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ABSTRACT

Aim Climate is thought to exert a strong influence on animal body sizes. We

examined the relationship between amphibian body size and several climatic

variables to discern which climatic variables, if any, affect amphibian size

evolution.

Location Europe and North America.

Methods We assembled a dataset of mean sizes of 356 (out of 360) amphib-

ian species in Europe, the USA and Canada, and tested how they are related to

temperature, precipitation, primary productivity and seasonality. First, we

examined the body size distributions of all the species inhabiting equal-area

grid cells (of 96.3 km 9 96.3 km) using randomizations to account for the

effects of species richness. Second, we examined the relationship between mean

species body size and the environmental predictors across their ranges account-

ing for phylogenetic effects.

Results The observed amphibian body size distributions were mostly statisti-

cally indistinguishable from distributions generated by random assignment of

species to cells. Median sizes in grid cells were negatively correlated with tem-

perature in anurans and positively in urodeles. The phylogenetic analysis

revealed opposite trends in relation to temperature. In both clades most cli-

matic variables were not associated with size and the few significant relation-

ships were very weak.

Main conclusions Spatial patterns in amphibian body size probably reflect

diversity gradients, and relationships with climate could result from spurious

effects of richness patterns. The large explanatory power of richness in the

grid-cell analysis, and the small explanatory power of climate in the interspe-

cific analysis, signify that climate per se has little effect on amphibian body

sizes.

Keywords

Amphibians, Bergmann’s rule, ectotherms, Europe, grid-cell analysis, North

America, phylogenetic analysis, size clines.

INTRODUCTION

Climate has been shown to have a strong effect on large-scale

body-size gradients of endotherms (e.g. intraspecific: James,

1970; Ashton et al., 2000; Ashton, 2002a; interspecific:

Blackburn & Hawkins, 2004; Olson et al., 2009). However,

despite years of intense study, its effect on continental-level

gradients in ectotherms is still debated (e.g. intraspecific:

Ashton & Feldman, 2003; Pincheira-Donoso & Meiri, 2013;

interspecific: Olalla-T�arraga et al., 2006; Pincheira-Donoso

et al., 2008; Terribile et al., 2009; Feldman & Meiri, 2014).

Several hypotheses have been proposed to explain the effect

of climate on body size. The heat conservation hypothesis

(Bergmann, 1847) posits that a reduced surface area-to-vol-

ume ratio in larger animals gives them an advantage in con-

serving heat in cold climates. However, the applicability of

this hypothesis to ectotherms is debated because they do not

generate substantial heat by metabolic activity. Alternative
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hypotheses regarding geographical patterns of body size may

therefore be more relevant to ectotherms. The primary pro-

ductivity hypothesis (Rosenzweig, 1968) posits that animals

evolve larger sizes in more productive areas, where abundant

resources help maintain a larger size (McNab, 2010). The

water availability hypothesis (Ashton, 2002b) posits that a

small surface area-to-volume ratio facilitates water conserva-

tion in dry environments and body size thus increases in arid

areas. The starvation resistance hypothesis (Lindsey, 1966;

Boyce, 1979) posits that large body size is selected for in sea-

sonal areas because larger animals have greater food reserves,

which they utilise more slowly, enabling them to survive long

periods of food scarcity. In contrast, the seasonality hypothe-

sis (Van Voorhies, 1996; Mousseau, 1997) proposes the

opposite: in seasonal regions, where the growing season is

short, there is less time for growth and so animals mature at

a smaller size. A common feature of all these hypotheses is

that they each posit a role for climate, whether direct or

indirect, in shaping size clines.

Relationships between body size and environmental factors

are often examined by dividing space into grid cells and

assigning some measure of central tendency (e.g. mean and

median) of body size to each. This mean or median is then

regressed against different environmental factors. While this

approach is straightforward, it does have several limitations.

First, spatial data are spatially autocorrelated, and this auto-

correlation needs to be accounted for using statistical meth-

ods such as simultaneous autoregression of spatial errors

(SAR; Dormann et al., 2007). Second, the method is sensitive

to species richness, especially when using mean body size.

