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Abstract 26	

Accurately and efficiently predicting the lower heating value (LHV) of municipal solid waste 27	

(MSW) is vital for designing and operating a waste-to-energy plant. However, previous LHV 28	

prediction models have had limited geographically applicability. In this paper, we employ multiple 29	

linear regression and artificial neural network techniques to estimate models to predict LHV. These 30	

data-driven models utilize 151 globally distributed datasets, describing the wet physical 31	

composition of MSW and measured LHV, identifies during a systemic literature review. The 32	

results show that models generated using the two methods exhibited acceptable and compatible 33	

levels of performance in predicting LHV, based on the diagnostic tests on residuals (range and 34	

standard deviation), mean absolute percentage error and the standard error of the estimate. 35	

However, the ANN models proved to be more robust in their handling of datasets of diverse quality. 36	

Models developed from both methods indicated negative contribution of the wet weight of food 37	

waste to LHV. Supported by the strong and significant correlation between food waste and 38	

moisture content, we concluded that the impact of the high moisture content on LHV outweighed 39	

its calorific value. Thus separating food waste or any other waste with high moisture content from 40	

the MSW to be incinerated can be key to improved energy recovery efficiency. The models also 41	

reveal a higher contribution of paper waste to the LHV of MSW than plastic waste. This is contrary 42	

to our common sense and makes us rethinking the management of plastic waste.  43	

Keywords: LHV prediction; physical composition of municipal solid waste; multiple regression; 44	

artificial neural network. 45	

 46	

Nomenclature 47	

LHV  Lower heating value  48	



MSW  Municipal solid waste 49	

ANN  Artificial neural network  50	

MAPE  Mean absolute percentage error 51	

SEE  Standard error of the estimate 52	

WtE  Waste-to-energyVIF  Variance inflation factors 53	

1. Introduction 54	

Waste-to-energy (WtE), especially incineration with energy recovery, is an increasingly 55	

popular municipal solid waste (MSW) management strategy [1]. Designing and operating an MSW 56	

incinerator requires the understanding of the heating value of MSW [2]. The lower heating value 57	

(LHV) is commonly used to evaluate the feasibility of using a particular composition of MSW as 58	

a fuel. It determines the energy that can be harvested from MSW in the form of heat and/or 59	

electricity in an incinerator [3-5]. LHV is usually estimated either using bomb calorimeter or 60	

empirical models. Three types of empirical models used to predict LHV are based on ultimate 61	

analysis, proximate analysis and physical composition [2, 6-12]. 62	

The contributions of this article are both practical and theoretical. Practically, a properly built 63	

model could save time, labour and investment in estimating the LHV of MSW. While performing 64	

ultimate analysis and proximate analysis is always time-consuming, costly, and requires staff that 65	

are skilled in chemical analysis [2, 13] models based on physical composition are less costly and 66	

less skill intensive, requiring only a relatively straightforward sorting and weighting of the waste 67	

[2, 4, 6, 14] to produce estimates of LHVs at an acceptable level of accuracy [13]. In practice, 68	

waste is usually sorted and reported on a wet-basis and moisture content in MSW is particularly 69	

influential [15]. Therefore, developing models based on the wet-based composition is practical 70	

and also less time- and money-consuming during the data collection phase of analysis. 71	

 Theoretically, an internationally applicable predictive model of the LHV of MSW has yet to 72	

the developed. Table 1 summarizes the existing LHV predictive models based on the wet-based 73	



physical composition of MSW from published literature. Eq. 1 was estimated based on data 74	

collected globally (86 cities in 35 countries), but the consistency between predicted and 75	

experimental LHVs were not evaluated [10]. Eq. 2 - Eq. 7 were estimated based on data collected 76	

from one or a small number of specific locations. They perform well when data used for validation 77	

was obtained from the same location as the training data collected from, but as one would expect, 78	

they perform less otherwise [14]. Besides, collinearity among independent variables has seldom 79	

been assessed in the evaluation of prior regression models. Therefore, developing an easy and 80	

rapid LHV predictive model for MSW which could be applied regionally or globally can be 81	

beneficial for designing, operating and importing an incinerator and associated waste management 82	

strategies. This may be especially important in light of the trend towards the rapid urbanized of 83	

developing countries, where the characteristics of waste change during the 15 to 20 year life span 84	

of an incinerator [16].  85	

Table 1  86	

Summary of empirical models for predicting LHV of MSW based on wet-based physical 87	

composition. 88	

Country Equation NO. Source 

35 countries LHV = 53.50 (F + 3.6Pa) + 372.16 Pl Eq. 1 [10] 

Jordan LHV = 621.04(Pl/Pa) + 5316.54 Eq. 2 [17] 
Malaysia LHV = 112.157F + 183.386Pa + 288.737Pl + 5064.701 Eq. 3 [18] 
Malaysia LHV = 81.209F + 285.035Pl + 8724.209 Eq. 4 [18] 
Taiwan LHV = 92.53Pa + 117.65Pl + 102.99 T + 53.17 W + 25.12 F + 

