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Abstract 

Background:  The relative involvement of the large and small airways in asthma is 

not clear.  Hyperpolarised gas MRI provides high resolution three-dimensional 

images of ventilation distribution which can be quantified by the ventilated volume 

percentage of the lungs (VV%). 

Objective:  To (1) quantify the baseline reproducibility of VV%, (2) assess the 

ventilation distribution between the proximal and peripheral lungs and (3) investigate 

regional ventilation response to bronchodilator inhalation in a cohort of patients with 

asthma. 

Methods:  33 patients with poorly controlled, moderate-to-severe asthma were 

scanned with hyperpolarised 3He MRI.  Two image datasets were acquired at 

baseline, and one image dataset was acquired after bronchodilator inhalation.  

Images were divided into proximal and peripheral regions for analysis. 

Results:  Bland-Altman analysis showed strong reproducibility of VV% (bias = 

0.12%, LOA = -1.86, 2.10%).  VV% variation at baseline was greater in the periphery 

than in the proximal lung.  The proximal lung was better ventilated than the 

peripheral lung.  Ventilation increased significantly in response to bronchodilator, 

globally and regionally, and the ventilation increase in response to bronchodilator 

was greater in the peripheral lung than in the proximal lung.  Hyperpolarised gas MRI 

was more sensitive to changes in response to bronchodilator (58%) than spirometry 

(33%). 

Conclusion:  The peripheral lung showed reduced ventilation and a greater 

response to bronchodilator than the proximal lung.  The high level of baseline 

reproducibility and sensitivity of hyperpolarised gas MRI to bronchodilator 



reversibility suggests that it is suitable for low subject number studies of therapy 

response. 

 

Key Messages: 

• The peripheral lung was the main site of ventilation obstruction and had 

greater response to bronchodilator when compared to the proximal lung in a 

cohort of patients with moderate-to-severe asthma. 

• Hyperpolarised gas ventilation MRI is highly reproducible and sensitive to 

bronchodilator therapy, allowing the use of small sample sizes for studies of 

therapy response. 

 

Capsule summary: 

In patients with poorly-controlled moderate-to-severe asthma, the peripheral lung 

was more poorly ventilated and showed a greater response to bronchodilator than 

the proximal lung, and ventilation MRI was highly reproducible and sensitive to 

bronchodilator response. 

 

Keywords:  Hyperpolarised gas MRI, ventilation, asthma, proximal, peripheral, 

reproducibility, bronchodilator response 

 

Abbreviations: 

MRI = magnetic resonance imaging 



MDCT = multi-detector computed tomography 

PET = positron emission tomography 

VV% = ventilated volume percentage 

COPD = chronic obstructive pulmonary disease 

GINA = global initiative for asthma 

ICS = inhaled corticosteroids 

LABA = long acting beta agonist 

3He = helium-3 

VV = ventilated volume 

TLV = total lung volume 

VDP = ventilation defect percentage 

FEV1 = forced expiratory volume in one second 

SEM = standard error of measurement 

SDD = smallest detectable difference 

LOA = limits of agreement 

FVC = forced vital capacity 

EIB = exercise induced bronchoconstriction 

MCID = minimal clinically important difference 

ACQ = asthma control questionnaire 

 



Introduction 

Much about the pathology of asthma has been learnt from post-mortem studies 1, 2, 

as well as several transbronchial and endobronchial studies 3, 4, and several lines of 

evidence point towards the involvement of both large and small airways in asthma 1, 

5, 6.  However, the relative involvement of the large and small airways in disease 

expression is not so well understood, and the ability to study the small airways in 

vivo is limited, driving the need for repeatable imaging techniques which are 

sensitive to small airways disease. 

There is a body of evidence to suggest that the small airways (<2mm diameter) are 

the main site of airflow limitation in asthma 7-10, and yet other studies conclude that 

narrowing of the large airways is the primary cause of airflow limitation 11, 12.  

