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THE METHOD OF FUNDAMENTAL SOLUTIONS FOR BRINKMAN FLOWS.

PART I. EXTERIOR DOMAINS

ANDREAS KARAGEORGHIS, DANIEL LESNIC, AND LIVIU MARIN

Abstract. The method of fundamental solutions (MFS) is developed for solving numerically the
Brinkman flow in the porous medium outside obstacles of known or unknown shapes. The MFS uses
the fundamental solution of the Brinkman equation as in the boundary element method (BEM),
but the single–layer representation is desingularised by moving the boundary sources to fictitious
points outside the solution domain. In the case of unbounded flow past obstacles, these source
points are placed in the domain inside the obstacle on a contracted fictitious pseudo–boundary.
When the obstacle is known, then the fluid flow in porous media problem is direct, linear and
well–posed. In the case of Brinkman flow in the porous medium outside an infinitely long circular
cylinder, the MFS numerical solution is found to be in very good agreement with the available
analytical solution. However, when the obstacle is unknown and has to be determined from fluid
velocity measurements at some points inside the fluid, the resulting problem becomes inverse,
non–linear and ill-posed. The MATLAB c⃝ optimization toolbox routine lsqnonlin is employed
for minimizing the least–squares gap between the computed and measured fluid velocity which is
further penalised with extra smoothness regularization terms in order to overcome the instability
of the solution. For proper choices of the regularization parameters involved, accurate and stable
numerical reconstructions are achieved for various star–shaped obstacles.

1. Introduction

The Brinkman equation was introduced to mitigate in between the microscopic and macroscopic
scales/levels represented by the Stokes’s and Darcy’s equations, respectively, for the steady-state
viscous flow through a porous medium, [4]. Since its discovery, this equation has been found
appropriate to model various practical applications in petroleum engineering, [15] and biological
flows related to biofilms, [6], blood clots, [13] and flagellar motion in gels, [14].

The Brinkman viscous incompressible fluid flow in a porous medium outside a two-dimensional
bounded obstacle Ω ⊂ R

2 is governed by the Brinkman equation, see e.g. [5, 19],

∆v −
1

µ
∇p − κ2v = 0 in R

2\Ω , (where Ω denotes the closure of Ω) (1.1)

along with the continuity equation for incompressible flows

∇ · v = 0 in R
2\Ω , (1.2)
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where v is the fluid velocity, p is the pressure, µ is the dynamic viscosity of the fluid, and
κ2 > 0 represents the resistivity of the porous medium to the flow (or the reciprocal of the
permeability). For simplicity, the body forces have been assumed absent and the boundary ∂Ω
is assumed sufficiently smooth, e.g. of class C2. The Brinkman equation (1.1) can be obtained
formally by seeking a solution V (x, t) of the time–dependent Stokes equations

ϱ
∂V

∂t
= µ∆V −∇p ,

where ϱ is the fluid density, in the Laplace transform form V (x, t) = v(x) est, where κ2 = ϱ s/µ.

For κ = 0, the Brinkman equation (1.1) becomes the steady–state Stokes equation governing
slow viscous fluid flow. However, the solution of the Brinkman equation do not approach the
corresponding solution of the Stokes equation as κ ↘ 0, [16]. In particular, for any κ > 0, the
Brinkman model regularizes the two–dimensional Stokes flow (with κ = 0) to overcome the Stokes
paradox (logarithmic growth of the fluid velocity at large distances), [16]. Therefore, the MFS
analysis of the current study based on the fundamental solution of the Brinkman equation (1.1)
(and the continuity equation (1.2)) is different from that for the Stokes equation, see [1, 22].

