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There remains a significant challenge to model ice crystal fabrics both accurately and 

efficiently within ice-sheet models. We develop the first fully constrained continuum 

model, validated against experiments, able to predict the evolution of a crystal fabric for 

any flow field or temperature. For this, we apply a mesoscopic continuum model describing 

the evolution of a mass distribution function of 𝑐-axis orientations. The model assumes that 

ice deforms by dislocation creep with slip primarily along the basal plane, and incorporates 

the effects of rigid body rotation, migration recrystallization and rotational 

recrystallization. We solve the model using a new spectral method, which is 

computationally highly efficient. By constraining the model parameters using data from 

laboratory experiments in simple shear, we provide the first estimates of two fundamental 

dimensionless parameters controlling the importance of different recrystallization 

processes as a function of temperature, as well as the first constraints on the strain rate 

dependence of these parameters. With no further fitting, we apply the model to the case of 

compression, yielding excellent quantitative agreement with observed fabrics from 

corresponding experiments. The combination of the model, the spectral method and the 

parameter constraints as functions of temperature provide accurate and efficient 

predictions of ice crystal fabric evolution for general deformations, temperatures and 

strain rates. The model-solver (SpecCAF) can, in principle, be extended to other important 

polycrystalline materials including olivine, the key material in mantle dynamics. 

Ice microstructure, crystallographic preferred orientation (CPO), continuum modelling, 

migration recrystallization, dynamic recrystallization, spherical harmonics 



 

 

1 Introduction 

Mass loss from ice sheets is set to be the main contributor to sea-level rise this century 

(Shepherd et al., 2018). In natural flows, ice grains align along preferred directions, 

creating a strong viscous anisotropy. Ice deformed in uniaxial compression can have a 

viscosity up to ten times lower than isotropic ice (Pimienta and Duval, 1987; Shoji and 

Langway, 1988). The ice fabric is an important control on the rheology (Minchew et al., 

2018) through the induced viscous anisotropy. However, even state-of-the-art ice-sheet 

models (Gagliardini et al., 2013; Winkelmann et al., 2011) either neglect the effects of 

crystal anisotropy or apply a low resolution or unconstrained of fabric that neglect the key 

process of recrystallisation. Discrete models that solve for the microstructure directly have 

also been developed and analysed (Montagnat et al., 2014). However, these are both 

computationally expensive and can fail to produce certain features of ice fabric. There is a 

need for a reliable, constrained and computationally inexpensive model that can be 

integrated into large-scale ice-sheet models.  

Many laboratory experiments have been performed to investigate CPO development: in 

uniaxial compression (Craw et al., 2018; Fan et al., 2020; Jacka, 2000; Jacka and Maccagnan, 

1984; Montagnat et al., 2015; Piazolo et al., 2013; Qi et al., 2017; Vaughan et al., 2017) and 

simple shear (Journaux et al., 2019; Qi et al., 2019). This provides a large set of 

measurements at a range of temperatures, strains and strain rates that could be used to 

benchmark new models and constrain their underlying parameters. 

At a theoretical level, there are also several remaining open questions regarding the 

development of CPOs in ice. At the microscopic scale, there is still uncertainty over which 

slip systems and modes of recrystallization are key for producing the CPO patterns 

observed in nature and the laboratory (Qi et al., 2019). Furthermore, there is only a 

qualitative, not quantitative, understanding of the importance of different recrystallization 

processes at different temperatures (Piazolo et al., 2013). The essential effect of strain rate 

on CPO remains an area of ongoing research (Wilson et al., 2019) 

Here, we use a continuum model based on the CAFFE model (Placidi et al., 2010) to model 

the mass distribution of crystal orientations, which we solve using a spectral method 

(Montgomery-Smith et al., 2010) originally developed for fibre flows. By solving the inverse 

problem for the model parameters, we provide the first quantification of the magnitudes of 

different processes as functions of temperature. This combination provides a fully 

constrained continuum model for modelling the ice fabric, across a range of temperatures 

and deformations. 



 

 

1.1 Processes affecting crystal fabric evolution 

The distribution of crystallographic orientations within a polycrystal is called the fabric or 

crystallographic preferred orientation (CPO). Due to the dominance of basal slip in ice 

(Duval et al., 2010), we can model the CPO by considering only the normal to the basal 

plane, referred to as the 𝑐-axis. As ice flows, the 𝑐-axes align to produce a CPO from the 

combination of deformation and recrystallization. Figure 1 illustrates schematically the 

deformation and recrystallization processes that affect the fabric: basal slip deformation, 

rigid body rotation, rotational recrystallization and migration recrystallization, which we 

will describe in turn below. For each, the effect on the microstructure is shown above a 

diagram, referred to as a pole figure, in which the colour indicates the mass distribution of 𝑐-axis orientations projected onto a plane. Since the pole figures are antipodally symmetric, 

it shows all the orientation information. 

At typical temperatures for an ice sheet (−30∘
 C to −5∘

 C) slip along the basal plane 

dominates (Duval et al., 2010). However, non-basal slip can account for up to 30% of 

deformation in some cases (Chauve et al., 2017). Basal-slip deformation (Figure 1a) can be 

understood through an analogy to a deck of cards sliding over one another causing 𝑐-axes to 

rotate towards the axis of compression (Azuma and Higashi, 1984; van der Veen and 

Whillans, 1994). A corresponding pole figure of the mass distribution of 𝑐-axis orientations 

shows the movement of a cluster of 𝑐-axes towards the compression axis. Furthermore, any 

vorticity in the flow acts to rotate the 𝑐-axes around the axis of vorticity (Figure 1b). 

Rotation and migration recrystallization are significant processes in flowing ice (Faria et al., 

2014). During rotation recrystallisation (Figure 1c), sub-grains form close to the grain 

boundaries due to localized stress concentrations (Drury and Urai, 1990). The sub-grains 

are smaller than their parent grains and have a similar but slightly different orientation. 

With increasing strain, the sub-grains rotate successively away from the orientation of 

their parent grain. Consequently, rotational recrystallization can be represented in a pole 

figure (Figure 1c) as an outwards diffusion of the mass distribution of 𝑐-axis orientations 

away from the initial orientations 𝒏1,2,3.  

Figure 1d illustrates migration recrystallization through the process of grain-boundary 

migration.  Grains with a lower dislocation density with a 𝑐-axis orientated towards a given 

direction 𝒏1 will grow into neighbouring grains with higher dislocation densities with 

directions 𝒏2. Migration is driven by the difference in deformation energy between the 

grains stored in the dislocations (Drury and Urai, 1990). Consequently, the mass fraction 

orientated towards 𝒏1 increases and the mass fraction towards 𝒏2 decreases. Migration 

recrystallization has a similar effect as nucleation of new grains. The probability for a new grain to nucleate and survive is highly dependent on its orientation. “Soft” orientations, 

which allow easy crystal slip and hence do not accumulate high dislocation densities, are 



 

 

favoured. Consequently, the distinct phenomena of grain boundary migration and 

nucleation have a similar effect on the evolution of the orientation space (Cyprych et al., 

2016). 