240.32R + 72.01Mi  
Eq. 5 [19] 

China LHV  = 219 Pl + 112 Pa + 108 W + 115 T Eq. 6 [14] 
China LHV = 219 Pl + 109 (Pa +  W + T) Eq. 7 [14] 

Note: LHV, lower heating value (net calorific value) (Unit: kJ/kg); F, percentage of food waste; 89	

Pa, percentage of paper; Pl, percentage of plastics; R, percentage of rubble and leather; T, 90	

percentage of textile; W, percentage of  wood; Mi: miscellaneous component.91	

1.1.  Methods for developing a new LHV prediction model 92	



Regression analysis is the commonly used method in building predictive models for estimating 93	

the heating value of MSW [6, 8, 20, 21], but it has limitations in estimating dependent variables 94	

(in this case LHV)  when the resolution of independent variables (in this case, the composition of 95	

waste) is low, and regression models are sensitive to the precision of the input data [3, 22]. This 96	

issue tends to be amplified when LHV models are to be based on the physical compositions of 97	

MSW which are highly related to the environmental, geographical, social and economic factors 98	

and associated spatiotemporal variations [23]. Indeed, this limitation usually restricts the 99	

applicability of regression models to within the spatiotemporal boundary of the original datasets.  100	

Equations built using regression analysis in previous studies are usually linear [2, 10, 19], but 101	

this is not always true. Eq. 2 indicates that the relationship between LHV and waste compositions 102	

is not necessarily linear [17]. Cross-plots between the individual physical composition and LHV 103	

also indicates that the linearity of relationships between some variables, for instance textile and 104	

wood, and LHV are not clear (Appendix A). Besides, regression analysis utilizes limited variables 105	

and the range of functions they can model is limited [24, 25], but MSW is a complex mixture with 106	

large numbers of distinct materials, and its complexity increases with the consumption of new 107	

products and technologies. Furthermore, as a standard statistical technique, regression analysis 108	

often ignores the variables not having statistically significant contributions. The insignificant 109	

contributions of these variables are because their small shares in MSW samples rather than their 110	

energy content. For example, wood and textile were included in Eq.5 – Eq.7 but not in Eq. 1- Eq.4. 111	

Even though these types of waste do not statistically contributes to LHV of MSW some cases, but 112	

their contribution cannot been ignored in others because they might take great proportions of MSW. 113	

Since we are trying to build an internationally applied model, we cannot ignore those materials 114	

and should include them in the model. 115	



Alternatively, artificial neural networks (ANN) have the inherent ability to model prior hidden 116	

information in the training data that are not easily discernible by traditional statistical methods and 117	

to find patterns despite missing data [24]. ANN is an artificial intelligence technique that 118	

quantitatively analyzes information and builds models by learning and training from the input data 119	

in a way that mimics the neuron functions of the brain [3, 22]. It is widely applied to problems 120	

relating to predicting, forecasting, clustering, and pattern classification [26]. Predicting the LHV 121	

of MSW is one of its applications [3, 22]. ANN is able to straightforwardly capture non-linear 122	

relationships between dependent and independent variables [3, 22, 27], as they avoid the need to 123	

identify an appropriate data-fitting function before the models can be constructed [24, 28]. ANN 124	

models also allow for the inclusion of multiple inputs (or variables) and model adjustment of the 125	

models when new datasets are input [24]. Furthermore, the performance of ANN models is 126	

improved when the sample size and the number of groups or the number of variables increases 127	

[25]. This means that ANNs have the potential to take all MSW compositions into account to 128	

estimate the LHV; but only limited and fixed groups of MSW materials have been modeled in 129	

previous studies. Furthermore, previous ANN models were built based on datasets collected only 130	

locally and have not been verified using global or regional data.  131	

Therefore, the objectives of this article are four-fold: (1) to build LHV predictive models of 132	

MSW, utilizing wet-based physical composition, and employing both regression analysis and 133	

ANN, (2) to display how model building methods compare in their accuracy in predicting the LHV 134	

of MSW, (3) to select the most reliable model for application to city, national and global scales, 135	

and (4) to provide reference for the choice and application of the most applicable model building 136	

techniques.  137	

2. Materials and Methodology 138	



This section discusses the processes for data collection, data pre-treatment, model building and 139	

validation, which are summarized in Fig. 1.  140	

 141	

 142	

Fig. 1. Flowchart for building and validating the predictive model. MAPE, mean absolute 143	

percentage error; SEE, the standard error of the estimate. 144	

2.1. Data collection and processing  145	

MSW compositions and their associated LHVs were collected from a systemic literature 146	

review. Literature or statistical data were obtained from articles and reports published in English 147	

and Chinese since 1990. Keywords such as “lower heating value + municipal solid waste”, 148	