Associated with (1.1) and (1.2) are the boundary no–slip condition

v = 0 on ∂Ω (1.3)

and the infinity conditions for ambient flow with uniform fluid flow velocity U∞ given by

lim
|x|→∞

(v(x)−U∞) = 0 (1.4)

and

lim
|x|→∞

(
p(x) + µκ2 U∞ · x

)
= finite constant =: c . (1.5)

In order to accommodate these infinity conditions, we introduce the perturbed fluid velocity u

and pressure p given by

u(x) = v(x)−U∞, p(x) = p(x) + µκ2U∞ · x , (1.6)

which satisfy the following problem:

∆u−
1

µ
∇p− κ2u = 0 in R

2\Ω , (1.7)

∇ · u = 0 in R
2\Ω , (1.8)

u = −U∞ on ∂Ω , (1.9)

lim
|x|→∞

u(x) = 0 , (1.10)

lim
|x|→∞

p(x) = c . (1.11)
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The analysis for the Brinkman flow model (1.1)–(1.5) or (1.7)–(1.11) (also called the Stokes resol-
vent) has been carried out in [3, 21, 10]. It should be mentioned that in these studies the imposed
infinity conditions, namely,

(|u||∇u|) (x) = o(|x|−1), (|u||p|) (x) = o(|x|−1), as |x| → ∞, (1.12)

are nonlinear and the uniqueness of a classical solution

(u, p) ∈
(
C2

(
R

2\Ω
)
∩ C

(
R

2\Ω
))

× C1
(
R

2\Ω
)

does not follow directly. In (1.12), ∇u represents the perturbation velocity gradient tensor having

the components (∂xi
uj)i,j=1,2

. The norm of this vector is defined as |∇u| =

√√√√
2∑

i,j=1

(∂xi
uj)

2.

However, uniqueness can be assured if we require the infinity conditions (1.10) and (1.11) to be
satisfied in the form

|u(x)| = o(|x|−1), |∇u(x)| = O(1), |p(x)| = O(1), as |x| → ∞. (1.13)

In the next section, we introduce the method of fundamental solutions (MFS) [8] for the solution
of the Brinkman flow model (1.7)-(1.11).

2. The method of fundamental solutions (MFS)

The MFS for interior Brinkman flows was developed in [17, 20]. In this paper, we propose the
MFS formulation for exterior Brinkman flows in unbounded domains.

The fundamental solution of the Brinkman equations (1.1) and (1.2) (or (1.7) and (1.8)) in two
dimensions is given by, [20],

Gik(x,x
′) =

1

2πµκ2|x− x′|2
[(
−1 + κ|x− x′|K1(κ|x− x′|) + κ2|x− x′|2K0(κ|x− x′|)

)
δik

+
(xi − x′

i)(xk − x′
k)

|x− x′|2
(
2− κ2|x− x′|2K2(κ|x− x′|)

)]
, i, k = 1, 2, (2.1)

Pk(x,x
′) =

xk − x′
k

2π|x− x′|2
, k = 1, 2, (2.2)

where x = (x1, x2), x
′ = (x′

1, x
′
2), I = (δik)i,k=1,2 is the identity matrix (or the Kronecker delta

tensor), and Kn is the modified Bessel function of the second kind of order n.
Using that

2K1(x)

x
= K2(x)−K0(x),

we can rewrite (2.1) in the equivalent form

Gik(x,x
′) =

1

2πµ

[(
−

1

κ2|x− x′|2
+

K0(κ|x− x′|) +K2(κ|x− x′|)

2

)
δik
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+
(xi − x′

i)(xk − x′
k)

|x− x′|2

(
2

κ2|x− x′|2
−K2(κ|x− x′|)

)]
, i, k = 1, 2, (2.3)

present in other references, e.g. [11] and [16].
Justified by the density results established in [17], using (2.1) and (2.2), in the MFS we seek an
approximate solution for the perturbed fluid velocity u = (u1, u2) satisfying (1.7) and (1.8) in the
form

ui(x) =
N∑

j=1

[
αjGi1(x, ξj) + βjGi2(x, ξj)