1.2 Crystal fabric and ice flow modelling approaches  

There are currently several approaches for modelling the CPO of ice. Llorens et al. (2016) 

model the microstructure directly using a discrete model incorporating deformation and 

recrystallization processes. This involves simulating both individual grains and the 

interactions between them. Any deformation is imposed as a boundary condition. Kennedy 

and Pettit (2015) take a similar approach by modelling a network of cuboids with each 

cuboid representing an individual grain. These approaches are key to improving our 

understanding of the processes that lead to CPO formation. However, since they require 

solving for the microstructure directly (∼ 10−3
 m), they are too computationally expensive 

to be incorporated into models of ice sheet flows (∼ 105
 m). Furthermore, they are unable 

to reproduce some commonly observed patterns seen in experiments and nature, including 

the secondary 𝑐-axis cluster commonly seen in pole figures for simple shear. 

Bargmann et al. (2012) used the CAFFE model (Placidi et al., 2010) with rotational and 

migration recrystallization to model the evolution of ice fabric at an ice divide. The model 

was implemented using a finite-volume method. They found good agreement up to 

intermediate depths, before encountering instabilities in their numerical model. In 

compression, their scheme reproduced cone-shape fabrics, but was unable to reproduce a 

secondary cluster in shear due to the numerical instabilities. They provided order of 

magnitude estimates for the model parameters.  

At a larger scale there are ice-sheet flow models, which are key to predicting future sea-

level rise. However, many models such as PISM (Winkelmann et al., 2011), ISSM (Larour et 

al., 2012) and others (Cornford et al., 2013; Lipscomb et al., 2018) do not include viscous 

anisotropy. Elmer/Ice (Gagliardini et al., 2013) incorporates anisotropy, and calculates the 

CPO development using an evolution equation for the second moment of the CPO 

distribution function (the second-order orientation tensor), without recrystallization. This 

approach is computationally inexpensive and can easily accommodate different 

deformations but cannot accurately reproduce experimentally observed CPOs. The 

anisotropic viscosity is directly related to the CPO. Therefore, modelling the CPO accurately 

is key to modelling viscous anisotropy reliably. 

2 Model details 

To model CPO development, we use the continuum approach of Faria (2006) and Placidi et 

al. (2010), in which we track the evolution of a distribution function of orientations. The 



 

 

model tracks quantities over both macroscopic position 𝒙 and orientation space 𝒏. This is 

based on the theory of mixtures of continuous diversity (Faria, 2001) that considers ice as a 

mixture of grains possessing different orientations. Orientations can be defined by the 

vector 𝒏(𝜃, 𝜑) in spherical coordinates: 𝒏 = 𝑠𝑖𝑛 θ 𝑐𝑜𝑠 φ 𝒆𝟏 + 𝑠𝑖𝑛 θ 𝑠𝑖𝑛 φ 𝒆𝟐 + 𝑐𝑜𝑠 θ 𝒆𝟑, (1) 

where 𝜃 is is the polar angle, 𝜑 is the azimuthal angle and {𝒆1, 𝒆2, 𝒆3} is a fixed orthonormal 

basis. 

The model makes two continuum assumptions: first that, within any parcel of fluid in 

macroscopic space 𝒙, there are many grains. Second, within any solid angle in orientation 

space 𝒏, there are also many grains. This means that any inhomogeneities at the grain scale 

are smeared out in orientation space, and we can assume that the velocity is a function of 

space only and not orientation. This assumption should be valid provided that the ice is 

deforming by dislocation creep (Faria et al., 2008). 

In this section, we retain the generality of the equations in order to demonstrate their 

versatility and applicability towards large-scale ice-sheet flow models. Afterwards we will 

apply them to model ice deformed in laboratory experiments, where the variation in 

macroscopic space 𝒙 is negligible. 

2.1 CPO evolution 

We model the CPO using the orientation mass density, 𝜌∗, defined by Faria (2006) as 𝜌(𝒙, 𝑡) = ∫ 𝜌∗𝑆2 (𝒙, 𝑡, 𝒏) d𝒏. (2) 

Here, 𝜌∗d𝒏 is the mass fraction of grains with orientations towards 𝒏 within the solid angle d𝒏 (Placidi et al., 2010). It should be noted that 𝜌∗ describes the mass distribution of 

orientations, in contrast to the common definition of the orientation distribution function in 

glaciology (Gagliardini et al., 2009), which describes the number distribution. Except for the 

unit orientation vector 𝒏, we denote all quantities that vary over orientation space by an 

asterisk. To model the evolution of the orientation density, we apply the model specified by 

Placidi et al. (2010): 𝜕𝜌∗𝜕𝑡 + ∇ ⋅ [𝜌∗𝒖] = −∇∗ ⋅ [𝜌∗𝒗∗] + 𝜆∇∗2(𝜌∗) + 𝛽(𝒟∗ − ⟨𝒟∗⟩)𝜌∗. (3) 

In this equation, 𝒖(𝒙, t) is the macroscopic velocity field, and ∇∗ is the gradient operator in 

orientation space defined by 



 

 

𝛻∗𝒗∗ = 𝜕𝒗∗𝜕𝒏 − (𝜕𝒗∗𝜕𝒏 ⋅ 𝒏) 𝒏 = 𝜕𝑣𝑖∗𝜕𝑛𝑗 − 𝜕𝑣𝑖𝜕𝑛𝑙 𝑛𝑙𝑛𝑗 . (4) 

(the gradient operator restricted to the surface of a sphere). The parameters 𝜆 and 𝛽 

represent coefficients controlling the rates of rotational recrystallization and migration 

recrystallization respectively. The orientationally dependent term 𝒟∗ will be defined later 

in eq. (6). The term 𝒗∗ defines the orientation transition rate, defined by Placidi et al. 

(2010) as 𝑣𝑖∗ = 𝑊𝑖𝑗𝑛𝑗 − 𝜄[𝐷𝑖𝑗𝑛𝑗 − 𝑛𝑖𝑛𝑗𝑛𝑘𝐷𝑗𝑘]. (5) 

Here 𝐖 = (∇𝒖  −  ∇𝒖𝑇)/2  is the vorticity tensor and 𝐃 = (∇𝒖 + ∇𝒖𝑇)/2 is the strain rate 

tensor. If this equation is applied to an individual grain, it describes the c-axis rotation rate 

(Gödert and Hutter, 1998; Svendsen and Hutter, 1996) under the Taylor hypothesis 

(neglecting grain-grain interactions). However, since we are using a continuum model that 

assumes a large number of grains within any solid angle of orientation, any grain-grain 

interactions are smeared-out (Faria et al., 2008). In this continuum model, we do not 

therefore require the Taylor hypothesis. 

The first term in eq. (5) represents the effect of vorticity on the CPO (Figure 1b). The 

second term models basal-slip deformation (Figure 1a). The non-dimensional parameter 𝜄 
represents the ratio of basal-slip deformation to vorticity induced the rigid-body rotation 

induced by vorticity. If 𝜄 = 1 then the rotation caused by vorticity and basal-slip 

deformation are of equal magnitude. However, 𝜄 is free to take values not equal to 1. For 𝜄 <1 the effect of basal-slip deformation is weaker than rigid-body rotation and vice versa. 