Because species are not randomly assigned to cells, and

because of greater spatial turnover of small species, the mean

body size is usually small in species-rich cells (Brown & Nic-

oletto, 1991; Cardillo, 2002; Olson et al., 2009), probably for

reasons independent of climatic selection on size itself. Most

species within clades are small, and species richness increases

towards the tropics. Size ranges, however, are spatially rela-

tively uniform (Brown & Nicoletto, 1991). Spatial trends in

body size could therefore merely reflect diversity gradients,

as more small-bodied species can be found in species-rich

cells. Thus community assembly processes could create spa-

tial body size patterns without climate-based selection on

size. Richness therefore needs to be accounted for.

Mean body size of species within grid cells may also be a

poor measure of central tendency of body size, as it is sensi-

tive to the skewness of the body size frequency distribution,

making the median or mode superior size indices (Meiri &

Thomas, 2007). Furthermore, selection does not act on

cross-species averages (Adams & Church, 2011). The

assumption that the central tendency of body size in each

grid cell is being optimized is therefore problematic. Last,

and perhaps most importantly, grid-cell analyses do not

account for phylogeny. Spatial trends in body size could

reflect taxon turnover and not actual adaptations to different

environmental pressures. A method for incorporating phy-

logeny into assemblage-level grid-cell analyses, phylogenetic

eigenvector regression, exists (Diniz-Filho et al., 1998). How-

ever, this method has severe statistical limitations and proba-

bly does not adequately account for the effects of phylogeny

(Adams & Church, 2011; Freckleton et al., 2011).

Using data on the amphibians in Europe and North

America, we used two methods to determine whether climate

is related to amphibian body size: a spatial grid cell-based

approach and an interspecific phylogenetic approach. The

second approach is conservative because it does not encapsu-

late the entire range of body sizes and environments a spe-

cies inhabits. It also examines each species once only,

whereas a grid-cell test uses a species in all the grid cells it

inhabits (and therefore gives much more weight to larger

ranged species). Interspecific tests allow phylogeny to be

taken into account and compare closely related species,

accounting for the possibility of a size cline merely reflecting

taxon turnover (Meiri & Thomas, 2007). A grid-cell

approach thus examines how size distributions of assem-

blages change over space, while a species-level phylogenetic

approach examines how size evolves within and between

clades. The two methods are complementary and allowed us

to examine both the spatial and phylogenetic components of

amphibian size variation.

MATERIALS AND METHODS

Species data

Europe and North America are inhabited by 360 extant

amphibian species (excluding island endemics; Frost, 2012).

These include 141 species of anurans (40 in Europe and 101

in North America) and 219 species of urodeles (29 in Europe

and 190 in North America), including many species that

have been recently described or split. These values are c. 30%

higher than those used in previous analyses (122 anurans

and 153 urodeles; Olalla-T�arraga & Rodr�ıguez, 2007). Olalla-

T�arraga & Rodr�ıguez (2007) omitted five species of small,

northern North American frogs, which have physiological

adaptations to cold climates, arguing that these adaptations

necessitate their removal from body-size analyses. We reason

that having physiological or behavioural adaptations to cli-

mate does not preclude adaptations in the form of body size

or shape to deal with the same selective pressures (Mayr,

1956). The removal of such species is likely to have a strong

bias on the results of size–climate analyses because all are

small, inhabit cold climates and have very large ranges, thus

affecting size estimates in multiple grid cells. We therefore

included these species in our analyses.

We obtained mean body sizes for all species from field

guides (for North America: Behler & King, 1979; Degenhardt

et al., 1996; Conant & Collins, 1998; Stebbins, 2003; Lemm,

2006; Jensen et al., 2008; Brennan & Holycross, 2006; 3Beane

et al., 2010; Stebbins & McGinnis, 2012; for Europe: Arnold,

2002; Kwet, 2009; Mas�o & Pijoan, 2011) and primary litera-

ture (see Appendix S1 in Supporting Information), using as

many sources as we were able to find for each species to
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reduce possible bias. Body mass may be a better index for

body size than length, as it also takes shape into account

(Feldman & Meiri, 2013). Indeed, the longest urodele in our

dataset, Amphiuma tridactylum (mean total length

758.5 mm), weighs only about 50% less than the fifth lon-

gest, Cryptobranchus alleganiensis (mean total length

450 mm) (Martin & Hutchison, 1979). However, amphibian

masses are rarely reported, forcing us to use body length as a

measure of body size. The standard body size measurement

for anurans is the snout–vent length (SVL). Total length

(TL = SVL + tail length) is a more common measurement

for urodeles. We therefore used SVL as the size index for

anurans and TL as the size index for urodeles, and analysed

both orders separately.