]
, x ∈ R

2\Ω, i = 1, 2, (2.4)

where ξj for j = 1, N are the source points situated outside the solution domain R
2\Ω, i.e. in Ω,

for example lying on a contracted pseudo–boundary ∂Ω′ ⊂ Ω (e.g., if Ω) is a star-shaped domain
parameterised by a polar radius r(θ), see later on (4.3), then we choose Ω′ ⊂ Ω as a contracted
star–shaped sub-domain parameterised by a polar radius that is a sub–unitary fraction η ∈ (0, 1)
of r(θ). (Note also that throughout the paper, the notation j = 1, N denotes j = 1, 2, . . . , N.)
Remark that since

lim
|x−x

′|→∞
K0(κ|x− x′|) = lim

|x−x
′|→∞

K2(κ|x− x′|) = 0 ,

from (2.1), the infinity condition (1.10) is also justified by the function defined in (2.4) via (2.3).
Also, since x ∈ R

2\Ω and
(
ξj
)
j=1,N

∈ Ω belong to disjoint sets, the fundamental solutions

Gi1(x, ξj) and Gi2(x, ξj) for i = 1, 2 and j = 1, N are never singular, and (2.4) and (2.6) below
satisfy automatically the Brinkman and continuity equations (1.7) and (1.8). Consequently, we do
not have to discretise these partial differential equations. Instead, we only need to determine the
unknown real coefficients α = (αj)j=1,N

and β = (βj)j=1,N
, we collocate the boundary condition

(1.9) at M ≥ N distinct points (xk)k=1,M on ∂Ω, namely,

N∑

j=1

[
αjGi1(xk, ξj) + βjGi2(xk, ξj)

]
= −U∞

i , i = 1, 2, k = 1,M, (2.5)

where U∞ = (U∞
1 , U∞

2 ).
Expression (2.5) represents a system of 2M linear equations in the 2N unknown coefficients α

and β, which can be solved using an ordinary least–squares method. Once the coefficients α and
β have been determined, the perturbation fluid velocity u can be obtained explicitly at any point
x inside the fluid domain R

2\Ω from equation (2.4). The fluid pressure can also be obtained (up
to an arbitrary constant c) from

p(x) = c+
N∑

j=1

[
αjP1(x, ξj) + βjP2(x, ξj)

]
, x ∈ R

2\Ω. (2.6)
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3. Numerical example for the direct problem

We consider the Brinkman fluid flow in a porous medium outside an infinitely long circular cylinder
of radius a > 0 centred at the origin, i.e. outside the disk Ω = {x ∈ R

2; |x| < a} ; placed in a
uniform flow of velocity U∞, whose analytical solution for the perturbed fluid velocity and pressure
(up to a constant) are given by, see e.g. [14, 17],

u(x) =
U∞

K0(κa)

[
a2

|x|2
K2(κa)−K2(κ|x|)−K0(κ|x|)

]

+
2 (U∞ · x)x

K0(κa)|x|2

[
K2(κ|x|)−

a2

|x|2
K2(κa)

]
, x ∈ R

2\Ω, (3.1)

p(x) = −
µκ2 a2K2(κa) (U

∞ · x)

K0(κa) |x|2
, x ∈ R

2\Ω. (3.2)

The source and collocation points
(
ξj
)
j=1,N

and (xk)k=1,M were spread uniformly on a contracted

circle ∂Ω′ (of radius η a with η ∈ (0, 1)) and the circle ∂Ω (of radius a), respectively. In the
numerical experiments we took µ = 1, a = 1, κ = 1 and U∞ = (U∞, 0) = (1, 0). In Table 1
we present the maximum absolute errors obtained at 660 radially uniformly distributed points in
the annulus {1 ≤ |x| ≤ 2} ⊂ R