“characterization + municipal solid waste” and “energy + municipal solid waste” were used for 149	

searching articles and reports through Google, Google Scholar and Scopus. We were able to collect 150	

a total number of 250 datasets documenting average waste compositions and LHVs from 67 cities 151	

in 40 countries from 1970 to 2015.    152	

Not all of these 250 datasets contained all of the five categories (‘food’, ‘paper & cardboard’, 153	

‘plastics’, ‘textile’ and ‘wood’) of waste we intended to account for, because of the diverse waste 154	

classification systems used by the sources we identified, with some researchers using categories 155	

that are specific to their purposes e.g. Alam and Kulkarni [29] and Lin et al. [14]. In some research, 156	

a variety types of waste were grouped into the category of miscellaneous or others because they 157	

occupied a very small proportion or contributed little to LHV [30]. For the purpose of this analysis, 158	

we retain all datasets containing all the five categories, but the percentage of the five categories do 159	

not necessarily add up to 100%. Additionally, the categories of ‘putrescible’, ‘organics’, ‘vegetable 160	

and fruit’ in some research are considered as subcategories of food waste; the values of these 161	

compositions in the same dataset were added together to represent food waste. In one case garden 162	

waste was combined with the wood category, so that it became part of the statistic wood [31].  163	

Applying the criteria described above, the 250 datasets identified from the literature were 164	

filtered. As a result, 151 datasets from 44 cities in 11 countries from 1990 to 2015 were identified 165	

as inputs for the ensuing model building work. Most of these datasets (around 90%) covered cities 166	

in developing countries such as China, India, Philippines and Thailand, with the remaining datasets 167	

relating to cities in developed countries such as the Finland, Italy, Spain, the USA and the UK.  168	

2.2. Multiple regression analysis 169	

Regression analysis was performed to establish a linear model for LHV prediction, is a similar 170	

style to the equations in Table 1. The average wet weight percentage of the five MSW categories 171	



were used as explanatory variables to estimate the overall LHV of the mixture of MSW. The 172	

collinearity between variables in models were diagnosed using condition indexes and variance 173	

inflation factors (VIFs). A condition index exceeding 15 indicates potential collinearity, while 174	

indices exceeding 30 suggest serious collinearity [32] and a VIF exceeding 10 indicates 175	

unacceptable collinearity [32].  176	

2.2.1. Model development 177	

The full model (Eq. 8), containing all the five variables, was established first. Moisture content 178	

was eliminated from the model to prevent double counting of its influence on LHV:  179	

𝐿𝐻𝑉	 = 	𝛼'𝐹 + 𝛼*𝑃𝑎 + 𝛼-𝑃𝑙 + 𝛼/𝑇 + 𝛼1𝑊 + 𝐶                            (8) 180	

The definitions of the variables in the equations are consistent with those in Table 1. The variable 181	

C was added to represent bias.  182	

Some researches indicated that most of the LHV of MSW was contributed by the paper, food 183	

(or organics in some cases) and plastics in the mixture, with this accounting for over 70% of the 184	

MSW on a dry basis [2, 4, 27]. The contribution of the remaining ingredients is statistically 185	

insignificant and may be neglected in the model. On this basis, the full model (Eq. 8) can be 186	

simplified, as follows (Eq. 9):  187	

𝐿𝐻𝑉	 = 	𝛼'𝐹 + 𝛼*𝑃𝑎 + 𝛼-𝑃𝑙 + 𝐶                            (9) 188	

2.3. ANN  189	

The ANN model consists of an input layer of neurons representing the behaviors of the 190	

explanatory variables, the compositions of MSW in this study, one or more hidden layers of 191	

neurons and a final layer of output predicting the value of the dependent variable, the LHV of 192	

MSW in this study (Fig. 1). Neurons within the same layer have no connection or interaction with 193	

each other. They only sequentially connect with the neurons in the next layer (Fig. 1). Each 194	



connection is associated with a weight by an activation function and the output value is calculated 195	

by multiplying the weight and input. The weights and bias values are not pre-determined. During 196	

the training phase, the ANN learns and adjusts the weights and biases to optimize the model based 197	

on the input of training data. The output 𝑦5 of neuron 𝑖 is expressed as in Eq. 10 [13, 33]: 198	

𝑦5 = 𝑓( 𝑤:5 𝑥5 + 𝑏:)
>
5?'             (10) 199	

Where 𝑦5 is the output of neuron i which represents the LHV contributed by the composition i of 200	

MSW; 𝑥5 is the input of neuron i which represents composition i of MSW; 𝑤:5 is the connecting 201	

weight between neuron i of the input layer and the neuron j of the output layer; 𝑏: is the bias; and 202	