Previous work (Placidi and Hutter, 2006; Seddik et al., 2008) suggests that 𝜄 ≈ 0.5 fits data 

from ice core samples. Because the activity of different slip systems in ice varies with 

temperature, we expect 𝜄 to be a function of temperature. 

The parameter 𝜆 (s−1) in eq. (3), represents the rate of the rotational recrystallization, 

which, as shown in Figure 1c and discussed above, can be modelled by a diffusion in 

orientation space (Gödert, 2003). Migration recrystallization is modelled by an orientation-

dependent source term, with the rate controlled by 𝛽 (s−1). The orientation dependence is 

governed by the deformability, defined by 

𝒟∗ = 5 (𝐷𝑖𝑗𝑛𝑗)(𝐷𝑖𝑘𝑛𝑘) − (𝐷𝑖𝑗𝑛𝑗𝑛𝑖)2𝐷𝑚𝑛𝐷𝑛𝑚 . (6) 

Placidi et al. (2010) gives the physical interpretation of 𝒟∗ as the (normalised) square of 

the resolved shear strain rate on the basal plane. As ice deforms primarily by basal slip, the 

resolved shear rate on the basal plane also drives the accumulation of deformation energy 

in the grain, which drives migration recrystallization. The average of 𝒟∗ is defined as: 



 

 

 ⟨𝒟∗⟩  =  ∫ 𝜌∗𝜌 𝒟∗𝑆2  d𝒏. 
If 𝒟∗ is greater than the average value ⟨𝒟∗⟩ then 𝜌∗at that orientation will increase, 

modelling grains growing or nucleating with this orientation. Note that the total production 

and consumption of 𝜌∗ always balance. The factor of 5 is a convention. Since the 

parameters 𝜆 and 𝛽 represent recrystallization rates, they can be expected to be functions 

of temperature (Wilson et al., 2019) and strain rate (Piazolo et al., 2013). To date, the only 

determination of these parameters is an order of magnitude estimate given by Bargmann et 

al. (2012), without any temperature or strain rate dependence. In this paper we will 

determine the first detailed constraints on these functions using experimental data from 

compression and simple shear deformations of ice.  

Equation (3) can be used to predict CPO evolution. Unlike models that solve for the 

microstructure directly, this equation can be applied readily to any velocity field. However, 

the accuracy of this method is dependent on correctly including the magnitudes of the 

terms modelling recrystallization, which we will come to later. 

2.2 Spectral method 

Equation (3) is challenging to solve directly due to the differential operators on the surface 

of a sphere. In this section we describe a new spectral model, adapted from work by 

Montgomery-Smith et al. (2010) for fibre flows. The spectral method converts the partial 

differential equations over orientation space into a system of ordinary differential 

equations. This allows eq. (3) to be solved with high precision and computational 

efficiency.  

The orientation mass density can be represented in terms of the spherical harmonics:   

𝜌∗(𝒙, 𝑡, 𝒏) = ∑ ∑ 𝜌̂𝑙𝑚𝑙
𝑚=−𝑙

∞
𝑙=0 (𝒙, 𝑡)𝑌𝑙𝑚(𝜃, 𝜑), (7) 

where 𝑌𝑙𝑚 are spherical harmonic functions. By integrating over the surface of the sphere 

and multiplying by the complex conjugate 𝑌‾𝑙𝑚, we obtain the so-called weak form of eq. (4): 

( 𝜕𝜕𝑡 + 𝒖 ⋅ ∇) ∫ 𝜌∗𝑌‾𝑙𝑚𝑆2 = ∫ ∇∗𝑆2 ⋅ (𝜌∗𝒗∗)𝑌‾𝑙𝑚 + 𝜆𝛻∗2𝜌∗𝑌‾𝑙𝑚  + 𝛽(𝒟∗ − 〈𝒟∗〉)𝜌∗𝑌‾𝑙𝑚d𝒏, (8) 

where we have used incompressibility (∇ ⋅ 𝒖 = 0) to rearrange the left-hand side. By 

replacing 𝜌∗ in eq. (8) with the spherical harmonic expansion (eq. 7), we can calculate the 

overlap integrals with 𝑌‾𝑙𝑚, taking advantage of the orthogonality of spherical harmonics. 



 

 

Furthermore, we use integration by parts on the surface of a sphere (Montgomery-Smith et 

al., 2010), to rearrange eq. (8) so the differential operator acts on 𝑌‾𝑙𝑚:  

 ( 𝜕𝜕𝑡 + 𝒖 ⋅ ∇) 𝜌̂𝑙𝑚 = ∫ ((2𝒏 − ∇∗)𝑌̅𝑙𝑚)𝑆2 ⋅ 𝒗∗𝜌∗ + 𝛽(𝒟∗ − 〈𝒟∗〉)𝑌̅𝑙𝑚𝜌∗d𝒏 − 𝜆𝑙(𝑙 + 1)𝜌̂𝑙𝑚. (9) 

 

Here we have also used the identity ∇∗𝟐𝑌𝑙𝑚 = −𝑙(𝑙 + 1)𝑌𝑙𝑚 to simplify the rotational 

recrystallization term. The advantage of this form is that differentiation and multiplication 

by 𝒏 on 𝑌‾𝑙𝑚 can be represented as multiplications by other moments of the spherical 

harmonics through ladder operators (Montgomery-Smith et al., 2010). This allows eq. (9) 

to be rewritten as the ordinary differential equation: 

( 𝜕𝜕𝑡 + 𝒖 ⋅ ∇) 𝜌̂𝑙𝑚 = ∑ ∑ 𝐶𝑙,𝑙′𝑚,𝑚′𝜌̂𝑙′𝑚′𝑙′
𝑚′=−𝑙′

∞
𝑙′=0 , (10) 

where the unknowns in 𝐶𝑙,𝑙′𝑚,𝑚′
 can be found using the algorithm described in Montgomery-

Smith et al. (2010), which recursively replaces any operation or multiplication acting on 

the spherical harmonics until it can be expressed in terms of higher or lower order 

harmonics. This involves the use of Rodrigues’ Formula which gives the effect of 
multiplying any 𝑌𝑙𝑚 by 𝒏, and ladder operators for differentiation. The reader is referred to 

Montgomery-Smith et al. (2010) for a detailed derivation. 

In our numerical method, we truncate the outer summation in eq. (10) at 𝑙′ = 𝐿, where 𝐿 is 

a positive integer representing the number of harmonics used. A comparison of the 

truncation error for different values of 𝐿 is given in Appendix A. Truncating at 𝐿 gives the 

same precision as solving the evolution equation for the 𝐿th-order orientation tensor. 

The combination of the equations and the spectral method, which we call SpecCAF, give a 

versatile, accurate and efficient method for predicting CPO evolution with all key processes, 

which could be extended to other polycrystalline materials apart from ice. 