2\Ω for the perturbed velocity and pressure for various values of
M,N and η = 0.8 (noting that the accuracy of the numerical results was not significantly affected
by any reasonable choice of η ∈ (0, 1) which is neither too small or too close to unity). Clearly,
as the number of degrees of freedom increases, the MFS approximate solutions converge to the
exact solutions. In Figure 1 we present the maximum errors obtained at 101 uniformly distributed
points on circles of radii d = 1 + (ℓ− 1)0.1, ℓ = 1, 11. From this figure we observe that the error
decreases as we move away from the boundary ∂Ω. We also calculated the errors at 101 uniformly
distributed points on the circle of radius d = 1.1 for different numbers of degrees of freedom. The
corresponding plots depicting the variation of the errors are shown in Figure 2. From this figure
we observe that, in contrast to the errors in velocities, the error in pressure oscillates a lot around
the circular contour, but it is still bounded and decreases to zero as the numbers of degrees of
freedom increase. In Figure 3 we present the fluid velocity vector v(x) = u(x) + U∞ and the
pressure contours p(x) = p(x) − µκ2 (U∞ · x) obtained using the MFS with M = 192, N = 144
and η = 0.8. Excellent agreement with the corresponding analytical solutions derived from (3.1)
and (3.2) is reported. Finally, we calculated the maximum absolute errors obtained at 660 radially
uniformly distributed points in the annulus {1 ≤ |x| ≤ 2} ⊂ R

2\Ω for the perturbed velocity and
pressure for M = 192, N = 144 when varying the parameters a, κ, µ and U∞. As observed in
Table 2, there is only a very slight decrease in accuracy when we increase the values of these
parameters.
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Table 1. Maximum absolute errors in perturbed velocity u = (u1, u2) and pressure
(E(u1), E(u2) and E(p), respectively) for different numbers of degrees of freedom

.
M N E(u1) E(u2) E(p)
24 18 1.5997(-2) 2.3089(-2) 2.5544(-1)
48 36 2.8017(-4) 2.3380(-4) 3.6695(-3)
96 72 1.0418(-7) 8.8276(-8) 4.5182(-6)
192 144 1.2657(-14) 1.4128(-14) 1.4628(-12)

Table 2. Maximum absolute errors in perturbed velocity u = (u1, u2) and pressure
(E(u1), E(u2) and E(p), respectively) for M = 192, N = 144 obtained when varying
the parameters a, κ, µ and U∞

.
a κ µ U∞ E(u1) E(u2) E(p)
1 1 1 1 1.2657(-14) 1.4128(-14) 1.4628(-12)
5 1 1 1 1.2124(-13) 1.3209(-13) 2.6255(-12)
10 1 1 1 5.7021(-13) 6.8523(-13) 7.2538(-12)
1 5 1 1 1.2168(-13) 1.3211(-13) 1.3167(-11)
1 10 1 1 5.8509(-13) 6.9268(-13) 7.3378(-11)
1 1 5 1 1.1435(-14) 1.4794(-14) 7.3306(-12)
1 1 10 1 1.1435(-14) 1.4794(-14) 1.4661(-11)
1 1 1 5 6.2172(-14) 7.1165(-14) 7.2804(-12)
1 1 1 10 1.2434(-13) 1.4233(-13) 1.4561(-11)

4. Inverse obstacle problem

In this section we investigate the identification of an unknown simply–connected bounded planar
obstacle Ω immersed in a Brinkman flow of incompressible fluid from the fluid velocity measure-
ment

v = Φ on Γ, (4.1)

or

u = ϕ on Γ, (4.2)

where ϕ = Φ − U∞ and Γ ⊂ R
2\Ω is an arc placed outside the obstacle Ω. Here the arc Γ is

understood as a connected open subset of a simple closed analytic curve Γ̃ containing Ω in its
interior.