𝑓 is the activation function.  203	

Theoretically, ANNs can model any given type of waste composition, with the model’s 204	

performance improving as the number of explanatory variables increases, as long as there is 205	

sufficient data. But unlike in our study, this has not been formally assessed in previous work.  206	

Furthermore, in previous studies, ANN models often outperformed regression models since 207	

the training data was locally collected first-hand data. However, ANN models do not always 208	

outperform statistical techniques, especially when dependent variables are skewed [25]. Second-209	

hand data is collected as alternative training and validation data in this study, since collecting first-210	

hand data around the globe is challenging. Under this circumstance, the performances of ANN 211	

models need to be reassessed. 212	

Initial training parameters are generally set based on experience, then adjusted to optimize the 213	

solution when all training data are input. In previous attempts to predict LHV using ANN, only 214	

one hidden layer was defined, with the number of nodes in the hidden layer varying from 3 to 35. 215	

The epoch (or number of iterations) varies from 200 to 4000, and the learning rate varies from 0.01 216	

to 0.15 [3, 13, 22, 27]. According to Dong et al., changes in the sum-squared error of the ANN are 217	



minimal beyond 800 epochs [22]. Based on the literature, the ANN modeling in this study was set 218	

as: 3 – 35 nodes in one hidden layer, a maximum of 1000 epochs, and a learning rate of between 219	

0.005 and 0.1, with an interval of 0.005.  220	

2.4. Validation and evaluation  221	

2.4.1. The contribution of compositions estimated by ANN 222	

ANN modeling works like a black-box in comparison to conventional regression analysis. It 223	

is difficult to directly identify all the weights that were employed in the calculation of the LHV. 224	

To identify the contribution of each explanatory variable to LHV in the optimized ANN model we 225	

obtained, a simulation was conducted by inputting one variable in the range of 0% – 100% with 226	

an interval of 0.1% in the ANN model, while setting the value of all other variables to 0%. The 227	

results of the simulation are considered as the contribution of each explanatory variable to LHV at 228	

various levels of percentages in MSW composition.   229	

2.4.2. Validation and evaluation 230	

100 out of 151 pretreated datasets were randomly selected for model training in both regression 231	

analysis and ANN. The remaining 51 datasets were used for validation and evaluation. Models 232	

were evaluated and compared using statistical indicators include the minimum residual, maximum 233	

residual, the standard deviation of the residual (Std. residual), the mean absolute percentage error 234	

(MAPE) and the standard error of the estimate (SEE). The MAPE and SEE are expressed as 235	

follows [14, 19]: 236	

𝑀𝐴𝑃𝐸 =
'

>

CDE	FCGE

CGE

>
5?' ×100	                            (11) 237	

𝑆𝐸𝐸 =
(CDE	FCGE)

LM
ENO

>F'
	                                           (12) 238	



where 𝑥P5	 represents predicted LHV, 𝑥Q5  represents experimentally measured LHV, and 𝑛 239	

represents the number of datasets. The evaluation of MAPE was divided into four levels: excellent 240	

(MAPE < 10), good (MAPE = 10 to 20), acceptable (MAPE = 20 to 50), and unacceptable 241	

(MAPE >50) [19]. In practice, smaller SEE indicates better performance.  242	

3. Results  243	

3.1. Regression analysis  244	

Collinearity diagnostics indicate that collinearity is not observed in the explanatory variables 245	

of the regression models (Appendix B). The model containing the variables of food, paper, plastics, 246	

textile and wood content was developed first as the full model (Eq. 13). The coefficient of multiple 247	

correlation (R) is 0.73 within a 95% confidence interval.	The regression model is statistically 248	

significant (F = 21.79, P <0.001).  249	

𝐿𝐻𝑉	 = 	−68.06	𝐹 + 91.44𝑃𝑎 + 52.65	𝑃𝑙 + 30.73	𝑇 + 34.91	𝑊 + 7,342.79      (13) 250	

The coefficients of textile, wood and plastic are not statistically significant in this model 251	

(Appendix B). Considering that plastics are one of the three major compositions in most MSW 252	

and the sum of wood and textiles accounts less than 10% in most cases (results of the descriptive 253	

analysis of variables are depicted in Appendix C), the full model was simplified to the model 254	

without textile and wood (Eq. 14). The correlation coefficient R of Eq. 14 is 0.73, and it is 255	

statistically significant (F = 36.51, P <0.001). The coefficient of plastic became statistically 256	

significant (p < 0.05) after the variables were reduced. 257	

           𝐿𝐻𝑉	 = 	−72.42𝐹 + 83.20𝑃𝑎 + 67.90𝑃𝑙 + 7,669.08                                                    (14) 258	

Food waste is negatively correlated with LHV (P <0.01 for the coefficient in both Eq. 13 and 259	

