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A B S T R A C T

In a mining supply chain, products from mines are blended at port terminals to ensure that a set of

blending targets (such as grade and qualities) are achieved. The production scheduling problem of

each individual mine and the blending problem for a network of mines and ports constitute the in-

tegrated blending optimisation, which involves modelling of material flows from mine-side pits to

port-side stockpiles. Due to the problem scale and the bilinear constraints for blending behaviours,

the problem is computationally hard to solve by any available optimisers. This paper extends upon a

decomposition-based algorithm in the literature, which was first to solve the blending problem for a

network of multiple mines and ports over multiple time periods. In our paper, a prune routine is pro-

posed to progressively update the mixed integer program of the production scheduling problem for

each mine during a rolling-horizon heuristic. Experiments have shown that this extension produces

solutions of higher quality than the original algorithm. Furthermore, a ranking-based topological

sorting heuristic is presented for selecting units of mineral deposits, known as ’blocks’. Experiments

have shown that the average computation time can be reduced by 75.97% when this heuristic is imple-

mented. On top of these extensions, an adaptive algorithm is adopted from the decomposition-based

algorithm, featuring faster convergence and higher solution quality at the same time. Comparing our

results to the literature, our adaptive algorithm, on average, yields an improvement in solution quality

by 12.67% while reducing computation time by 65.09%.
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Integrated blending optimisation

1. Introduction

In open-pit mining, mineral deposits close to the earth’s

surface are extracted, transported, processed and stored in

stockpiles. Orebodies in a pit are divided into grids of ’blocks’

for production scheduling purposes. Oftentimes, the blocks

are equally sized for convenience of scheduling. Each block

is assigned an estimate of its percent composition of metal

grade and that of other quality attributes (such as impuri-

ties). The blocks are scheduled for extraction and process-

ing as per a set of short-term production targets which stipu-

late the desired grade and quality attributes. The processed

ores from multiple mines are then transported by trains to a

set of port terminals where they are blended into port prod-

ucts, known as ’blends’, before shipping to the downstream

customers. At each port, blending of trainloads is neces-

sary as the grade and quality attributes of mine-side products

usually differ from mine to mine (even from plant to plant)

and vary with time, all contributing to unsatisfying port-side

products. An example of such a network structure is illus-

trated in Fig. 1, where blocks across mines and blends across

ports are ’unfolded’ in a uniform view. From origin blocks

to final blends, materials can follow various paths passing

or bypassing stockpiles while wastes are sent to dump loca-

tions. The integrated blending optimisation decides not only

the material flows inside each mine site but also the suitable

match between mine-side products and port-side products

such that the final blends are in line with certain quality tar-

gets over time. In other words, such an optimisation problem

deals with a network of multiple mines and multiple ports in

a multiple-time-period setting, known as MTP-MMPP [6].

A block model is classified into two categories - grade

block and blast block. As the term suggests, blasting is re-

quired for a blast block so that it become mineable. In con-

trast, a grade block is already blasted and ready for immedi-

ate extraction. In general, a blast block may contain a mix

of grades (high and low) and wastes whereas a grade block

can contain only one of the three. In practice, a blast block

model contains a number of smaller sized grade blocks. For

the purpose of planning, however, blast blocks can be treated

as if they only differ from grade blocks in chemistry compo-

sition and tonnage. To account for the blasting requirement,

blast blocks are delayed by a specified number of time peri-

ods, which is realised as a constraint in modelling.

The mining of blocks follows a particular order such that

internal blocks are accessed by removing the blocks imme-

diately accessible on the mining face, named ’face blocks’.

This gives rise to a set of disjunctive precedence constraints

- an internal block is accessible when at least one of its ad-

jacent blocks is extracted completely. For instance in Fig.

2, blocks {b1, b2, b3, b4} around block b0 constitute the adja-

cent set of blocks, denoted as Ab0
, that precede block b0: to

access b0, at least one of the adjacent block in Ab0
needs to

be removed in advance.