Uniqueness Theorem. Assume that Ω1 and Ω2 are two simply–connected bounded obstacles

(with sufficiently smooth boundaries, e.g. of class C2) contained in the interior of Γ̃. Let v1 and
v2 be the solutions for the fluid velocity satisfying (1.1)–(1.5) corresponding to the obstacles Ω1

and Ω2, respectively. If v1 and v2 coincide with a given Φ on Γ, as defined in (4.1), then Ω1 = Ω2.
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Proof. Some parts of the proof follow [12] for the corresponding Oseen flow inverse problem.
From the representation of the solution as a single–layer potential it can be seen that v1 and v2

are analytic in R
2\Ω1 and R

2\Ω2, respectively. Then, from the unique continuation principle it

follows that v1 = v2 = Φ on Γ implies that v1 = v2 on Γ̃. By solving the direct well–posed

problem for (v1 −v2) in the exterior domain R
2\Ω̃ of the domain Ω̃ with boundary Γ̃, we also get

that v1 = v2 in R
2\Ω̃. By analyticity, we obtain that v1 = v2 in R

2\ (Ω1 ∪ Ω2) =: D. If Ω1 ̸= Ω2,
then we can assume that the bounded domain Ω∗ := Ω1 ∪ Ω2 \Ω2 is non–empty (and measurable).
Then v := v2 defined in Ω∗ satisfies (1.1), (1.2) and v = 0 on ∂Ω∗. This is because on the portion
of ∂Ω∗ that belongs to ∂Ω1 but not to ∂Ω2 we have that v = v1 = v2 = 0, whilst on the remaining
portion of ∂Ω∗ that belongs to ∂Ω2 we have that v = v2 = 0. Then, from the uniqueness of
solution of the interior problem for Brinkman’s and divergence equations (1.1) and (1.2) in the
bounded domain Ω∗ with homogeneous boundary condition v = 0 on ∂Ω∗, [10], it follows that
v = 0 in Ω∗ ⊂ R

2\Ω2. From this and the analyticity of the function v2 in R
2\Ω2 we obtain

that v2 = 0 in R
2\Ω2. This is in contradiction with the infinity condition (1.4) with U∞ ̸= 0.

This implies that Ω∗ cannot be non–empty, i.e. Ω∗ = ∅ and thus Ω1 ⊂ Ω2. A similar analysis
for the domain Ω∗ := Ω1 ∪ Ω2 \Ω1 yields that Ω2 ⊂ Ω1. Therefore, Ω1 = Ω2 which concludes the
uniqueness proof. �

In terms of the perturbations u and p, the inverse problem requires solving for the unknown
triplet (u, p,Ω) satisfying (1.7)–(1.11) and (4.2). This problem and its MFS combined nonlinear
minimization is similar to that previously treated in [7] for Oseen flow. We assume that Ω is star–
shaped with respect to the origin, parametrised by the radial polar coordinate r(ϑ) ∈ (0, rmax] for
ϑ ∈ [0, 2π), where rmax > 0 is an a priori known upper bound of the size of the obstacle, namely,

Ω = {r(ϑ) (cosϑ, sinϑ) |ϑ ∈ [0, 2π)} . (4.3)

Taking, for simplicity, M = N we impose the no–slip boundary condition (1.9) at the points
xi = (ri cosϑi, ri sinϑi) where ri := r(ϑi), ϑi = 2π(i − 1)/N for i = 1, N . We also choose
the corresponding sources ξj = η xj for j = 1, N , where η ∈ (0, 1) is a contraction factor to
be determined. Since r = (ri)i=1,N is unknown in the inverse geometric problem, we impose the

extra information (4.2) at L uniformly distributed points (xN+ℓ)ℓ=1,L on Γ. The resulting nonlinear
regularized least-squares functional that needs to me minimized takes the following form:

Tλ1,λ2
(α,β, r, η) :=

2∑

k=1

N∑

i=1

{
N∑

j=1

[
αjGk1(xi, ξj) + βjGk2(xi, ξj)

]
+ U∞

k

}2

+
2∑

k=1

L∑

ℓ=1

{
N∑

j=1

[
αjGk1(xN+ℓ, ξj) + βjGk2(xN+ℓ, ξj)

]
− φk(xN+ℓ)