2.3 Non-dimensionalisation 

Before working with eq. (3) we non-dimensionalise to reduce the number of variables in 

the system and to allow us to compare experiments performed at different scales and 

strain rates more effectively. In modelling the configuration of the laboratory experiments, 

we assume that the fabric is spatially homogeneous (𝛻𝜌∗ = 0) such that there is no spatial 

lengthscale, and the strain rate is constant. The ice has a mass density 𝜌𝑜 and, for a given 



 

 

deformation, we assume a characteristic strain rate 𝛾̇ (with units 𝑠−1). The non-

dimensional variables are represented with tildes and are defined as: 𝜌̃∗ = 𝜌∗𝜌0 , 𝐃̃ = 𝐃𝛾̇ , 𝐖̃ = 𝐖𝛾̇𝜆̃(𝑇, 𝛾̇) = 𝜆(𝑇, 𝛾̇)𝛾̇ , 𝛽(𝑇, 𝛾̇) = 𝛽(𝑇, 𝛾̇)𝛾̇  

Recasting eq. (3) in terms of the non-dimensional variables above, we obtain : 𝜕𝜌̃∗𝜕𝑡̃ = −∇∗ ⋅ [𝜌̃∗𝒗̃∗] + 𝜆̃(𝑇, 𝛾̇)∇∗2(𝜌̃∗) + 𝜌̃∗𝛽(𝑇, 𝛾̇)(𝒟∗ − ⟨𝒟∗⟩), (11) 

where 𝑣̃𝑖∗ = 𝑊̃𝑖𝑗𝑛𝑗 − 𝜄(𝑇)[𝐷̃𝑖𝑗𝑛𝑗 − 𝑛𝑖𝑛𝑗𝑛𝑘𝐷̃𝑗𝑘] 

is the non-dimensional form of the orientation transition rate (eq. (5)). The governing 

equation depends on three dimensionless parameters. Physically, 𝜆̃ represents the ratio of 

the rate of rotational recrystallization to the strain rate, and 𝛽 represents the ratio of the 

rate of migration recrystallization to the strain rate. The ratio of basal-slip deformation to 

rigid-body rotation, 𝜄(𝑇) is already non-dimensional so is not modified. The non-

dimensional time is 𝑡̃ = 𝛾̇𝑡. 

3 Results 

We use the model to compare to laboratory experiments of ice deformed in uniaxial 

compression and simple shear. We apply the model with 𝐿 = 12 and apply a Runge-Kutta 

scheme for the time integration. 

3.1 General forms of CPO 

We begin with an overview of the fabrics produced by the model in four different modes of 

deformation. Figure 2 shows both sketched pole figures and predicted pole figures 

obtained from the model for each form of deformation at a true strain of γ = 0.7. Panels 

(a)-(d) of Figure 2 illustrate the typical CPOs predicted by the model, with and without 

migration recrystallization, under respectively: uniaxial compression (∇𝒖̃ =diag(0.5, 0.5, −1)), pure shear (∇𝒖̃ = diag(1,0, −1)), uniaxial extension (∇𝒖̃ =diag(1, −0.5, −0.5)), and simple shear, 

∇𝒖̃  = [0 0 10 0 00 0 0] . 



 

 

The colour in the pole figures represents the magnitude of 𝜌̃∗ at that orientation. The pole 

figure is plotted with an azimuthal equidistant projection. For these examples, illustrative 

values of 𝜆̃ = 0.03, 𝜄 = 1 and 𝛽 = 0 or 2 were used. The right-hand column shows a pole 

figure of the deformability, 𝒟∗, highlighting which orientations are favoured for grain 

growth by migration recrystallization. 

In uniaxial compression (Figure 2a) without migration recrystallization, basal-slip 

deformation produces a single-maximum fabric towards the axis of compression. For this 

deformation, migration recrystallization acts to produce grains orientated at  45∘ to the 𝑧-

axis, and consume grains orientated otherwise. The balance between this process and 

basal-slip produces a cone-shape CPO with a cone angle of < 45∘. The model produces the 

expected single-maximum or cone-shape fabric depending on whether migration 

recrystallization is included. 

For pure shear (Figure 2b) the single maximum is elongated without migration 

recrystallization, and this feature is present in the model. With migration recrystallization, 

instead of a cone-shape seen in Figure 2a, two separate maxima develop, which can be seen 

in both the sketch and the model. 

For uniaxial extension (Figure 2c) the model again agrees with the sketched pole figures. 

Without migration recrystallization, a girdle fabric is produced in the 𝑦𝑧-plane. Migration 

recrystallization transforms the girdle fabric into a cone-shape fabric with the axis of the 

cone in the 𝑥-direction. 

Simple shear (Figure 2d) is the only flow with non-zero vorticity. Therefore, the orientation 

transition rate contains contributions from both rigid-body rotation and basal-slip 

deformation. The model predicts a single maximum orientated at a certain angle slightly 

offset from the shear plane, set by the balance between vorticity and basal-slip 

deformation. The sketch from observations, however, shows a single maximum with no 

offset. Migration recrystallization produces orientations towards the 𝑧 and 𝑥 directions. 

The cluster at the 𝑧-axis is sustained by a balance between vorticity moving it to the right, 

basal-slip deformation moving to the left and migration recrystallization acting as a source 

term. For the cluster orientated towards the −𝑥-axis, vorticity and basal-slip deformation 

both act to move it in the same direction. Once these grains are no longer orientated 

towards the 𝑥-axis migration recrystallization causes grains more favourably orientated, 

i.e. those towards the 𝑥 or 𝑧-axes, to consume them. This results in the secondary cluster 

gradually weakening. 



 

 

3.2 Strain rate dependence 

We now investigate the strain rate dependence of the ice fabric development. We 

investigate how key measures of the CPO, λ1, the largest eigenvalue of 𝐀(2) , and 𝐽, a 

measure of total fabric concentration,𝜌̃∗)2
 d𝒏 𝐽 = ∫ (𝑆2 𝜌̃∗)2

 d𝒏, 
change with strain rate. These changes are shown in Figure 3 for experiments in uniaxial 

compression (Craw et al., 2018; Piazolo et al., 2013). For temperatures and strains at which 

there are multiple experiments the data has been sorted into bins (shown in the legend) 

and normalised by the value at 𝛾̇ = 2.5 × 10−6
 s−1 for each bin. This allows experiments 

from different temperatures and strains to collapse onto a single curve and, to first 

approximation, a power-law fit to be performed. As can be seen from Figure 3 and the 

value of the derived power law exponents, both λ1 and 𝐽 depend very weakly on strain rate. 

For example, the value of λ1 varies by only ~12% over two orders of magnitude of strain 

rate. This highlights how the CPO has only very weak dependence on strain rate. 

We can extend our hypothesis of modelling strain rate dependence by a power law to the 

recrystallization parameters: 𝜆 ∝ 𝛾̇𝑎,  𝜆̃ ∝ 𝛾̇𝑎−1,  𝛽 ∝ 𝛾̇𝑏 ,  𝛽 ∝ 𝛾̇𝑏−1. (12) 

Based on the weakness of the strain rate dependence in Figure 3 we can assume with 

confidence that to leading order 𝑎, 𝑏 ≈ 1 in eq. (12). This means that the CPO and non-

dimensional parameters can be assumed to be independent of strain rate (for ranges 

typical of experiments and applications).  