Another type of precedence constraint is from a verti-

cal perspective: a specified number of conjunctive blocks

immediately above a block must be removed completely be-

fore the underlying block. In general, there are two config-

urations of such a vertical precedence constraint that are be-

ing used in planning: Fig. 3 shows the first configuration

in which the 5 blocks above the underlying block constitute

an instance of vertical precedence constraint pertaining to

underlying block; similarly, Fig. 4 displays another config-

uration in which four additional blocks are also regarded as

vertically preceding the underlying block, increasing the to-

tal number of preceding blocks to 9.

Apart from the disjunctive and vertical precedence con-

straints, the precedence relations existing for a set of contigu-

ous blocks must be considered in order to form a feasible

extraction sequence of blocks - the separation constraints.

Consider a set of contiguous blocks C = {b0, b1, b2, b3} and

a set of face blocks N(C) = {b4, b5} in Fig. 5: blocks in

C are accessible when at least one of the face blocks in the

neighbouring set N(C) is mined completely. In fact, such

precedence relations must be respected for any subset C′,

where C′ ⊆ C. For example, consider the subset of con-

tiguous blocks C′ = {b2, b3}, supposing neither of b0 and

b1 is mined completely in the extraction schedule: b2 and b3
are adjacent to each other and if they are mined completely

during the same time period the disjunctive precedence con-

straint of a single internal block is not violated (they mutu-

ally satisfy each other’s precedence requirement); however,

the neighbouring set of face blocks N(C′) is empty, and

hence none of the blocks in C′ = {b2, b3} can be mined

in this case. In reality, the total number of separation con-

straints is too large to be defined explicitly and hence they are

a major source of complexity in modelling and optimisation.

For each mine, a production schedule is formed accord-

ing to a set of short-term production targets which specify

the desired grade and quality of each granularity in each time

period. A production schedule determines the amount of ore

to be extracted from each block during each time period and

the associated destination. The extraction sequence in each

time period must comply with all precedence constraints ap-

plicable. In addition to extraction, stockpiles are used to hold

extracted ores that are not processed immediately due to pro-

cessing capacity limits. Accordingly, reclamation of stacked

ores is also part of the decision making in generating a pro-

duction schedule. As for the destinations of extracted ore, a

waste dump is used to store wastes generated during extrac-

tion; a stockpile holds either of high or low grade ores before

processing; a dry plant splits high grade ores into fines and

lumps; and a wet plant upgrades low grade ores to high grade

before the splitting. Various operational constraints exist and

must be taken into account such as capacities on extraction,

transport, storage and processing. For efficiency, it is often

desired to maximise waste dumping to fully utilise truck re-

sources and to minimise the occurrence of double-handling

- an event in which extracted ore is stacked on stockpiles

and reclaimed for processing in the same time period. Many

studies have contributed to the production scheduling prob-

lem for a single mine in the past. However, little attention

was give to the global problem where the production of mul-

tiple mines are optimised at the same time.

Instead of defining explicitly all separation constraints,
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Figure 1: Network structure of open-pit mining supply chain

Figure 2: An adjacent set of blocks around a centre block

Figure 3: 5-block configuration of vertical precedence

the authors in [6] utilised a delayed constraint generation

method in which an inspection of solution feasibility is per-

formed during the solution progress and any violated instances

of separation constraints are added to the mixed integer pro-

gram (MIP) model before the next solve. The rationale of

this implementation is that it is often sufficient to find the

optimal solution without going through all constraints ap-

Figure 4: 9-block configuration of vertical precedence

Figure 5: A set of blocks on the same bench

plicable. The lazy callback function is supported by a few

optimisers such as CPLEX and Gurobi. The downside of

this approach is that the iterative solve process still can take

very long to reach optimality. In this paper, we present an ad-

ditional algorithm before optimiser solve to restrict the set of

blocks available for mining. A ranked TopoSort heuristic is

proposed to shortlist a set of blocks with the highest potential

to meet the production targets. Results have shown that this

modification greatly improves solve speed with only small
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impacts on solution quality.