Hyperpolarised gas MRI provides high resolution three-dimensional images of lung 

ventilation.  Regions without ventilation signal in such images, termed ventilation 

defects, are due to airway obstruction which may be caused by mucous plugging13, 

smooth muscle constriction14 or airway remodelling15.  It has been suggested that 

larger ventilation defects are the result of closure of segmental or sub-segmental 

bronchi 16, and increased distal airway wall thickness measured on MDCT has been 

observed proximal to these regions without signal 15, 17.  However, analysis of PET 

data in patients with asthma has shown some lung units with normal ventilation 

levels within large ventilation defects, consistent with the defect being caused by 

clusters of constricted small airways rather than exclusive constriction of large 

airways 18.  Further modelling concluded that ventilation defects only formed when 

both small and large airways throughout the branching tree were allowed to constrict.  

A relationship between abnormal peripheral airway function measured using multiple 



breath washout and more extensive airway closure during bronchoconstriction on 

PET has also been observed 19. 

Hyperpolarised gas images are sensitive to ventilation changes in response to 

therapy 20-22 and challenge 16, 23.  Lung ventilation can be simplistically quantified as 

the ventilated percentage of the total lung volume (VV%) 24 and is most commonly 

assessed as a global value.  Lobar analyses have found differences in ventilation 

distribution within the lungs of patients with asthma 25, 26, and both anterior-to-

posterior and apical-to-basal ventilation dependences have been observed in 

patients with exercise-induced bronchoconstriction 21.  Previously the lung has been 

divided into proximal and peripheral regions (core and rind) to investigate the 

distribution of emphysema in COPD 27 and to perform automated feature analysis of 

hyperpolarised gas images in patients with asthma 28.  As proximal lung regions 

contain the majority of the large airways and peripheral regions contain 

predominantly small airways, we hypothesised that regional analysis of 

hyperpolarised gas images in this manner may help to elucidate the relative 

involvement of the large and small airways in ventilation obstruction in asthma. 

The aim of this work was to: 

(1) quantify the baseline reproducibility of ventilated volume percentage (VV%) 

(2) assess ventilation distribution between the proximal and peripheral lungs  

(3) investigate ventilation response to bronchodilator inhalation in the proximal 

and peripheral lung 

in a cohort of patients with poorly controlled, moderate-to-severe asthma. 

 

Methods 



33 adults with moderate-to-severe asthma who were taking part in the Fevipiprant 

trial29 (EudraCT Number: 2011-004966-13) were recruited in Leicester and scanned 

in Sheffield.  Patients had moderate-to-severe asthma (Global Initiative for Asthma 

(GINA) step 2-5 30) and sputum eosinophilia (count > 2%), and were symptomatic 

and incompletely controlled on their current therapy (inhaled corticosteroids (ICS) or 

ICS-long acting beta agonist (LABA) therapy).  The study was approved by the 

national research ethics committee and all patients provided written informed 

consent. 

Imaging took place before treatment with Fevipiprant or placebo29.  Baseline scans 

and spirometry were performed after patients had withheld short-acting 

bronchodilators for at least 6 hours.  Post-bronchodilator measurements took place 

20 minutes after bronchodilator inhalation (400µg Salbutamol). 

MRI acquisition 

Patients were positioned supine in a 3He transmit-receive vest coil (Clinical MR 

Solutions, Brookfield, WI) and scanned using a 1.5T whole body MRI system (GE 

HDx, WI).  Two 3He ventilation image sets were acquired at baseline within 5 

minutes of each other; the patient remained in the same supine position for both 

acquisitions.  Patients exited the scanner room to inhale their bronchodilator in an 

upright position and were repositioned in the scanner after a 10 minute break during 

which they were in an upright posture.  A third set of 3He ventilation images were 

acquired 20 minutes after bronchodilator inhalation.  Ventilation images were 

acquired using a 2D multi-slice coronal spoiled gradient echo sequence with full lung 

coverage and voxel size = 3 x 3 x 10mm.  Anatomical images of the same imaging 

volumes were also acquired.  Further details are in the online repository. 