We used mean body sizes of each species, as opposed to

maximum body sizes (which is the most common index in

similar studies; e.g. Olalla-T�arraga & Rodr�ıguez, 2007),

because the mean is less dependent on sample size. It proba-

bly also represents species better, because maximum body

sizes can reflect extreme outliers rather than the population

as a whole. Where mean body size was unavailable we calcu-

lated the mid-point between the maximum and minimum

adult body size data or, preferably, the average of mean male

and mean female body sizes. When multiple means were

available for a species (e.g. from different sources) we calcu-

lated the average of all published means. Length data were

log10 transformed for all analyses.

We downloaded ArcGIS shapefiles (ESRI, Redlands, CA,

USA) of individual amphibian species distribution maps

from the IUCN Red List database (IUCN, 2012). Several spe-

cies lack IUCN distribution maps, having been recently split

from other species or not yet assessed. For these we digitized

distribution maps from field guides (Conant & Collins, 1998;

Beane et al., 2010; Mas�o & Pijoan, 2011), the primary litera-

ture and online databases (Recuero et al., 2006; Crespi et al.,

2010; Caudata.org, 2012; Garcia-Porta et al., 2012; Jockusch

et al., 2012; Streicher et al., 2012; Wielstra et al., 2013; Green

et al., 2014) using ArcGIS 10.0 (ESRI).

We omitted four species for which we did not have mean

body size estimates (Aneides iecanus, Aneides niger, Batracho-

seps nigriventris and Plethodon ainsworthi). This left us with

141 species of anurans (40 in Europe and 101 in North

America) and 215 species of urodeles (29 in Europe and 186

in North America).

To account for the effects of phylogenetic non-indepen-

dence on resulting patterns, we used a phylogeny of extant

amphibians from Pyron & Wiens (2011). We modified this

tree using the latest phylogeny of Ambistomatidae (Williams

et al., 2013) and added species missing from the phylogeny

of Pyron & Wiens (2011) from published accounts using

PhyloWidget (Jordan & Piel, 2008). We scaled the branches

using cladogram transform in FigTree 1.3.1 (Rambaut,

2010) to create an ultrametric tree, as branch lengths were

missing from the source trees. The final composite phylogeny

was used for the study; the full list of sources used in its

compilation are given in Appendix S2.

Environmental data

We downloaded temperature and precipitation data from

WorldClim (http://www.worldclim.org; Hijmans et al.,

2005), and net primary productivity (NPP) data from the

Socioeconomic Data and Applications Center (SEDAC) web-

site (http://sedac.ciesin.columbia.edu/es/hanpp.html; Imhoff

et al., 2004). We extracted data on mean, minimum and

maximum annual temperatures, temperature seasonality (the

standard deviation of temperature across months; all in

degrees centigrade), mean annual precipitation, and mini-

mum and maximum precipitation of the driest and wettest

month (in mm/year). WorldClim data were for the period of

1950–2000 at a spatial resolution of 1/10 degree. Data on

mean annual NPP (in grams of carbon 9 (1/[year 9 m2]);

log transformed) were at a quarter-degree scale.

Statistical analyses

Grid-cell analysis

For the grid-cell analysis we used median body sizes within

grid cells, with a 96.3 km 9 96.3 km (c. 1° 9 1° at the

equator) grid on a Behrmann equal area projection (ESRI).

We accounted for spatial autocorrelation using SAR (Dor-

mann et al., 2007) with the spdep package in R (Bivand

et al., 2011). We ran the same analyses using the minimum

and maximum values of body size per grid cell as the

response variable, to examine how body size distributions are

affected by climatic variables. If climate exerts strong selec-

tion pressure on size (e.g. if small size is selected against in

cold regions), it is reasonable to assume that extreme sizes

will be affected more strongly than median sizes. Extreme

sizes, however, are more likely to be found in species-rich

cells. Hence we used richness as a predictor in all analyses.