3.3 Inversion for parameters in simple shear 

Based on the assumed strain rate independence above, we henceforth assume that the 

three non-dimensional parameters in the model (𝜆̃, 𝛽, 𝜄) are functions of temperature only. 

To provide the first quantification of these dependences, we apply a regression to invert 

the model for  the parameters (𝜆̃, 𝛽, 𝜄) that give the best fit to experimental data (Journaux 

et al., 2019; Qi et al., 2019). We begin by conducting this inversion using experiments of 

simple shear. Once these parameters are constrained for this case, we use them to compare 

the model to experimental data in compression, thereby checking the predictive accuracy 

of the model for generalised deformations without any further fitting. 

Qi et al. (2019) deformed ice cores in direct simple shear. The ice had an initially isotropic 

fabric and was deformed at temperatures of −30∘
 C, −20∘

 C and −5∘
 C, at a constant strain 

rate of  10−4
 s−1 up to strains of 𝛾 = 2.6. They found the development of a secondary 



 

 

cluster in all experiments except at high strain and −30∘
 C. They hypothesise these 

patterns arise from the balance between lattice rotation and migration recrystallization. 

Journaux et al. (2019) ran similar experiments but deformed the ice in torsion at 𝑇 = −7∘
 C 

and a mean strain rate of  𝛾̇ = 1.14 × 10−6
 s−1 over a range of strains. This still produces 

the same form of simple-shear deformation as that of Qi et al. (2019). 

In order to invert for the model parameters (𝜆̃, 𝛽, 𝜄) as functions of temperature, we fitted 

the model to the CPOs from simple shear experiments. We minimised the total difference in 

the unique components of the fourth-order orientation tensor between the model and 

experiments. Data from experiments at −20∘
 C in Qi et al. (2019) was not included because 

only two experiments were performed at this temperature, so it is difficult to constrain the 

parameter set. Once the parameters (𝜆̃, 𝛽, 𝜄) were found over a range of temperatures, we 

performed a linear regression to obtain these parameters as functions of temperature, 

which is plotted in Figure 4. The parameters 𝜄 and 𝛽 both increase with temperature, 

highlighting increased basal-slip deformation and migration recrystallization. However, 

rotational recrystallization, controlled by 𝜆̃, is fairly constant. 

Figure 5 shows a comparison of the model and experiments in both simple shear and 

uniaxial compression. The parameters at each temperature were calculated from the linear 

regression in Figure 4. There is excellent agreement between the model and experiments, 

across deformations, temperature and strain rate. As an initial condition we assume an 

isotropic fabric, i.e. 𝜌̃∗ = 1/4𝜋 everywhere. The plot on the left shows the largest two 

eigenvalues of the second-order orientation tensor, 𝐴𝑖𝑗(2) = ⟨𝑛𝑖𝑛𝑗⟩ ≡ ∫ 𝜌̃∗𝑆2 𝑛𝑖𝑛𝑗  d𝒏 (13) 

 for the model and experiments. The experimental strain rates are visualised by the size of 

the circles. The numbered experiments are plotted as pole figures, alongside a pole figure 

extracted from the model at the same strain. The results demonstrate the ability of the 

model to accurately model fabric evolution in different deformations and its strong 

dependence on temperature. 

For simple shear in Figure 5a the plot of the largest two eigenvalues 𝐀(2) against shear 

strain γ shows the largest eigenvalue increasing , corresponding to the cluster orientated 

towards the 𝑧-axis. The model accurately tracks the evolution seen in the experiments, 

including for the simulation at 𝑇 = −20∘
 C which was not used in the inversion. 

We can accurately reproduce the experimental CPOs across a range of temperatures and 

strain rates. The model reliably predicts a secondary cluster, commonly seen at lower 

strains such as experiments (3), (5), and (7) in Figure 5a, presenting the first theoretical 



 

 

demonstration of this feature. At higher strains the secondary cluster begins to disappear, 

such as in (4) and (6), in direct agreement with the model predictions. 

The data for experiments at −7∘
 C is from Journaux et al. (2019). As can be seen from the 

size of the circles in Figure 5a, these experiments were performed at a lower strain rate (𝛾̇ =  10−7 − 10−6
 s−1). Despite the multiple orders of magnitude difference in strain rate 

from Qi et al. (2019) the model and parameters, without strain rate dependence, still show 

excellent agreement with the experimental results. 

3.4 Extrapolation to compression 

To test the model in a different deformation configuration, we applied it in the case of 

uniaxial compression and compared it to experiments (Craw et al., 2018; Piazolo et al., 

2013). with no further fitting. The parameters (𝜆̃, 𝛽, 𝜄) were taken from the linear 

regression performed in simple shear (Figure 4). Note Piazolo et al. (2013) used 𝐷2𝑂 ice 

hence the temperatures have been converted based on the difference in melting points 

(Ossipyan and Petrenko, 1988). The experiments are over a greater variety of strain rates 

ranging compared to the simple shear experiments, ranging from 𝛾̇ = 6 × 10−7 − 2.4 × 10−4s−1.  
The comparison between the model and experiments is shown in Figure 5b. For uniaxial 

compression we plot the largest two eigenvalues of 𝐀(2)against true axial strain 𝜀. The 

growth of the largest eigenvalue represents the concentration of orientation towards the 𝑧-

axis. The presence of a cone-shape fabric cannot be discerned from 𝐀(2). The agreement 

between the model and experiments seen here is excellent, with the model lying within the 

experimental scatter at all temperatures. The model also predicts the rapid development of 

a CPO even at very low strains. 

At 𝑇 = −30∘
 C the model pole figures agree well with experiments. Both experiments (9) 

and (10) show a large asymmetry in the pole figure which can be assumed to be due to 

experimental scatter. At 𝑇 = −20.5∘
 C and 𝑇 = −13.6∘

 C, the model consistently predicts a 

cone-shape fabric even at low strains. However, there is a small disagreement as only 

experiment (13) has a cone-shape fabric, and (11) and (12) do not. At the higher 

temperature of 𝑇 = −10∘
 C, a cone-shape is seen in both experiments and the model. 

Figure 6 shows how cone angle changes with temperature and strain. A range of laboratory 

experiments are plotted as circles, with the colour representing the experimental 

temperature and the strain rate shown by the size, as before. The model was run at 

different temperatures and plotted alongside as solid lines. 

Again, there is excellent agreement with experiments. There is scatter in the experiments, 

but the model generally predicts the trend of cone angle reducing gradually as strain 



 

 

increases for −15 < 𝑇 < −5∘
 C. We also accurately predict the decrease in cone angle at −30∘

 C, including the point at which the fabric transitions from a cone-shape to a single-

maximum (corresponding to 𝜃 = 0∘). 

These comparisons show that the model, with the parameters determined earlier in simple 

shear, also work in uniaxial compression with no further fitting required. As simple shear 

and uniaxial compression represent end-members of possible deformations, we can expect 

the model to work for general deformations. 