Eq. 14). This negative contribution to LHV is discussed later. The reduction of the number of 260	

dependent variables did not reduce the coefficient of multiple correlations; keeping the three 261	



explanatory variables has not reduced the power of the model to explain the variability of the 262	

dependent variable. 263	

3.2.  The development of ANN models  264	

Model ANN1 was generated using the same explanatory variables as regression model Eq. 13; 265	

its nodes in the hidden layer, learning rate and epoch were 31, 0.08 and 40, respectively. Similarly, 266	

model ANN2 was generated using the variables of Eq. 14. Without the two variables of wood and 267	

textile, fewer nodes (25) in the hidden layer and a lower learning rate (0.005) but more epochs 268	

(650) were required in ANN2 to model LHV: fewer epochs and a larger learning rate are required 269	

as the number of ANN input variables increases, as more information is provided for each sample 270	

point. 271	

The contribution of each variable to the modeled LHV was estimated as illustrated in Fig. 2. 272	

When the proportions of all waste compositions were set as 0, the models still return estimations 273	

of LHV at around 7 MJ/kg; we consider this to be the systemic bias of the model. The bias in ANN 274	

models are similar to the constants in the regression models (Appendix B). This bias is partly 275	

derived from the nature of the input data: the waste categories we used as input variables did not 276	

account for 100% of MSW.  277	

  



(a) ANN1 (b) ANN2 

Fig. 2. Comparison of the contribution significance of each variable to LHV in ANN models. For 278	

the convenience of simulating, the unit of LHV was changed from kJ/kg to MJ/kg. 279	

The estimated LHV is lower for MSW with a higher proportion of food waste, quite consistent 280	

with the results obtained from the linear regression analysis. Models generated using both methods 281	

indicate that food waste negatively contributes to LHV because of its high moisture content. 282	

Moisture content is significantly and positively correlated with the percentage of food waste 283	

(r=0.88, p<0.001). The negative contribution results from the increased latent heat required during 284	

combustion to evaporate the water. Plastics have the greatest contribution to LHV, as it has the 285	

highest energy content amongst all waste streams [14]; however, its contribution to LHV is 286	

estimated to be smaller than paper when its proportion is greater than 15% in ANN2 (Fig. 2b), or 287	

smaller than paper and wood when its fraction is smaller than 5% in ANN1. A similar situation 288	

arises in the regression models, as paper has larger standardised coefficients than plastic. The 289	

possible reasons for these results are discussed in Section 4, considering chemical composition 290	

and the basis of the models. 291	

3.3. Evaluation and comparison of models 292	

Model performance was evaluated using statistical evaluators (Table 2). The MAPE and SEE 293	

indices suggest that the ANN models performs better and could give more accurate results when 294	

being compared with the regression models. However, the Std. deviation and range of the residuals 295	

(Min-Max) of the regression models are smaller than those of the corresponding ANN model. This 296	

indicates that the regression models may produce predictions that are closer to the measured LHVs. 297	

However, their performance may have been affected by non-linear cases. While ANN models may 298	



not give as precise predictions as the regression models, they are more robust in their ability to 299	

handle non-linearity. 300	

Table 2 301	

The evaluation of predictive models. 302	

Model  
Residual(kJ/kg) 

MAPE (%) SEE (kJ/kg) 
Min. Max. Std. Deviation 

Eq. 13 -3,003.60 3,117.46 759.64 22.18 1,414.69 

Eq. 14 -3,401.10 3,352.51 803.07 21.94 1,410.36 

Eq. 3 3,308.02 14,527.80 2,670.02 197.39 10,544.60 

Eq. 7 -4,393.90 2,264.43 1,684.63 24.09 1,918.04 

Eq. 3* -16.46 13.57 8.88 - - 

Eq. 7* -69.42 67.79 - 18.16 1,111.44 

ANN1 -2,183.37 4,261.35 1,246.94 18.38 1,296.94 

ANN2 -2,960.11 4,171.90 1,301.92 15.92 1,357.92 

Note: *: The values of indicators are from the original research as shown in Table 1. -: Data 303	

deficient. 304	

Of the two ANN models, ANN1 performs better than ANN2 based on the range and Std. 305	

deviation of the residual and SEE, but not MAPE (Table 2). As more complete information in terms 306	

of waste composition was input to ANN1, the behavior of the model is expected to more closely 307	

match reality. On the contrary, the regression model which contains fewer explanatory variables 308	

performs better than the full model (Table 2). The restricted linear relationship between 309	

explanatory variables and the dependent variable reduced the likelihood of overfitting.  310	

The performances of models built in this study were also compared with models in the 311	

literature containing similar explanatory variables, but built on data collected in specific 312	

geographic regions. These models did not perform as satisfactorily as documented in previous 313	

studies and performed less well than the models built in this study when the data we collected 314	

globally was used as input (Table 2).  315	



To better illustrate the performance of the models, predicted and measured LHV are compared 316	

in Fig. 3. LHVs estimated using regression models are qualitatively closer to the best fit line than 317	

those estimated using ANN models. Models from the literature appear to be considerably less 318	

accurate than the models generated in this study; Eq. 3 in particular. Our models appear to be more 319	

universally applicable and they may have higher tolerance to less precise dataset.   320	

 
Equation (13) 

 
Equation (14) 

 
ANN 1 

 
ANN 2 



	  
Equation (3)	 Equation (7) 

Fig. 3. Comparison between predicted LHV and experimental LHV. Lines in figures represent 

the best fit line where predicted LHVs equals experimental LHVs. 