-



MRI analysis 

The ventilation images were segmented to measure ventilated volume (VV) and the 

anatomical images were segmented to measure total lung volume (TLV).  The total 

lung volume was divided into proximal and peripheral regions.  The proximal region 

represented the central two thirds (by volume) of the lungs containing the conducting 

airways, small airways and alveolar airspaces.  The peripheral region represented 

the distal third (by volume) of the lungs containing small airways and alveolar 

airspaces; although it should be noted that small airways in the periphery are 

supplied by larger airways such that a peripheral ventilation defect may be caused 

by obstruction of a larger supplying airway.  This division into proximal and 

peripheral regions adopted the approach previously used in the segmentation of CT 

images 27 but defined the regions according to two thirds and one third of the total 

lung volume rather than an even split between the two regions to ensure that the 

majority of the large airways would lie in the proximal region. The ventilated 

percentage of the lungs (VV%) was calculated as (VV/TLV) x 100 24, globally and for 

the proximal and peripheral regions.  VV% is negatively proportional to the 

ventilation defect percentage (VDP) by the relation; VV% = 100 – VDP.  Ventilation 

defects that spanned both proximal and peripheral regions contributed unventilated 

volume to the appropriate regions according to the defined boundary between 

proximal and peripheral.  Further details are in the online repository.  The smallest 

detectable difference 31 in VV% for the whole lung calculated from the baseline 

images was used as the threshold for MRI response to bronchodilator. 

Spirometry 



Spirometry was performed according to American Thoracic Society / European 

Respiratory Society guidelines 32 using a rolling seal spirometer (Vitalograph, 

Buckingham, England).  Both z-scores 33 and percent predicted values were 

reported.  FEV1 response to bronchodilator was classed as improvement in FEV1 > 

12% and increase in volume > 200ml 34. 

Statistical analysis 

Statistical analysis was performed in GraphPad Prism.  Data were assessed for 

normality using the D’Agostino and Pearson normality test, and treated accordingly.  

To assess repeatability between the baseline ventilation images, Bland-Altman 

analysis was performed, and the Spearman or Pearson correlation, intra-class 

correlation, coefficient of variation, standard error of measurement (SEM) and 

smallest detectable difference (SDD) were calculated 31 for whole lung, proximal and 

peripheral VV% values.  T-tests and Wilcoxon signed rank tests were used to assess 

response to bronchodilator and the ventilation distribution between lung regions, with 

p < 0.05 considered significant.  Spearman correlations were performed between 

MRI and spirometry metrics with p-values corrected for multiple comparisons 

according to the method proposed by Benjamini and Hochberg 35.  In addition, 

Bland-Altman analysis of absolute ventilated volume (VV) at baseline was 

performed, and a t-test was also used to assess VV response to bronchodilator of 

the different lung regions. 

 

Results 

Patients were aged between 21 and 73, on a median GINA treatment step of 4 and 

had a median prior smoking exposure of 0 pack years, full demographics are given 



in table 1.  Spirometry and MRI metrics are given in table 2.  Figure 1 shows 

example ventilation images from three patients; two images at baseline and one 

image after bronchodilator inhalation, and also the segmented images. 

VV% reproducibility 

Bland-Altman analysis showed strong reproducibility of VV% between repeated 

baseline images (bias = 0.12%, LOA = -1.86, 2.10% for the whole lung VV%, bias = 

0.04%, LOA = -2.22, 2.31% for proximal lung VV%, and bias = 0.53%, LOA = -4.71, 

5.77% for peripheral lung VV%) (figure 2) and strong correlations were observed 

between repeated VV% measures made at baseline (table 3).  Ventilation variation 

at baseline was greater in the periphery than in the proximal lung (mean magnitude 

change in proximal VV% = 0.82% when compared to mean magnitude change in 

peripheral lung VV% = 2.10, p<0.0001).  The minimum difference that was required 

to be confident that any given change in VV% was real and not due to baseline 

variations (smallest detectable difference 31) was 2.0% for the whole lung, 2.3% for 

proximal lung and 5.2% for peripheral lung.  Bland-Altman results of absolute 

ventilated volume (VV) for repeated baseline images are shown in the online 

repository (figure OR3, table OR1). 

 

Ventilation distribution 

The proximal lung was significantly better ventilated than the peripheral lung, both at 

baseline (VV% = 95.9% and 79.6% respectively) and after bronchodilator (VV% = 

98.1% and 87.0% respectively, both p<0.0001). 