As R2 values are impossible to derive from SAR models, we

calculated Nagelkerke pseudo R2 values as an estimate of

goodness-of-fit of models using the BaylorEdPsych package

in R (Beaujean, 2012).

To test further for the effects of species richness and range

size on amphibian size in grid-cell assemblages, we ran ran-

domization tests. We generated 1000 random datasets of

amphibian assemblages per grid cell (using observed richness

values), where the probability of selecting a species for the

assemblage was proportional to its range size (Olson et al.,

2009), to calculate the null distribution of median body sizes

per grid cell. We then compared this null distribution with

our observed values. Such a test does not capture the contin-

uous nature of ranges (i.e. randomized ranges are allowed be

to disjunct). However, randomizing continuous ranges would

also result in changing the distribution of richness values

and the ratio between species-poor and species-rich cells.

Therefore, our tests appeared to be adequate for examining

whether or not the observed richness distribution could

generate, by random processes alone, the observed body size

distributions.
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Interspecific analysis

We used the mean, minimum and maximum values of the

environmental factors across each species’ distribution as size

predictors, to account for environmental variability across

each species’ range. Because of the high collinearity between

mean, minimum and maximum values, we ran the analyses

separately for each set of factors (e.g. mean temperature,

mean precipitation and mean NPP versus maxima of all

measures). We omitted two hybrid species (Pelophylax escu-

lentus and Pelophylax grafi; Frost, 2012) and the paraphyletic

Batrachoseps major (Jockusch et al., 2001) from the phyloge-

netic analyses. We also omitted Batrachoseps robustus and

Eurycea robusta, for which no phylogenetic data were avail-

able. The dataset therefore comprised 139 anuran species (38

in Europe, 101 in North America) and 212 urodele species

(29 in Europe, 183 in North America).A

B

We ran a phylogenetic generalized least square (PGLS)

regression (Freckleton et al., 2002) using the caper package

in R (Orme et al., 2012) to estimate the maximum likelihood

value of the scaling parameter k. All statistical analyses were

performed in R 3.0.2 (R Core Team, Vienna, Austria) using

the RStudio 0.98.978 (RStudio Inc., Boston, MA, USA)

interface.

Some urodele species are obligatory cave-dwellers (Proteus

anguinus in Europe; Sindaco et al., 2006; Eurycea rathbuni,

Eurycea robusta, Eurycea spelaea, Eurycea tridentifera, Eurycea

wallacei, Gyrinophilus gulolineatus and Gyrinophilus palleucus

in North America; Green et al., 2014). We re-ran all analyses

(both SAR and PGLS) without the cave-dwelling species. The

results of these analyses did not differ qualitatively from

those obtained using the complete dataset (data not shown).

We therefore present the results from the complete dataset.

We also ran the analyses separately for North America and

Europe (for each order). The results of these separate analy-

ses are shown in Appendix S3.

RESULTS

Grid-cell analysis

Three factors were correlated with median body size in both

orders: richness, mean temperature and temperature season-

ality (Table 1). Median anuran body size decreased with

increasing richness (Fig. 1a and Fig. 2a), temperature and

seasonality. The size of the smallest anurans within grid cells

decreased with richness, temperature, seasonality and NPP,

and increased with precipitation. The size of the largest anu-

rans showed opposite trends with most of these variables: it

increased with richness, temperature and NPP, and decreased

with seasonality and precipitation (Table 1). The removal of

all the climatic variables from the model caused very limited

reduction in pseudo R2 (0.58 with and 0.55 without climatic

variables). While caution should be used in the interpreta-

tion of pseudo R2 values, these results suggested that climatic

variables were not strong predictors of median SVL. Further-

more, while there seemed to be a latitudinal trend in median

sizes of European anurans (but note the Balkans), median

sizes in North American grid cells showed no clear latitudi-

nal trend but rather complex longitudinal ones (Fig. 2a).

Urodele body size showed trends that were mostly oppo-

site to those of the anurans (Fig. 1b and Fig. 2b). Median

body size increased with increasing temperature and season-

ality. Urodele median TL was also negatively correlated with

mean NPP, although, as with anurans, there was no clear lat-

itudinal trend in North America (Fig. 2b). Both minimum

and maximum TL of urodeles increased with temperature.