}2

+ λ1

N∑

j=1

(
α2

j + β2

j

)
+ λ2

N∑

i=2

(ri − ri−1)
2 , (4.4)
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where λ1 ≥ 0 and λ2 ≥ 0 are regularization parameters penalizing the MFS spectral representation
(2.4) and the first order smoothness of the boundary ∂Ω of the unknown obstacle Ω, respectively.
The minimization of (4.4) subject to the simple bounds on the variables

−105 ≤ αj ≤ 105, −105 ≤ βj ≤ 105, j = 1, N,

10−5 ≤ ri ≤ rmax, i = 1, N, and 0.1 ≤ η ≤ 0.99, (4.5)

is performed using the MATLAB c⃝ optimization toolbox routine lsqnonlin [18] based on the
subspace trust region method. The minimization process starts with an initial guess for the
(3N + 1) unknowns in the feasible set (4.5) and continues to iterate until one of the following
criteria is satisfied:

• the maximum number of iterations (MaxIter) is reached;
• the maximum number of function evaluations (MaxFunEvals) of the objective function

(4.4) is reached;
• the termination tolerance for the solution X = (α,β, r, η) (TolX) or for the objective

function Tλ1,λ2
(X) (TolFun) is achieved.

As previously experienced with other minimization studies, see e.g. [9, 7], we took
MaxFunEvals = 2 × 106, TolX= TolFun=10−14 and controlled the convergence of (4.4) with ap-
propriate values of MaxIter. In most cases, the iterative process was ceased when MaxIter was
exhausted, but in some instances the tolerance TolX was reached.

5. Numerical results and discussion for the inverse obstacle problem

In all the following examples, we choose the location of the measurement curve Γ to be a circle
of radius R1 = 2.5 (centred at the origin), which is neither too close nor too far from the unity,
which represents a characteristic dimension of the obstacles to be retrieved.
For the Brinkman flow, we took the parameters µ = 1, κ = 1 and U∞ = (U∞, 0) = (1, 0). In
all numerical experiments we took rmax = 1.5. In order to simulate the errors that are inherently
present in any practical measurement and to test the stability of the inversion, the measured data
(4.2) is perturbed by a multiplicative noise as

ϕε(xℓ+N) = (1 + χ ζ)ϕ(xℓ+N), ℓ = 1, L, (5.1)

where ζ represents the percentage of noise and χ is a pseudo-random noisy variable drawn from
a uniform distribution in [-1, 1] using the MATLAB c⃝ command -1 + 2*rand(1,L). When the
noisy data (5.1) is inverted, due to the ill–posedness of the inverse obstacle problem, regularization
needs to be employed in the functional (4.4). In this study we choose the regularization parameters
λ1 and λ2 by taking one to be zero and varying the other by trial and error or by the L-curve
analysis, [7, 9]. In all examples considered we took M = N = 20, L = 51 and the initial guesses
α0 = β0 = 0 and η0 = 2/3.
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5.1. Example 1: Circular obstacle. In this case the obstacle to be reconstructed is a circle of
radius

r(ϑ) = 1, ϑ ∈ [0, 2π). (5.2)

The input perturbed velocity data (4.2) were constructed from the exact solution (3.1). We took
the initial guess r0 = 0.7. In Figure 4(a), the convergence of results obtained with no noise and no
regularization for different numbers of iterations niter is illustrated. In Figures 4(b) and 4(c) we
present the plots of the reconstructed boundary for various values of the regularization parameter
λ1 when λ2 = 0, and λ2 when λ1 = 0, respectively, and ζ = 5% after 1000 iterations. From these
figures it can be seen that regularization with λ2, which penalizes the smoothness of the shape to
be reconstructed, is more important than the regularization with λ1 which is imposed to alleviate
the ill-conditioning of the MFS.