Response to bronchodilator 



Ventilation increased significantly in response to bronchodilator in the lungs as a 

whole (VV% = 90.8% to 94.1%, p=0.0002, 3.6% relative increase), in the proximal 

lung (VV% = 95.9% to 98.1%, p=0.0006, 2.3% relative increase) and in the 

peripheral lung (79.6% to 87.0%, p<0.0001, 9.3% relative increase) (figure 3).  The 

magnitude of these changes in VV% after bronchodilator inhalation were significantly 

greater than baseline variability, over the whole lung (p=0.0001), proximally 

(p<0.0001) and peripherally (p=0.0001).  Additionally, the VV% increase in response 

to bronchodilator was significantly greater in the peripheral lung than the proximal 

lung (p=0.0218) (figure 3d).  The mean change in ventilated volume, VV, (i.e. not 

normalised by the total lung volume) in response to bronchodilator was 0.057L in the 

peripheral lung and 0.047L in the proximal lung (p=0.84) (figure OR4).  Spirometric 

indices also changed significantly after bronchodilator inhalation (FEV1 z-score -2.07 

to -1.54, p<0.0001, FEV1 % predicted 69.0% to 77.7%, p<0.0001, FVC z-score -0.95 

to -0.56, p=0.0008, FVC % predicted 87.3% to 92.4%, p=0.0003 and FEV1/FVC 67.7 

to 71.6, p<0.0001). 

11 patients (33%) had a FEV1 response to bronchodilator.  19 patients (58%) had a 

significant increase in whole lung VV% (>2.0%) after bronchodilator while 3 patients 

(9%) had a significant decrease in VV% after bronchodilator.  Of the 3 patients with a 

significant decrease in VV% after bronchodilator, 1 had a FEV1 response to 

bronchodilator while 2 did not, but none had reduced FEV1 after bronchodilator. 

Correlations between MRI and spirometry 

Moderate statistically significant correlations were observed between VV% and 

spirometric outcome metrics both at baseline and post-bronchodilator (table 4).  



There were no significant correlations between change in VV% and change in 

spirometry metrics after bronchodilator. 

 

Discussion 

The regional analysis of ventilation images performed in this study found that 

proximal lung was significantly better ventilated than peripheral lung, and that 

ventilation increase in response to bronchodilator was significantly greater in the 

peripheral lung than in the proximal lung.  Due to the greater proportion of small 

airways in the peripheral than the proximal lung, a possible interpretation would 

support a propensity towards small airway involvement in ventilation obstruction and 

the associated response of lung ventilation to short acting bronchodilator inhalation 

in this cohort of patients with moderate-to-severe asthma.  However, for larger 

ventilation defects, the observation of reduced ventilation in the periphery could be a 

result of more central obstruction of the airway tree or clusters of constricted small 

airways as hypothesised by Venegas et al 18.  As such, in the instance where no 

tracer gas is imaged in the small airways of the periphery, the ventilation MRI data 

alone cannot determine whether this is due to narrowing / obstruction of the small 

airways themselves 18 or of a larger airway upstream.  In further work, combination of 

this approach with a high resolution structural assessment of obstruction and 

remodelling of the larger airways from CT 15, 17 might help isolate the two 

mechanisms.  Smaller ventilation defects are likely caused by obstruction of the 

small airways, whether located in the proximal or peripheral lung, as blockage of a 

large airway would obstruct airflow to a larger segment of the lungs that contains 

small airways and alveolar airspaces.  A limitation of the regional analysis performed 



in this study is that the proximal and peripheral regions do not contain exclusively 

large and small airways respectively due to the difficulty distinguishing them from 

each other using hyperpolarised gas MRI.  However, the vast majority of the large 

airways (>2mm diameter) were located within the proximal region.  A previous study 

supporting peripheral lung involvement in airway obstruction observed that the extent 

of airway closure induced by methacholine challenge visible on PET images was 

greater with increasing peripheral airways disease measured by multiple breath 

washout 19.  Another study which divided the lung into proximal and peripheral 

regions found that features of the outer peripheral lung ranked highly for relevance 

when distinguishing the lungs of patients with asthma when compared to healthy 

volunteers 28.  Lobar analysis has previously shown greater ventilation in the lower 

lobes than the right middle and upper lobes in patients with mild-to-moderate 

asthma, and in the lower lobe than the upper lobe of the right lung in patients with 

severe asthma 26.  Lower ventilation in the anterior compared to the posterior in mild-

to-moderate asthma, and compared to the middle of the lungs in both severity 

groups was also observed in the same study.  