However, they showed divergent trends in respect to richness

and NPP, and while the size of the smallest urodeles

increased with seasonality and precipitation, the size of the

largest was uncorrelated with either of these variables

(Table 1). The removal of climatic variables from this model

likewise resulted in a very minor decrease of pseudo R2 (0.82

with and 0.8 without climatic variables), suggesting that,

Table 1 Summary table of the simultaneous autoregression of spatial errors (SAR) models of anuran and urodele body size (snout–vent

length for anurans and total length for urodeles) for species from Europe and North America, against climatic variables and species

richness. For each order, models were recorded with median, maximum and minimum size as the response parameter. The slope was

recorded for each predictor (with P-values in parentheses). Non-significant predictors are denoted n.s. NPP, net primary productivity.

Order Predictor

Model

Median Maximum Minimum

Anura Richness –0.006 (<0.001) 0.005 (<0.001) –0.012 (<0.001)

Mean temperature –0.002 (<0.001) 0.002 (<0.001) –0.008 (<0.001)

Temperature Seasonality –0.011 (<0.001) –0.013 (<0.001) –0.014 (<0.001)

Mean precipitation n.s. (0.93) –2.26 9 10–5 (<0.001) 5.18 9 10–5 (0.04)

Mean NPP n.s. (0.16) 0.016 (0.002) –0.052 (<0.001)

Pseudo R2 0.58 0.82 0.78

Urodela Richness –0.005 (<0.001) 0.009 (<0.001) –0.01 (<0.001)

Mean temperature 0.006 (<0.001) 0.01 (<0.001) 0.002 (0.03)

Temperature Seasonality 0.024 (<0.001) n.s. (0.07) 0.033 (<0.001)

Mean precipitation n.s. (0.51) n.s. (0.63) 1.84 9 10–5 (0.04)

Mean NPP –0.045 (<0.001) 0.05 (<0.001) –0.013 (<0.001)

Pseudo R2 0.82 0.83 0.83
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similar to anurans, climatic variables were not strong predic-

tors of median TL.

Randomization tests

Most anuran median SVL values fell within the 95% confi-

dence intervals generated by random assignment of species

to grid cells, apart from the richest cells (richness > 22) and

a few species-poor cells, in which size was smaller than

expected by chance (Fig. 3a). The distribution of urodele

median TL across grid cells did not differ much from the

null model, with nearly all observed values falling within the

95% confidence intervals, apart from a few species-poor cells

(Fig. 3b). Therefore, observed body size distributions were

not statistically distinguishable from those generated by ran-

dom assignment of species to grid cells, except for the most

speciose anuran cells and a few species-poor anuran and uro-

dele cells.

Interspecific analysis

Maximum likelihood values of k were 0.831 and 0.938 for

the anuran and urodele models, respectively (both k values

significantly differed from zero at P < 0.05), signifying a

strong phylogenetic signal. Anuran SVL increased with maxi-

mum temperature (slope = 0.009, P = 0.005, F2,137 = 8.08,

R2
= 0.056) but not with mean or minimum temperatures

(P = 0.44 and 0.98, respectively), while urodele TL decreased

with increasing mean (slope = –0.007, P = 0.009,

F2,210 = 6.86, R2
= 0.032) and minimum temperature

(slope = –0.005, P < 0.001, F2,210 = 13.82, R2
= 0.062). The

effect of temperature was very weak even in the statistically

significant analyses, with the models explaining less than 7%

of the variation in anuran and urodele body size. No other

environmental factors were correlated with body size in

either amphibian order.

DISCUSSION

Most of the variation in urodele and anuran median body

size within grid cells can be explained by random assign-

ment of species to grid cells with unequal richness, i.e. cli-

matic body size trends could merely reflect extant diversity

gradients and result from spurious effects of richness. In

extremely species-rich cells anuran body sizes are lower

than expected according to the null model, suggesting some

other mechanism is shaping the size distributions (Olson

et al., 2009). These cells are predominantly in south-east

USA and are probably home to larger proportions of small-

bodied hylid frogs (Vitt & Caldwell, 2014) than other cells,

causing the median body sizes to be lower than expected.