4 Discussion 

4.1 General model behaviour 

In summary, the model incorporates four processes (Figure 1): basal-slip deformation, rigid-

body rotation of the CPO, rotational recrystallization (which acts to diffuse the CPO), and 

migration recrystallization (which acts as a source or a sink at specific orientations 

depending on the deformation configuration). By including basal-slip deformation and 

migration recrystallization (and rigid-body rotation in simple shear) the model is able to 

reproduce all observed CPOs in existing laboratory experiments. Generally, there is excellent 

agreement across the different deformations of compression and simple shear, across strain 

rates ranging from 10−7 − 10−4s−1 and temperatures ranging from −30∘
 C and −5∘

 C. The 

excellent agreement indicates that other processes, such as non-basal slip, do not need to be 

modelled explicitly for accurate prediction of CPO evolution even if they are active in the 

microstructure. 

Figure 4 shows that as temperature increases both 𝜄 and 𝛽 increase, while 𝜆̃ stays roughly 

constant. The qualitative increase of migration recrystallization (𝛽) with temperature 

agrees with theory (Faria et al., 2014). However, this work is the first numerical 

quantification of migration recrystallization and its change with temperature. Although it 

could be expected that the temperature dependence would conform to an Arrhenius 

equation, we find that a linear relationship gives the best prediction at intermediate values (𝑇 ≈ −20∘
 C).  

The parameter 𝜄, which represents the ratio of basal-slip deformation to rigid-body rotation, 

increases from ∼ 1 at −30∘
 C to ∼ 1.6 at −5∘

 C. In comparison, Seddik et al. (2008) found 𝜄 =0.6 best represented CPOs from ice core samples which were at roughly −40∘
 C. They did 

not posit a temperature dependence. Our regression predicts 𝜄 ≈ 0.9 at this temperature. The 

difference can be explained by noting that their model did not include rotation or migration 

recrystallization. 



 

 

The use of values of 𝜄 > 1 is novel. If 𝜄 is capped at 1, the model cannot reproduce the 

experimental pole figures or the experimental evolution of the orientation tensor. The 

increased relative contribution from basal slip can be explained by the synchronous 

increased activity of migration recrystallization at higher temperatures. This means more 

grains with low dislocation density grow and grains with high dislocation density are 

consumed. Non-basal slip occurs more frequently in regions of high dislocation density 

(Chauve et al., 2017). Therefore, migration recrystallization acts to increase the amount of 

grains favourably orientated for basal slip. 

The model predicts that rotational recrystallization, controlled by 𝜆̃, is roughly independent 

of temperature, only increasing by 15% from −30∘
 C to −5∘

 C. This suggests that rotational 

recrystallization should be primarily stress or strain rate dependent, in broad agreement 

with the theory of Faria et al. (2014). 

The offset single-maximum CPO in simple shear which is shown in Figure 2d with 𝛽 = 0 is 

also captured in models by Llorens et al. (2016) and van der Veen and Whillans (1994) 

without recrystallization processes. In nature and experiment, this is unlikely to occur as this 

situation can only arise if 𝜄 ≥ 1 and 𝛽 ≈ 0. Such a combination of parameters does not occur 

at any temperature (Figure 4): for low temperatures 𝜄 < 1 and 0 < 𝛽 < 1 and for high 

temperatures migration recrystallization is large even though 𝜄 > 1. 

4.2 Prediction of strain rate dependence 

In Figure 4 we have assumed that the non-dimensional parameters are independent of strain 

rate. This means that the ratio of recrystallization rate to strain rate is effectively constant. 

As can be seen from Figure 5, this is a good assumption to leading order, and the parameters 

are able to predict the CPO across a variety of strain rates. 

Nevertheless, to provide here the first estimate of the strain rate dependence of the 

parameters controlling the relative importance of recrystallisation processes in eq. (12), we 

perform a regression for the parameters (𝜆̃, 𝛽, 𝜄) including all experimental data, in both 

compression and simple shear (Table 1). The top half of the table shows the inversion results. 

The mean temperature 𝑇, mean strain rate 𝛾̇, number of experiments in each set 𝑛 and 

coefficients of variances 𝑐𝑣 are also shown. For simple shear the parameters were found by 

minimising the error in the components of 𝐀(4) as described previously. For compression, 

due rotational symmetry in 𝜑, the error was defined as the 𝜃 integral of the difference 

between 𝜑 averaged 𝜌̃∗: 

error = ∫ |∫ 𝜌exp∗2𝜋
0 (𝜃, 𝜑) d𝜑 − ∫ 𝜌sim∗2𝜋

0 (𝜃, 𝜑) d𝜑|𝜋/2
0 sin𝜃 d𝜃. (14) 



 

 

This takes advantage of the rotational symmetry of the CPO in compression to give a more 

precise measure of the difference between two CPOs. The bottom half of the table shows 

regressions with and without strain rate dependence. These regressions were performed 

using all the experimental data shown in Table 1 (both compression and simple shear), hence 

differ from those of Figure 4. The bottom half of Table 1 shows the fit results, 𝑅2, adjusted 𝑅2 and confidence intervals, to compare regressions with different number of predictors. 

The fit for strain rate dependence in Table 1 is the first quantification of how the parameters 

change with strain rate. Including strain rate dependence widens the confidence intervals 

for the parameters. Further experiments are required for a more reliable estimate. However, 

as a first attempt the values are close to what was hypothesised: all parameters have 

exponents close to zero, highlighting the weakness of the dependence. For 𝜄 the exponent is 

very close to zero (0.002), which supports our hypothesis that the ratio of basal-slip 

deformation to rigid body rotation are independent of strain rate. Furthermore, our estimate 

also indicates that 𝑎 = 𝑝𝜆̃ + 1 > 1 and 𝑏 = 𝑝𝛽̃ + 1 < 1 from eq. (12). Therefore, the rate of 

rotational recrystallization increases with strain rate while the rate of migration 

recrystallization decreases with strain rate. 

4.3 Comparison with other models 

In a hierarchy of complexity, this model sits between direct modelling of the polycrystal 

(Kennedy and Pettit, 2015; Llorens et al., 2016), and the use of orientation tensors (Seddik 

et al., 2011). The model SpecCAF used here is considerably less expensive computationally 

than modelling the polycrystal directly, whilst being of comparable cost to solving for 

orientation tensors. This means that it represents a viable candidate for inclusion in ice-sheet 

models. 

Models such as those employed by Llorens et al. (2016) simulate directly the polycrystal and 

hence give a more complete representation of the microstructure than included here. 

However, it is difficult to apply general or changing deformations to these models.  Such 

models are also far too computationally expensive to be used in ice-sheet models. The model 

used in this paper does not have these disadvantages. Despite this, the results compare 

favourably with Llorens et al. (2016). We are consistently able to reproduce the secondary 

cluster seen in experiments, whereas the bulk CPOs produced by Llorens et al. (2016) do not 

show one, although it does appear in the high strain rate areas for 𝛾 < 1. 