The measurement of ventilated percentage of the lung showed a high level of 

reproducibility between repeated baseline images, with a smallest detectable 

difference of 2.0%.  This is consistent with a previous study which found the number 

of ventilation defects present on images acquired on the same day to be highly 

reproducible 36.  The repeatability of global VV% between baseline images (ICC = 

0.995) is higher than that reported between imaging sessions that were performed 7-

14 days apart in 13 patients with exercise induced bronchoconstriction (EIB) (ICC 

ranged from 0.74 to 0.89 for independent readers) 37.  This could be due to several 

factors including different patient cohorts and periods between imaging.  In the study 



of patients with EIB, measurements from post exercise challenge and post recovery 

were incorporated in the repeatability metrics, and there were also methodological 

differences including no co-registered proton images from which to measure total 

lung volume for post exercise and recovery time points and the inclusion of partially 

ventilated regions in defect volume.  The smallest detectable difference of 2.0% was 

considerably less than the minimal clinically important difference (MCID) of 4.0% 38 

calculated based on the Asthma Control Questionnaire (ACQ) score MCID and the 

linear relationship between ACQ score and ventilation defect percentage observed in 

18 patients with severe, poorly controlled asthma 39.  The MCID is the smallest 

measurement difference that patients perceive as beneficial, so this implies that 

hyperpolarised gas ventilation MRI is repeatable enough to detect clinically important 

changes with sufficient measurement precision.  As VV% is linearly proportional to 

VDP, the reproducibility and change metrics for VV% are the same as if they had 

been reported for VDP.  The difference in VV% between baseline time-points 

includes any errors introduced by the image acquisition and processing techniques 

(measurement error) and also the natural physiological variability in ventilation 

between imaging time-points, which is likely higher in this cohort than in most patient 

groups due to the inherent reversibility of air-flow limitation in asthma.    

Repositioning patients between baseline and post-bronchodilator scans is an 

additional potential source of error that was not taken into account by the baseline 

repeatability measurements, which were performed with the patient in the same 

position.  Therefore, the smallest detectable difference for VV% may be higher when 

assessing differences when the patient has been repositioned between scans.  

The higher variability of ventilation in the peripheral lung at baseline when compared 

to the proximal lung should be interpreted with some caution due to the different 



absolute lung volumes of the two regions and because quantitative measurement of 

lung ventilation at the lung periphery has additional sources of error.  Misregistration 

due to differing lung inflation levels between the constituent ventilation and 

anatomical images, cardiac motion, partial volume effects when a voxel contains 

both lung and non-lung tissues and any magnetic susceptibility artefact at the 

diaphragm, all can affect the fidelity of quantitative peripheral lung ventilation 

measurement more so than in the proximal lung.  It is also worth noting that when 

large airways or vessels extended into the lung parenchyma within a coronal slice, 

the automatic algorithm used to separate proximal and peripheral lung sometimes 

misclassified the lung tissue at the borders of the central airways and vessels as 

peripheral lung, as seen in figure 1.  This depended on if there was a gap on the 

inner edge of the lung caused by the airway or vessel segmentation and would also 

have contributed to the apparent ventilation variation between scans in some cases.  

An additional consideration when comparing peripheral and proximal change in VV% 

is that for the same change in absolute lung volume (measured in millilitres), the 

relative change in VV% for the peripheral one third of the lungs would be twice that 

for the proximal two thirds of the lungs.  When considering the baseline repeatability 

of absolute ventilated volume (VV), the relative variability for the peripheral lung 