4. Discussion 321	

The primary aim of this study is to develop a generally applicable model to predict LHV based 322	

on wet composition of MSW, using data that is relatively easy to acquire. A secondary aim is to 323	

compare two distinct methods to generate such models: linear regression and ANN. With those 324	

aims, our discussion is focused on the following points. 325	

4.1. Data quality and availability  326	

The quality of collected data clearly affects the performance of data-driven models, like linear 327	

regression and ANN. As mentioned earlier (section 2.1), most data is based on the average 328	

percentage of MSW composition and LHV in a city or country. Though these point estimations 329	

could represent well the general MSW characteristics in that city or country, they cannot reflect 330	

the variability of this MSW composition. Moreover, is these point values are not representative of 331	

the broader sample mean, the resultant models could be seriously in error in aggregate terms. In 332	

statistical terms, this could produce the effect named ecological fallacy. This may influence the 333	



prediction accuracy of the models built based on the point of estimation. The ecological fallacy 334	

may even create false model if individual data point were used.  335	

The best way to verify the model is to verify the results using individual point data to further 336	

examine the relationship between the waste composition and LHV. However, such data is difficult 337	

to obtain at the global scale. The best we can do to then, is to separate data into training and 338	

validation datasets, and then to evaluate the models, performance using relevant statistical indices 339	

that measure the deviation between prediction and observation, such as  MAPE, SEE and residuals 340	

(Table 2). Using such indices, we have shown that our models can estimate LHVs reasonably well, 341	

so that the relationship between the MSW composition and LHV can be verified. Furthermore, the 342	

results of LHV estimation using two totally different methodologies have both confirmed the 343	

positive contribution of plastic and paper waste and the negative contribution of food waste. Thus, 344	

we may be confident that the models have some discriminatory power, in terms of the 345	

physicochemical properties of the constituent parts of MSW. 346	

In addition to the issues of using average values of MSW compositions and LHVs from cities, 347	

the data we collected are from various sources, so the quality of data is unavoidably inconsistent. 348	

The diverse characters in the same categories of MSW from different data sources or geographical 349	

region (e.g. the characteristics of food waste) may have adversely effected the performance of our 350	

estimated models. However, collecting high quality primary MSW data, using consistent 351	

measurement and recording methodologies is like to be prohibitively time and labor consuming; 352	

and sometimes access to these data are simply not permitted. Under these circumstances (the 353	

absence of international standardisation), the use of publicly accessible secondary data is seen as 354	

a reasonable and necessary compromise to developing a model of wide geographical applicability.  355	



The geographical distribution of the cities where these types of secondary data are available is 356	

uneven. In our case, most of our datasets were obtained from developing countries in Asia. We 357	

found that our models performed better than the models built based on the data only collected from 358	

local areas or small regions where the composition of MSW is less variable. This suggested that 359	

previous regression models built based on local and regional data only may not be generalized and 360	

applied with confidence elsewhere. Indeed, models generated from limited numbers of sites may 361	

be spatially skewed, and unrepresentative in terms of the MSW composition, reducing their utility 362	

both beyond and within their spatial bounds of applicability. Furthermore, the size of these samples 363	

is usually small, increasing the likelihood of overfitting and thus reducing the utility of models, 364	

even within their spatial bounds of applicability. Thus, the predicted LHV using our models for 365	

developed countries need to be interpreted with extra caution. The models may be further refined 366	

when additional data can be collected from developing countries/cities from regions such as Africa 367	

and Latin America. 368	

Standardising the categories of MSW and the units of LHV measurement from a variety of 369	

sources and may also have introduced uncertainties. As mentioned in section 2.1, food waste is 370	

classified as a standalone category in many cases, but merged with other green waste in others [18, 371	

29].  372	

All the quality issues relating to input data affect the performance of the models generated. 373	

Based on the results of our performance evaluation, ANN methods seem to be good at 374	

accommodating a variety of data quality and return a model that can produce acceptable overall 375	

predictions. ANN also makes better use of more categories of data that may be considered 376	

insignificant in regression models (textile and wood) to further improve model performance. 377	