To simulate CPOs at an ice divide, Bargmann et al. (2012) used the same CPO evolution 

equation as this paper but solved with a finite-volume method. They constrained the 

parameters to an order of magnitude. They found 𝛽 = 𝑂(1) and 𝑂(0.01)  <  𝜆̃  < 𝑂(0.1), 

consistent with our results. 



 

 

For large-scale ice-sheet models, the state-of-the-art for fabric evolution is to calculate the 

evolution of the second-order orientation tensor without recrystallization (Gagliardini et al., 

2013). This is equivalent to setting 𝛽, 𝜆̃ = 0 and running SpecCAF with 𝐿 = 2. This is unable 

to produce any detailed features, including the entire cone-shape CPO in compression or the 

secondary cluster in simple shear. Therefore, this approach is likely unable to predict the 

orientation tensors sufficiently accurately to model viscous anisotropy.  

4.4 Future Applications 

Our contribution of the spectral method and parameter inversion represents a step forward 

for the accuracy of CPO predictions in ice-sheet models. The model and parameters can take 

the flow field, temperature and strain rate as inputs and then predict accurately the CPO. The 

versatility, accuracy and computational efficiency of the model across deformations and 

temperature make it an excellent candidate for integration into ice-sheet models such as 

Elmer/Ice (Gagliardini et al., 2013). It should also be noted that, if SpecCAF is incorporated 

in such models, then the user can adjust the number of spherical harmonics 𝐿 to balance 

accuracy against computational cost. For example, although we use L = 12, 𝐿 = 6 in our 

model, we can still represent a secondary cluster in the CPO (Figure 7). 

The framework presented here can also be applied to other geological materials that 

develop a CPO and viscous anisotropy. The model-solver SpecCAF is transferable to other 

crystalline materials whose plasticity is dominated by one slip system in a certain 

temperature range, like mica or quartz (Kronenberg et al., 1990; Schmid and Casey, 1986). 

SpecCAF could also be generalised to other materials with multiple active slip systems. In 

this case the combination of our scheme with existing continuum models for slip-

dependent CPO development is promising. For example, CPO development in olivine is an 

important research area: olivine is the main constituent of the upper mantle (Boehler, 

1996) and has seismic and viscous anisotropy which is controlled by the CPO (Nicolas and 

Christensen, 1987). Large scale geodynamic models are highly dependent on the flow of the 

mantle where viscous anisotropy may play a major role (Tommasi et al., 2009), so 

accurately predicting CPO development is key for this field. 

5 Conclusions 

We provide the first complete, fully constrained framework for modelling the CPO for low 

computational cost, at any temperature including all key processes. This is done by solving 

the fabric evolution equation by Placidi et al. (2010) using a spectral method adapted from 

Montgomery-Smith et al. (2010) and then using experimental data in simple shear and 

compression to constrain the model parameters. The spectral method can solve the 

equations to high accuracy with low computational cost. The inversion for the model 



 

 

parameters (Figure 4) provides the first quantitative estimate of the relative importance of 

different processes which affect the CPO as functions of temperature. The model-solver 

SpecCAF, combined with these parameters as functions of temperature, gives excellent 

agreement with experiments across a large range of deformations, temperatures and strain 

rates. 

The model provides new inroads towards understanding ice fabric dynamics under 

different deformations, for the interpretation of ice cores, and for implementation into ice-

sheet models. The model provides the first method to capture all key features of CPOs such 

as secondary clusters across a range of temperatures and deformations and shows greater 

accuracy than full field models for much lower computational cost. That these accurate 

predictions arise mainly from the balance between basal-slip deformation and migration 

recrystallization highlight the importance of these processes. The constrained model 

provides a complete toolkit to model dynamically the fabric development in an ice sheet. 

SpecCAF could be extended to other crystalline materials with one dominant slip system, 

such as micas. Furthermore, it could be generalised to incorporate more than one slip 

system, enabling modelling of more complex polycrystalline materials such as olivine, 

which is of primary importance to mantle dynamics. 
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Appendix A. Number of harmonics 

This appendix illustrates how by varying 𝐿 in eq. (15), the computational cost and accuracy 

vary (Figure 7). Both the error, defined as: 

 

error = |𝜆𝑖𝐿 − 𝜆𝑖𝐿=50|𝜆𝑖𝐿=50 , (15) 

 



 

 

where 𝜆𝑖𝐿 is the 𝑖th largest eigenvalue of 𝐀(2) with 𝐿 spherical harmonics, and pole figures 

are shown, all at 𝛾 = 1 in simple shear. Setting 𝐿 = 2 gives similar accuracy to solving the 

evolution equation for 𝐀(2). As can be seen in the figure, above 𝐿 = 8 there is little 

difference in the pole figures. 

 

Appendix B. Experimental data used in comparison 

This appendix gives Table 2, which shows the key data for each experiment used for 

comparison in Figure 5. 

Figures and Tables 

 

Figure 1: Diagram showing the four processes that can affect the ice CPO. An illustration of the 

mechanism on the microstructure, as well as the resulting effect on a pole figure of orientation 

mass distributions is shown for each one. (a) Under basal slip deformation, the c-axis rotates 

towards the axis of compression. In the pole figure for this case the cluster of c-axes at 𝜃1 also 

move towards the compression axis. (b) Rigid body rotation: any vorticity in the flow acts to 

rotate the crystallites and their c-axes around the axis of rotation. (c) Rotational 



 

 

recrystallization: 𝒏1,2,3 represent grains with their orientation illustrated by the direction of 

hatching. Sub grains form at the boundaries between larger grains with intermediate 

orientations. In the pole figure, this translates to a diffusion of high intensity clusters of 

orientation towards: 𝒏1,2,3. (d) Migration recrystallization: the grain with a lower dislocation 

density, with orientation 𝑛1, migrates into the grain with a higher dislocation density. In the 

pole figure, the mass fraction of c-axes towards 𝒏1 increases and the mass fraction towards 𝒏2 

decreases. 

 

Figure 2: Comparison of the pole-figures produced by the model, compared to sketches of 

expected pole figures, based on experimental observations and ice core samples (Paterson, 

1999). Each row represents a different deformation. Comparison between the expected sketch 

and the model are presented for both no migration recrystallization, (𝛽 = 0), and with 

migration recrystallization, for the illustrative case of 𝛽 = 2. Other parameter values chosen 

were 𝜆̃ = 0.05 and  𝜄 = 1. The model pole figures are plotted at true strain 𝛾 = 0.7. The final 

column shows a plot of the deformability, 𝒟∗ from eq. (6), which controls migration 

recrystallization. 

 



 

 

 

Figure 3: This figure shows the strain rate dependence of experimental CPOs in uniaxial 

compression. The plots show two measures of CPO concentration for this flow field, 𝜆1, the 

largest eigenvalue of 𝑨(2) (a), and 𝐽 (b), against experimental data (Craw et al., 2018; Piazolo 

et al., 2013). For each data set, in order to identify the strain rate dependence, the values have 

been sorted into bins with roughly equal temperature (±1∘C) and strain (±0.025). The hats 

indicate the values have been normalised against the value at 𝛾̇ = 10−5 in order to collapse 

different bins onto a single curve. A fit is also shown along with the 𝑅2 value of the fit. 