5.2. Example 2: Bean-shaped obstacle. We next consider the bean-shaped domain [2, 7, 12]
with polar radius

r(ϑ) =
1 + 0.9 cos(ϑ) + 0.1 sin(ϑ)

1 + 0.75 cos(ϑ)
, ϑ ∈ [0, 2π). (5.3)

We took the initial guess r0 = 1. The input velocity data (4.2) is numerically simulated by first
solving the corresponding direct problem with M = 192 and N = 144. In Figure 5(a) we present
the results obtained with no noise and no regularization for different numbers of iterations niter.
Compared to the smooth circular obstacle (5.2) of the previous example, the bean-shaped domain
(5.3) presents a cusp facing the incoming flow which makes the convergence of its reconstruction
much slower needing more than around 10000 iterations. In Figures 5(b) and 5(c) we present the
plots of the reconstructed boundary for various values of the regularization parameter λ1 when
λ2 = 0, and λ2 when λ1 = 0, respectively, and ζ = 5% after 1000 iterations. Unlike in the
previous smooth circular example where regularization with λ2 (and λ1 = 0) produced slightly
better reconstructions than regularization with λ1 (and λ2 = 0), in this example the regularization
with either λ1 or λ2 yields similar results in terms of accuracy and stability of the bean–shape
reconstruction.

5.3. Example 6: Peanut-shaped obstacle. We finally consider the peanut-shaped domain
[7, 12] described by

r(ϑ) =
√
cos2(ϑ) + 0.25 sin2(ϑ) =

1

2

√
1 + 3 cos2(ϑ), ϑ ∈ [0, 2π). (5.4)

We took the initial guess r0 = 1. The input velocity data (4.2) is numerically simulated by first
solving the corresponding direct problem with M = 192 and N = 144. Numerical results with
or without noise and regularization are presented in Figure 6 and similar conclusions to those
obtained from Figure 5 for Example 2 can be derived.
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6. Conclusions

In this paper the MFS, which is a meshless method, has been applied for the solution of Brinkman
flows in unbounded porous media exterior to known or unknown planar obstacles. For the direct
well–posed linear problem when the obstacle Ω is known, the numerically obtained results are in
excellent agreement with the analytical solution, which is available when Ω is a disk. In the inverse
ill–posed and nonlinear problem, the obstacle Ω is unknown and has to be detected from extra
measurements of the fluid velocity inside the fluid domain exterior to the obstacle Ω. In order to
achieve stability, the nonlinear minimization of the gap between the measured and computed data
is penalised through the inclusion of regularization parameters for the MFS expansion coefficients
and for the radial function parameterising the assumed star–shaped obstacle. The MFS can also
be easily implemented for three–dimensional exterior Brinkman flows. This can be accomplished
by changing the two-dimensional fundamental solutions (2.1) and (2.2) to their corresponding
three-dimensional expressions, [20], and using spherical instead of polar coordinates throughout
the analysis. The investigation of interior Brinkman flows in a bounded porous medium around a
known or unknown inclusion will be the subject of the companion Part II paper.
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Figure 1. Example 1: Maximum absolute errors in perturbed velocity u = (u1, u2)
and pressure (E(u1), E(u2) and E(p), respectively) for different numbers of degrees
of freedom on circles of radii d near the boundary.
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Figure 2. Example 1: Errors in perturbed velocity u = (u1, u2) and pressure on
the circle of radius d = 1.1.
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Figure 3. Example 1: (a) Velocity vectors (b) Lines of constant pressure (isobars).
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Figure 4. Example 1: Results (a) with no noise and no regularization, (b) for
various values of λ1, ζ = 5% noise, and λ2 = 0, (c) for various values of λ2, ζ = 5%
noise, and λ1 = 0.
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Figure 5. Example 2: Results (a) with no noise and no regularization, (b) for
various values of λ1, ζ = 5% noise, and λ2 = 0, (c) for various values of λ2, ζ = 5%
noise, and λ1 = 0.
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Figure 6. Example 3: Results (a) with no noise and no regularization, (b) for
various values of λ1, ζ = 5% noise, and λ2 = 0, (c) for various values of λ2, ζ = 5%
noise, and λ1 = 0.