The multiple-time-period setting of MTP-MMPP imposes

another layer of difficulty - modelling of materials through

intermediate junction nodes, i.e., stockpiles, require a set of

bilinear constraints which makes the problem non-convex

and hard to solve. In Blom’s approach [6], the entire plan-

ning horizon is divided into two consecutive horizons, for-

mulating a simpler MIP without those bilinear constraints.

The solution of the first horizon, which always contains only

a single time period, is fixed after solving and the two hori-

zons move forward to include any unsolved time periods for

the next round of solve. As such, the solution for multiple

time periods is progressively solved in iterations, a method

known as a rolling-horizon heuristic. This approach is sub-

ject to sub-optimal solutions compared to solving the prob-

lem in one holistic MIP. In our paper, a prune routine is

proposed to augment the rolling-horizon heuristic such that

the solution space of unsolved time periods is pruned with

the knowledge of the solved time periods. Consequently, re-

dundant decision variables regarding the completely mined

blocks are removed and the set of constraints is also up-

dated for formulating the next MIP. Results have shown that

the prune routine leads to better solutions than the original

rolling-horizon heuristic.

At a port terminal, ores departed from various mines are

mixed up as per a blending scheme to achieve the desired

grade and quality attributes, known as blending targets. The

blending scheme determines the amount of ore should be

sent from each mine in each time period and the target prod-

uct at each port. The operational constraint in this case is

the port capacity in handling the blending process in each

time period. With the production schedule for each mine

not known as a priori, the blending problem at each port be-

comes a harder to solve as the number of mines increases,

which renders a direct approach prohibitively expensive.

The contribution of this study is described as follows:

the decomposition-based algorithm (DA) in [6] is enhanced

by introducing a prune routine to remove completely mined

blocks and to update the precedence relation sets of remain-

ing blocks during its rolling-horizon procedure; the aggre-

gation technique used for block selection is replaced by a

new ranked topological sorting heuristic (TopoSort); and the

model in [6] is extended to account for quantity-based blend-

ing targets. Based on the test results of a range of designed

scenarios, the enhanced version of DA shows a stronger ca-

pability in finding high quality solutions than the existing

DA; and DA integrated with a new ranked TopoSort heuris-

tic is the fasted method among all tested methods. Based

on the aforementioned observations, a new Adaptive DA is

proposed in which fast convergence is achieved via DA with

TopoSort first and enhanced DA is activated once the algo-

rithm reaches near convergence. In Section 5, it is demon-

strated that the Adaptive DA outperforms the existing DA in

solve time and solution quality. Furthermore, a range of test

scenarios with extension to quantity-based blending targets

are tested in multiple runs by Adaptive DA and the results

demonstrate a good consistency of solution quality.

The remainder of this article is structured as follows.

First, we identify the existing work related to integrated blend-

ing optimisation in Section 2. Section 3 describes the as-

sumptions and modifications to the existing model in [6]. In

Section 4, the framework of existing DA and its key compo-

nents are described before the prune routine along with the

enhanced DA are presented. An introduction to our ranked

TopoSort heuristic is then presented along with algorithmic

structure of our Adaptive DA. In Section 5, the experiment

results by our Adaptive DA is presented and compared against

existing DA in terms of solve time and solution quality. Con-

cluding remarks in conjunction with an outlook to future

work are provided in Section 6.

2. Related Work

While there are considerable studies in the field of oper-

ational research in open-pit mining [13, 14, 16, 17], the lit-

erature for the problem of blending optimisation in mining

supply chains is narrow. These existing studies mainly focus

on maximisation of net present value for a single open-pit

mine instead of considering the blending targets in an entire

supply chain.