4.2. Possible reasons for higher contribution of paper  378	



We established the models based on the waste categories commonly used in openly available 379	

statistics that most relevant to energy recovery during the incineration process. In this way, the 380	

models may be conveniently used to estimate the LHV of MSW at an initial stage in designing 381	

incinerators in any place in the world. However, our data does include MSW dataset whose 382	

contents under the same or similar categories are diverse and sometimes inconsistent.  An obvious 383	

example of some biodegradable waste has been noted previously (Section 2.1.2 and Section 4.1). 384	

The uncertainty of the diversified compositions within the categories may also have contributed to 385	

the inconsistency between our models and the commonly known heating values estimated based 386	

on combustion theory. Our models mostly showed reduced contribution of plastic to the heating 387	

value of MSW compared paper; except for one model generated based on ANN (ANN1). We only 388	

identified limited studies showing similar patterns in their models. For example, based on the 389	

MSW samples and their LHVs collected by Lin, et al. from eastern and middle regions of China 390	

from 1996 to 2012 [14], Ozveren derived a model depicting lower than expected contribution of 391	

plastics to LHV [34]. 392	

One possible explanation for this seemingly counterintuitive result could be that the presences 393	

of the types of plastics that produce relatively low LHV in the MSW dataset we collected is higher 394	

than generally expected. Among the commonly used types of plastics, the heating values of PVC 395	

can be half of other plastic ingredients such as LDPE, HDPE, PP and PS [35].  The lower end of 396	

heating value among the range of the plastics materials (17.8MJ/Kg – 47.5 MJ/Kg) can be lower 397	

than the higher end of the heating values produced by paper (10.4MJ/Kg – 27.3MJ/Kg) or wood 398	

(14.6MJ/Kg – 28.6MJ/Kg) [9]. Ragaert, et al. indicated that PVC, as the major ingredient in some 399	

soft-packages, is usually not the target plastic ingredient for mechanical sorting for 400	

recycling/recovery and may be sent for incineration [36]. Thus, it is quite possible that with well-401	



organized recycling activities in a city, the proportion of plastic materials with a high energy 402	

content in the MSW to be incinerated may be reduced. Furthermore, the non-plastic ingredients 403	

may be attached on the surface of the plastic waste. Taking Nottingham city as an example [37], 404	

the main plastic materials remaining in the residual waste sent to incineration for energy recovery 405	

are packaging waste, plastic films, refuse sacks and carrier bags; these types of plastics waste are 406	

usually contaminated and moisturized easily by other wet waste with low energy contents, such as 407	

food waste. In addition, moisturized plastic products is more difficult to dry than paper products. 408	

As a result, the contribution of plastic materials to the LHV of MSW may be reduced. This may 409	

have been reflected in our models. 410	

4.3. Applying ANN in LHV estimation 411	

Given the varieties of MSW recycling and incineration methods (as mentioned in section 4.2) 412	

as well as the types of waste generated based on the life-styles and economic development among 413	

municipalities, the LHV contributed under each category may not be as unified as we originally 414	

considered according to the theory of combustion that describes a linear relationship between 415	

chemical elements and energy contents [38, 39]. From this aspect, the use of an ANN methodology 416	

that can accommodate non-linear relationships in establishing predictive models may be 417	

advantageous. This may be explained by the MAPE and SEE values of ANN models that showed 418	

an overall better performance amongst the models we built.  419	

Indeed, ANN has advantages in learning from new data, taking potential non-linear 420	

relationship and ingredient variabilities into account, and handling multiple variables and 421	

processing big data, but these advantages of ANN haven’t been harnessed in previous and current 422	

research. Thus, the suitability of ANN in building LHV predictive model needs to be further 423	

assessed and discussed by increasing the number of input variables and the size of training data. 424	



In addition, constructing a good network for a particular application is a non-trivial task. It 425	

involves choosing an appropriate architecture (the number of layers, the number of nodes in each 426	

layer, and the connections among nodes), selecting the transfer functions of the middle and output 427	

units, designing a training algorithm, choosing initial weights, and specifying the stopping rule 428	

[40]. To a non-modeler, ANN also appears to work as a black box. It is difficult to verify or validate 429	

the model based on knowledge of the chemical mechanism involved in incineration. Thus, we 430	

suggest applying ANN models only to predict the LHV for MSW composition, of which the 431	

percentage in each waste category is within the range covered by the dataset used to generate the 432	

model. Beyond (or rather below) these ranges, the explanatory power of the model decreases 433	

dramatically. As Fig. 2 illustrated, The LHV changes little with increased percentage of waste 434	

composition after it exceeds a certain value, for instance 35% for wood in ANN1 and 30% for food 435	

waste in ANN2. When the influence of variables on predicted LHV of MSW in ANN models was 436	

analyzed, the range of the proportion of waste compositions that the model can be applied needs 437	

to be specified. We randomly selected 100 from the 151 datasets for modeling while leave the 438	

remaining 51 datasets for validation to ensure the performances are evaluated based on the 439	

collection of data that are reviewed and organized under the same criteria. The waste composition 440	

ranges between training and validation datasets overlap. As such, the MAPE values indicate that 441	