 

 

Figure 4: Plot of the parameters 𝜆̃ (rotational recrystallization), 𝛽 (migration recrystallization) 

and 𝜄 (basal-slip deformation) found from the inversion described in section 3.3 at three 

temperatures: −30, −7, −5∘
 C. The inverted-for parameters are shown as points along with a 

linear regression from these points for each parameter. Note the broken 𝑦-axis as the 

parameter 𝜆̃ changes much less than 𝜄 and 𝛽.  

 



 

 

 

Figure 5: Comparison of the model with experiments performed in (a) simple shear (Journaux 

et al., 2019; Qi et al., 2019) and (b) compression (Craw et al., 2018; Piazolo et al., 2013). The 

simulation parameters (𝜆̃, 𝛽, 𝜄) as functions of temperature were taken from the linear 

regression in Figure 4. Each row shows the comparison between the model and experiments at 

a specific temperature (and flow field). The first column shows a plot of the largest 2 

eigenvalues of 𝑨(2). The line represents the simulation and the circles show experimental values, 

with their size corresponding to the strain rate at which they took place. The circles with 

numbers correspond to plotted experimental pole figures. These are shown alongside pole 



 

 

figures from the model at the same strain. In the top right, the J index for each pole figure is 

shown, above the number corresponding to the experimental point shown in the plot of 𝑨(2). 
Table 2 shows the experimental conditions. The model was run with the spherical harmonics 

truncated at L = 12. 

   

 

Figure 6: Comparison of model predictions and experimental data showing cone angle 𝜃 of the 

CPO in compression (illustrated in the inset pole figure) against strain 𝛾. Solid lines show results 

from models run at different temperatures using interpolated parameters as shown in Figure 

5. This figure is and adjusted to include the results from our model. Experimental data points 

are shown as circles taken from experiments (Craw et al., 2018; Fan et al., 2020; Jacka, 2000; 

Jacka and Maccagnan, 1984; Montagnat et al., 2015; Piazolo et al., 2013; Qi et al., 2017; 

Vaughan et al., 2017). The size of the marker corresponds to the strain rate the experiment was 

performed at, and it is coloured by temperature. Representation chosen and experimental data 

based on fig 14 and table 4 in Fan et al. (2020). 

  



 

 

 

Flow 𝑇/∘
 C 𝛾̇/s−1 

 𝑛 

𝑐𝑣(𝑇)/% 

𝑐𝑣(𝛾̇)/% 
 𝜆̃ 𝜄 𝛽 

Compression 

-30.0 1.26× 10−5 

 3 0.00 107  0.173 1.23 0.620 

-13.6 7.50× 10−6 

 3 0.00 57.7  0.198 1.93 4.25 

-10.2 1.03× 10−5 

 3 8.90 5.60  0.126 1.54 5.92 

-9.50 1.66× 10−4 

 2 3.00 64.5  0.343 1.98 2.75 

Simple shear 

-30.3 1.33× 10−4 

 3 1.20 8.60  0.153 0.993 0.763 

-7.00 1.14× 10−6 

 5 0.00 71.9  0.139 1.65 4.12 

-5.50 1.26× 10−4 

 4 3.50 33.3  0.178 1.59 5.51 

 

         95% confidence interval 

Variable Equation  𝑚 𝑐 𝑝  𝑅2 𝑅adj2   𝑚 𝑐 𝑝 𝜆̃ 

𝑚𝑇 + 𝑐 

 0.001 0.21 -  0.033 -0.16  -0.007 - 

0.009 

0.065 - 

0.347 

- 

𝜄  0.026 1.95 -  0.60 0.53  0.002 - 

0.050 

1.516 - 

2.390 

- 

𝛽  0.176 6.09 -  0.76 0.71  0.063 - 

0.289 

4.046 - 

8.125 

- 

𝜆̃ 

(𝑚𝑇+ 𝑐)𝛾̇𝑝 

 0.007 0.80 0.124  0.37 0.056  -0.025 - 

0.039 

-1.221 - 

2.823 

-0.119 - 

0.368 𝜄  0.027 2.00 0.002  0.60 0.41  -0.017 - 

0.071 

-0.252 - 

4.260 

-0.097 - 

0.102 𝛽  0.144 4.98 -

0.018 

 0.77 0.65  -0.155 - 

0.443 

-4.802 - 

14.76 

-0.193 - 

0.156 

Table 1: Table showing both the results from the inversion for parameters and the regression. 

The inversion was performed for 7 bins in total, each with a mean temperate and strain rate. 

The coefficient of variance is also shown, along with the parameters. The lower table shows the 

results from the regression, both with and without strain rate dependence. The 𝑅2 and adjusted 𝑅2 values are also shown, along with the 95% confidence intervals for each fitted parameter. 



 

 

 
Figure 7: (Appendix) The error in the eigenvalues of 𝑨(2) and corresponding pole figures for 

different values of the number of spectral modes 𝐿, illustrating the higher resolution arising for 

large 𝐿. The illustrative parameters  𝜆̃ = 0.05, 𝜄 = 1, 𝛽 = 1 were chosen here. Both the error 

and the pole figures are shown at an arbitrary strain of  𝛾 = 1. The error is calculated relative 

to a highly resolved solution with 𝐿 = 50. The plot shows the exponential convergence of the 

spectral method. 

  



 

 

 

 

Experiment Paper Name Flow 𝑇/∘C 𝛾̇/s−1 𝛾 

1 

Qi et al. 

(2019) 

PIL143 

Simple shear 

-30.6 1.46 × 10−4 0.65 

2 PIL135 -30.5 1.25 × 10−4 2.6 

3 PIL145 -20.1 9.49 × 10−5 1.1 

4 PIL144 -20.4 1.19 × 10−4 2.2 

5 Journaux et al. 

(2019) 
TGI071 -7 1.80 × 10−6 0.71 

6 TGI196 -7 2.10 × 10−6 1.96 

7 Qi et al. 

(2019) 
PIL82 -5.4 7.98 × 10−5 0.69 

8 PIL94 -5.2 1.37 × 10−4 1.5 

9 Craw et al. 

(2018) 
PIL132 

Compression 

-30 2.80 × 10−5 0.2 

10 PIL141 -30 7.20 × 10−6 0.23 

11 

Piazolo et al. 

(2013) 

13_22 -20.5 2.50 × 10−6 0.1 

12 13_26 -13.6 1.00 × 10−5 0.1 

13 MD9 -13.6 2.50 × 10−6 0.2 

14 MD3 -10.7 2.50 × 10−6 0.2 

15 MD22 -10.7 1.00 × 10−5 0.4 

Table 2: (Appendix) Table showing the experimental data used in Figure 5. The first column 

gives the experimental number shown in the plot of 𝐴(2) and beside the experimental pole 

figures in Figure 5. This is followed by the paper the data was published in and the conditions 

the experiment was run at.  
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