The small size of hylid frogs probably reflects their largely
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Figure 1 Behrmann equal area projection

maps of species richness of (a) anurans and

(b) urodeles from Europe and North
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arboreal lifestyle rather than the result of climatic selection

per se.

We found the two amphibian orders to have opposite

trends in relation to temperature: anuran median body size

decreases with mean annual temperature (Bergmann’s rule)

while urodele median body size increases with mean annual

temperature (the converse) and seasonality in temperature.

However, maximum body size of anurans increases with

increasing temperature (corrected for species richness),

meaning that warm areas are home to both extremely small

and extremely large anurans, suggesting that the body size of

anurans is not constrained by temperature. Grid cells with

such properties simply have many anurans, and it is thus

unsurprising to find both small and large species in them.

The apparent decrease in median SVL of anurans with tem-

perature probably reflects the right skewed distribution of

anuran body sizes within grid cells rather than climate-medi-

ated selection on size.

Olalla-T�arraga & Rodr�ıguez (2007) suggested that a con-

verse Bergmann’s rule in urodeles could be explained because

they are thermoconformers while anurans are thermoregula-

tors, and therefore smaller urodeles are more effective at

gaining heat from the environment. This argument is diffi-

cult to accept for several reasons. First, some anurans appear

to be poor thermoregulators and others can be active at low
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map of median (a) snout–vent length (SVL)

of anuran and (b) total length (TL) of

urodele species (mm; log-transformed) from

Europe and North America, on a 96.3
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body temperatures (Navas, 2002). Second, many urodeles

effectively engage in thermoregulatory behaviour (e.g. Spoti-

la, 1972; Heath, 1975; Wells, 2007; Ficetola et al., 2010).

Third, our results do not support a decrease in anuran body

size with temperature per se. The weak association between

size and climate in both clades may imply that these rela-

tionships represent the actions of yet unknown variables,

rather than reflecting strong inherent differences in the selec-

tion regimes faced by anurans and urodeles.

The interspecific analyses revealed opposite trends to those

discerned by the grid-cell analysis. We found that anuran

body size increases with increasing mean annual tempera-

ture, while urodele body size decreases with the same vari-

able. However, these trends are weak, explaining only a small

fraction of the variance in size. This effect size may be too

small to be biologically meaningful. Perhaps ambient tem-

peratures simply do not exert a strong selective pressure on

amphibian body sizes, although they serve as strong environ-

mental buffers to amphibian distribution (Buckley & Jetz,

2007).

It is possible the interspecific analysis failed to determine

actual trends because it does not fully capture the size vari-

ability within each species’ range. Indeed, species inhabiting

large ranges experience a wealth of different environmental

pressures and are more likely to exhibit size clines (Meiri

et al., 2007). The faults of the grid-cell method, however,

seem larger, as it appears to be highly sensitive to the

methodological effects of species richness. Furthermore, it

does not account for phylogeny, the effect of which seems

to be very large in determining amphibian body size (as is

evident in the high values of k). Therefore, trends in body

size distributions uncovered using grid-cell methods proba-

bly do not represent changes in the population level in

response to selection, as natural selection does not act on

cross-species averages (Adams & Church, 2011; Gaston &

Chown, 2013). Rather, observed anuran body size trends

could be driven by a few, wide-ranging species, for example

the medium-sized Lithobates sylvaticus (the only anuran in

much of northern Canada and Alaska), Bufo bufo and Rana

temporaria (the only anurans in most of the British Isles

and Scandinavia, and the largest anurans in Europe), and

be more related to community assembly rather than size

evolution.

While this study offers some insight into body-size clines

in amphibians, there is yet more work to be done. We

reinforce previous recommendations of a large-scale, macro-

ecological approach, combining both spatial and phyloge-

netic methods, to tackle this question, as both methods

reveal different aspects of size trends. North America and

Europe, while large and home to one hotspot of urodele

diversity (Buckley & Jetz, 2007), are relatively similar in cli-

mate. Our results suggest other driving mechanisms behind

size trends in amphibians besides climate, and studies on a

larger geographical scale, encompassing more taxa and

greater environmental variability, could help unravel those

mechanisms.
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