ANN models in this study performed well, even slightly better than the regression models. 442	

However, the time invested to build ANN models may be several times longer than to build linear 443	

regression model. Whether this level of improvement is worth the time may need to be further 444	

evaluated based on benefits of improved prediction of the energy recovery efficiency in designing 445	

and operating the incinerator. 446	

4.4. The selection of model building techniques 447	



Researchers often treat regression analysis and ANN as competing techniques for model 448	

building. However, these two methods may mutually assist each other, resulting in better decision 449	

making. Models built using these two distinct techniques can be validated and assessed against 450	

one another with the best performing model selected to support case-specific decision. In this study, 451	

both regression and ANN models have consistent performance. There is no single model that 452	

overwhelmingly out performs the other. Either Eq.14 or ANN1 can be selected to predict LHV of 453	

MSW for researchers without or with ANN model building experience. 454	

Whilst both techniques have their strengths and limitations (as mentioned in section 1.1 and 455	

section 4.3), neither can be guaranteed to always perform better than the other [41]. It is thus 456	

valuable to employ both techniques, selecting that which performs best, based on the specificities 457	

of the available training data. However, when big datasets and/or multiple independent variables 458	

are available, ANNs (ANN1 is recommended) are a better choice; otherwise, regression analysis 459	

(Eq.14 is recommended) can be applied to save time. Considering the complex nature of MSW 460	

and likely improvements in MSW management in the future, ANNs have greater potential of 461	

application than regression analysis in this field.  462	

4.5.The implication of the models in MSW management	and policy making 463	

The negative or low contribution of food waste to the overall LHV in both regression analysis 464	

and ANN illustrates that food waste is not suitable for incineration. Because of the lower carbon 465	

content and higher oxygen content in food waste (or organic waste in some cases), in comparison 466	

to materials like plastics, combustion is an ineffective means of disposal of or energy recovery 467	

from food waste [27]. The positive correlation between the proportion of food waste and moisture 468	

content of MSW in our datasets also confirms the unsuitability of incinerating moisture-rich food 469	

waste for energy recovery. Apart from the unrecoverable energy as latent heat, substances with 470	



high moisture content require a high energy input to increase the unit temperature and this makes 471	

self-sustained combustion more difficult, more energy intensive and also readily produces 472	

incomplete combustion [15, 42]. This latter increases the risk of producing pollutants such as 473	

dioxins and carbon monoxide [43, 44]. Thus, reducing the proportion of food waste in the MSW 474	

for incineration may improve combustion efficiency and reduced pollutants by not only increasing 475	

LHV but also by enhancing the combustion processes. Hence, based on the results of our model, 476	

we recommend separating food waste or any other waste with a high moisture content at the point 477	

of collection, and applying alternative disposal methods for this type of waste, such as composting 478	

and anaerobic digestion [45]; otherwise, the pre-treatment to dehydrated MSW before incineration 479	

may be needed. At the same time, efforts needs to be invested in planning and decision making to 480	

assist the separate collection and treatment of food waste. We recommend that authorities set 481	

targets on the separation rate and biological treatment rate of food waste, as with the recycling rate 482	

that is set in many waste management regulation. Economic incentives and investments in 483	

technical facilities may facilitate the achievement of these target. 484	

Plastic waste has a higher LHV than paper waste does, and incineration is the most suitable 485	

choice to treat plastic waste. However, the inherited diverse composition of plastic waste means 486	

that its LHV is highly variable. This might make the LHV of incinerated plastics waste unstable 487	

and make self-sustained combustion difficult. Therefore, we recommend that policies and actions 488	

should be undertaken to refine the classification of plastic waste, seeking alternative treatment 489	

options for plastics that have relatively lower LHV, such as those that can be easily moisturized, 490	

such as plastic films and packaging waste. As mentioned in section 4.1, the inconsistency of waste 491	

classification is an important factor influencing the building and application of an international 492	



LHV predictive model. To this end, further effort would be welcome in the standardisation of 493	

MSW classification. 494	

5. Conclusions 495	

In this study, we demonstrated that models built via linear regression analysis and ANN show 496	

acceptable and similar performance in predicting LHV, but not as good as locally built models 497	

because of the uncertainties and inconsistency of training data. Model building in this study can 498	

be applied in a regional level, especially in developing countries, to estimate the LHV of MSW. 499	

The selection of model building methods should base on their advantages and inputting data. Our 500	

results also indicated that waste with higher moisture content, such as food waste, reduced the 501	

overall LHV of MSW, and thus reduced energy recovery efficiency for incineration. Separating 502	

this type of waste from waste to be incinerated at the collection point and applying an alternative 503	

method to treat it is recommended for more efficient and environmentally friendly MSW 504	

management. Besides, we might need to change our original perception of separation and treatment 505	

of plastics. 506	
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