(8.0%) was only slightly higher than for the proximal lung (7.6%) which could be due 

to the additional sources of error in the peripheral lung when measuring ventilated 

volume.  Consequently, the balance of true physiological ventilation variation at 

baseline between the proximal and peripheral lung is difficult to determine from these 

data.  The baseline variability of VV was substantially greater than that of VV% due 

to the lack of normalisation for changes in lung volume between breaths. Both 

proximal and peripheral ventilation improved significantly after bronchodilator, as did 



global VV% and spirometric indices.  This is consistent with a previous study of 

seven patients with asthma that found significant improvements in global VV% after 

bronchodilator inhalation 20.  Peripheral lung ventilation was more impaired than 

proximal lung ventilation both before and after bronchodilation, so while VV% 

increase in response to bronchodilator was greater in the peripheral than the 

proximal lung, there was more potential for resolution of airway obstruction in the 

periphery than proximally. Considering that there was twice the volume of lung in the 

proximal region than the peripheral region, the finding that the mean increase in 

absolute ventilated volume was similar for the peripheral and proximal lung regions 

also supports a hypothesis of greater response to bronchodilator in the periphery 

than proximally. 67% of patients showed a significant change in VV% after 

bronchodilator inhalation whereas 33% of patients met the criteria for FEV1 response 

to bronchodilator.  The high reproducibility of VV% allows the threshold for 

meaningful change in VV% to be much smaller than for FEV1.   

A limitation of the study was that MRI and spirometry were performed on different 

days, albeit within a period of at most one week, and this may have influenced the 

correlations observed between VV% and spirometry.  However, MRI and spirometry 

measure different aspects of lung function, and the spatially localised nature of MRI 

allows it greater sensitivity to regional ventilation changes.  A significant reduction in 

VV% was observed after bronchodilator inhalation in 9% of patients, which, while 

counter-intuitive, may be the cumulative result of altered airflow patterns throughout 

the lungs, i.e. bronchodilation may have caused gas to enter a region which was 

already ventilated at baseline in preference to a region which was poorly ventilated 

at baseline, leading to reduced VV%.  More advanced regional analyses of 

ventilation change, such as treatment response mapping 40, could be used to 



highlight such areas for clinical interpretation.  Treatment response mapping or 3D 

analysis of individual ventilation defects 41 might also offer additional insight into 

regional bronchodilator response.   The discordance of change in VV% and change 

in FEV1 in these three patients, along with the lack of significant correlations 

between change in VV% and change in spirometric indices after bronchodilator, also 

underscore that MRI and spirometry measure lung function differently.  The differing 

nature of FEV1 and MRI measurements required different definitions of response to 

bronchodilator for the two methods.  The clinical definition of FEV1 response was 

used (FEV1 improvement > 200mL and > 12%) 34, which is considered to suggest 

significant bronchodilation while changes of < 150mL or < 8% are likely to be within 

measurement variability 42.  The smallest detectable difference in VV% was used as 

the threshold for MRI response (VV% improvement > 2.0%), defined as the minimum 

change needed to be confident that the change in VV% was real and not due to 

baseline variability 31.  The choice of threshold influences the apparent sensitivity to 

bronchodilator response of the measurement, but in the absence of MRI clinical 

response guidelines the smallest detectable difference provides a well-established, 

unsubjective threshold calculated from baseline measurement variability.  A further 

limitation is that this study assessed patients who were chosen to enter a clinical trial 

and therefore the findings may not be generalised to a wider population. 

In conclusion, the peripheral lung showed reduced ventilation and greater response 

to bronchodilator when compared to the proximal lung.  The high level of baseline 

reproducibility and sensitivity to bronchodilator response of hyperpolarised gas MRI 

suggests that it is suitable for low subject number studies of therapy response. 
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Figure captions 

 

Figure 1 

Ventilation image examples (left) and segmented images (right) from 3 different 

patients with asthma; (left) baseline 1, (centre) baseline 2 and (right) after 

bronchodilator inhalation.  Segmentations show ventilation defects in dark grey and 

ventilated regions in light grey and white (see key), with proximal and peripheral 

regions highlighted.  Top row; 5.8% increase in total VV% post BD, centre row; 2.0% 

increase in total VV% post BD, and bottom row; 2.8% decrease in total VV% post 

BD. 

 

Figure 2 

Baseline repeatability of VV% measurement.  Bland-Altman plots of; (a) whole lung 

VV% (bias = 0.12%, limits of agreement (LOA) = -1.86, 2.10%), (b) proximal VV% 

(bias = 0.04%, LOA = -2.22, 2.31%) and (c) peripheral VV% (bias = 0.53%, LOA = -

4.71, 5.77%). 

