36 kDa indicated by an arrow, detected by anti-HIS antibody). Lanes 4 

represent MsGabP expression results in: (1) C41 (DE3) ΔacrB pRARE2; (2) C43 (DE3) ΔacrB 5 

pRARE2 (3) C41 (DE3) ΔacrB; (4) BL21 Star (DE3) pRARE2; (5) BL21 Gold (DE3) pRARE2. 6 

Media type labelled as follows: C: LB media containing glucose; L: LB auto-induction media; S: 7 

SB auto-induction media; M9: M9 auto-induction media. The gels were spliced for labelling 8 

purposes.   9 

  10 



 11 

FIG 2 Targeted metabolomics study results of GABA (A) and serine (B). The amino acids were 12 

tested with two concentrations, 1 mM and 5 mM. The black and grey bar represents uptake resulted 13 

from cells harbouring plasmid with MsGabP or the empty vector as control, respectively. The 14 

charts show means (bars) and standard deviations (error bars) of three biological replicates of one 15 

independent experiment. They are representative of two independent experiments. They y-axes 16 

report the ion counts normalised on residual protein content (ions counts/peptides*1000).  17 

  18 



 19 

FIG 3 Direct measurement of [3H]GABA uptake into E. coli cells. GABA: transport assay 20 

conducted in the presence of [3H]GABA; β-ala: unlabelled 5 mM β-alanine was added before the 21 

addition of [3H]GABA; CCCP: 50 μM CCCP was added before the addition of [3H]GABA. The 22 

black and grey bar respectively represents the GABA uptake from cells harbouring plasmid with 23 

the GabP gene or empty vector. The data are means of three measurements. Error bars indicate 24 

standard deviations.  25 

  26 



 27 

FIG 4 Solubilisation of MsGabP. A) Detergent solubilisation screen. Anti-His Western blot of the 28 

supernatant fractions following solubilisation with: (1) CYMAL 6; (2) LMNPG; (3) DMNPG; (4) 29 

OGNPG; (5) β-OG; (6) 14M; (7) 13M; (8) DDTM; (9) DDM; (10) UDTM; (11) UDM; (12) DM; 30 

Lane 13 is a membrane fraction with no detergent added; M represent protein molecular marker 31 

(kDa). B) Microscale fluorescent thermal stability assay of MsGabP. GabP purified with DDM at 32 

pH 7.0. The blue line represents data points collected during the MsGabP unfolding process and 33 

the black line from buffer blank control samples. Table shows the summary of Tm values calculated 34 

from the melting curves. Values shown are means of two separate measurements. 35 
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 37 

FIG 5 SEC-MALLS analysis of purified MsGabP. A) SDS-PAGE of MsGabP eluted in DMNPG. 38 

The arrows indicate the bands on the gel corresponding to MsGabP at ~36 kDa and ~70 kDa. 39 

B) SEC-MALLS UV chromatogram. The thick orange, grey and blue lines indicate the molar mass 40 

distribution of the eluting protein, detergent and total complex respectively (scale on the right-41 

hand axis). Black lines indicate the part used for calculations of molar masses. 42 
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 44 

FIG 6 Transport activity of the purified MsGabP reconstituted into liposomes. Radioactive GABA 45 

uptake measured in the presence of 200 mM NaCl (A) and 200 mM NaCl or 200 mM choline 46 

chloride, in the presence and absence of valinomycin (5 nM) and/or CCCP (0.03 mM) (B). GABA 47 

transport was measured for 10 min. C) Monitoring of pH variation during GABA transport with 48 

pyranine. The ratio of fluorescence at 450:400 nm is shown over time. The black and grey bars 49 

represent uptake resulted from proteoliposomes containing MsGabP and protein-free liposome as 50 

control samples, respectively. All liposomes were loaded with 25 mM HEPES (pH 6.8), including 51 

200 mM KCl. The data are means of three measurements. Error bars indicate standard deviations. 52 
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TABLES  1 

Table 1. Detergents tested for solubilization efficiency and MsGabP yield after detergent  2 

exchange.  3 

Detergent Concentration 

 (x CMC) 

Concentration 

 (%) 

MsGabP yield after 

detergent exchange 

(%) 

DDM 5.7 0.05 100 

CYMAL 6 3 0.084 92.3 

-OG 3 1.59 0 

OGNPG 3 0.174 35.9 

DMNPG 3 0.0102 83.7 

LMNPG 3 0.003 0 

DM 3 0.261 71.8 

UDM 5 0.145 84.8 

UDTM 5 0.055 90.9 

DDTM 5 0.013 51.5 

13M 5 0.0085 72.7 

14M 5 0.0027 0 

n-Dodecyl-β-D-Maltopyranoside (DDM), 6-Cyclohexyl-1-hexyl-β-D-maltoside (CYMAL 6), n- 4 

Octyl-β-D-Glucopyranoside (β-OG), Octyl Glucose Neopentyl Glycol (OGNPG), Decyl Maltose 5 

Neopentyl Glycol (DMNPG), Lauryl Maltose Neopentyl Glycol (LMNPG), n-Decyl-β-D-6 

Maltopyranoside (DM), n-Undecyl-β-D-Maltopyranoside (UDM), n-Undecyl-β-D-  7 

Thiomaltopyranoside (UDTM), n-Dodecyl-β-D-Thiomaltopyranoside (DDTM), n-Tridecyl-β-D- 8 

Maltopyranoside (13M) and n-Tetradecyl-β-D-Maltopyranoside (14M). Values in the column 9 

“MsGabP yield after detergent exchange (%)” shows protein yield after detergent exchange. 10 

The  number was calculated using the amount of MsGabP obtained with eleven different detergents 11 

divided by the amount obtained from purification with DDM. CMC, critical micellar 12 

concentration.  13 
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