 

Figure 3 

VV% response to bronchodilator.  (a) proximal VV% (p=0.0006), (b) peripheral VV% 

(p<0.0001), (c) whole lung VV% (p=0.0002) and (d) change in VV% for proximal and 

peripheral lung (p=0.0218). 



 

 

Tables 

 

Table 1: Patient demographics, given as mean + standard deviation or median 

(minimum, maximum) 

Subjects n (% female) 33 (48) 

Age (years) 51.8 + 12.5 

Height (cm) 166 + 8 

Weight (kg) 83.6 + 19.4 

Body Mass Index 29.2 (21.9, 40.3) 

Subjects on GINA treatment step 2 1 

Subjects on GINA treatment step 3 1 

Subjects on GINA treatment step 4 24 

Subjects on GINA treatment step 5 7 

Prior smoking exposure (pack years) 0 (0, 9) 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 2: Spirometry and MRI metrics, values at baseline and after bronchodilator 

inhalation, given as mean + standard deviation or median (minimum, maximum).  All 

showed significant difference between baseline and post-bronchodilator values. 

 Baseline After 

Bronchodilator 

Change p-value   

FEV1 z-score -2.07 + 1.65 -1.54 + 1.70 0.46 

(-1.18, 2.26) 

 

<0.0001   

FEV1 % predicted 69.0 (26.3, 

110.3) 

77.7 + 24.3 6.8 (-6.8, 

29.6) 

<0.0001   

FVC z-score -0.95 + 1.40 -0.56 + 1.24 0.26 

(-0.52, 2.65) 

 

0.0008   

FVC % predicted 87.3 + 18.6 92.4 + 16.7 3.9 (-3.8, 

34.4) 

0.0003   

FEV1/FVC 67.7 

(30.7, 85.2) 

71.6 

(33.6, 87.8) 

 

3.7 + 3.7 <0.0001   

Whole lung VV% 90.8 

(57.5, 99.2) 

94.1 

(60.6, 99.3) 

 

3.0 + 3.8 0.0002   

Proximal VV% 95.9 

(61.7, 99.9) 

98.1 

(62.7, 99.9) 

 

2.0 + 3.2 0.0006   

Peripheral VV% 79.6 + 12.2 87.0 

(55.7, 98.1) 

4.8 + 5.8 <0.0001   

 

 

 



 

 

Table 3: Baseline repeatability of whole lung, proximal and peripheral VV%.  

Spearman’s / Pearson’s correlations between baseline values were all significant 

(p<0.0001). 

Measure Whole lung VV% Proximal VV% Peripheral VV% 

Spearman or Pearson 

Correlation (r) 

0.98 0.97 0.98 

Intra-class correlation 

(ICC) 

0.995 0.992 0.976 

Coefficient of variation 

CoV (%) 

0.69 0.67 1.94 

Standard error of 

measurement SEM (%) 

0.7 0.8 1.9 

Smallest detectable 

difference SDD (%) 

2.0 2.3 5.2 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 4: Correlations between MRI and spirometry at baseline and after 

bronchodilator inhalation, all were significant p<0.01. 

measure 1 measure 2 baseline r after bronchodilator r 

Whole lung VV% FEV1 z-score 0.64 0.70 

Whole lung VV% FEV1 % predicted 0.69 0.70 

Whole lung VV% FVC z-score 0.56 0.53 

Whole lung VV% FVC % predicted 0.56 0.57 

Whole lung VV% FEV1/FVC 0.56 0.65 

Proximal VV% FEV1 z-score 0.55 0.67 

Proximal VV% FEV1 % predicted 0.59 0.66 

Proximal VV% FVC z-score 0.53 0.50 

Proximal VV% FVC % predicted 0.52 0.50 

Proximal VV% FEV1/FVC 0.46 0.65 

Peripheral VV% FEV1 z-score 0.63 0.66 

Peripheral VV% FEV1 % predicted 0.68 0.66 

Peripheral VV% FVC z-score 0.54 0.51 

Peripheral VV% FVC % predicted 0.54 0.57 

Peripheral VV% FEV1/FVC 0.59 0.59 

 