The multiple-time-period multiple-mine planning prob-

lem (MTP-MMPP) is in nature a hybrid of two optimisa-

tion problems - mine-side production scheduling and mine-

to-port schedule selection. In light of such a hybrid nature,

Blom et al. [6] proposed the DA as the first method ever

other than a direct approach to solve the MTP-MMPP. In

DA, the blending problem is decomposed into two decision-

making components. The input of one component becomes

the output of the other component, forming a feedback loop

structure. A set of production targets (grade and quality at-

tributes), and a standard deviation for each of these targets,

are initialised for each mine in each time period. Afterwards,

multiple sets of production bounds are generated by randomly

deviating the production targets. In the first component, the

mine-side production scheduling problem of each mine is

solved with respect to each of the generated production tar-

gets and multiple production schedules are generated as its

output. For each mine, the composition of the mine products

formed across this set of schedules is designed to form a nor-

mal distribution, with the given standard deviation, around

the production target. Then these production schedules be-

come the input of the second component in which the mine-

to-port schedule selection problem is optimised. From the

combined decision making, the best combination of produc-

tion schedules is determined and a blending scheme that dic-

tates the match between mine products and port products is

obtained. Then the algorithm refines the production targets

of each mine and varies the associated standard deviations

by comparing the current solution to the best solution so far.

This successive solving process is repeated until all standard

deviations have converged to a value that falls below a pre-

defined threshold.

For production scheduling in an open-pit mine, there are

usually multiple objectives with hierarchical priorities. For

First Author et al.: Preprint submitted to Elsevier Page 4 of 17
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instance, an objective of grade and quality target may have

a strict precedence over other objectives such as productiv-

ity, resource utility, etc. Therefore, a hierarchical optimisa-

tion approach is often preferred. Blom et al. [3] presents

a method to solve a multi-objective production scheduling

problem for a single mine. The method utilises an optimise-

and-prune approach in which a MIP is re-solved multiple

times with respect to an ordered sequence of objectives and

inferior solutions are pruned progressively. In a similar ap-

proach [6], a MIP is solved with respect to the primary ob-

jective regarding grade and quality targets; then the achieved

grade and quality attributes are enforced as new hard con-

straints and the MIP is solved again with respect to the sec-

ondary objective regarding productivity. There are many dif-

ficulties in solving the MTP-MMPP as a holistic MIP. On

one hand, modelling the time varying status of stockpiles in-

troduces nonlinear constraints to the model. To avoid such

complexity, Blom et al. [6] used a rolling-horizon heuristic.

The rolling-horizon heuristic aggregates all time periods into

two time windows, i.e., horizons in which the stockpile com-

position is regarded as constant; a MIP of these two horizons

is optimised, after which the production schedule of the first

horizon (contains only a single time period) is fixed and both

horizons slide forward to include the remaining time peri-

ods. It is assumed that the status of each stockpile remains

constant in each time horizon. In later work by Blom et al.

[3, 4], variants of rolling-horizon heuristic are proposed with

differing methods in dividing the planning horizon. The suit-

ability of these methods in different scenarios are discussed.

On the other hand, the enormous number of blocks and

their precedence relations in a real-world scenario is prob-

ably the biggest challenge in solving the MTP-MMPP. To

reduce the size of large scale MIPs, Weintraub et al. [18]

propose an approach to aggregate MIP models based on clus-

tering analysis. The results show that the original MIP size

is reduced significantly in a single mine setting. Extending

this approach, Blom et al. [6] applies aggregation to sce-

narios of multiple mines and explore the extent to which ag-

gregation size affects the solve time and solution quality. In

their approach, an aggregate of blocks assumes the total ton-

nage of its members while an average value is taken of each

grade and quality attributes. Correspondingly, the produc-

tion scheduling for each mine takes a two-step approach - in

the first step, a MIP is established and solved for aggregated

blocks; then a new MIP is formed by the blocks in scheduled

aggregates and a production schedule is obtained by solving

the new MIP. The results show that a maximum aggregation

size of 4 blocks provides a good balance between solve time

and solution quality.

To deal with the computational difficulty caused by the

enormous number of precedence constraints (especially by

the separation constraints), studies usually take heuristic-based

approaches. A constructive algorithm is presented by Mousavi

et al. [11] to obtain a good initial solution for open-pit mine

block sequencing. The same authors [12] propose a hybrid

algorithm that combines branch-and-bound and simulated

annealing in an attempt to obtain the optimum extraction se-

quences of original-size blocks. A topological sorting heuris-

tic, named TopoSort, is presented by Chicoisne et al. [7]

to obtain a starting feasible solution. Their work, however,

is mainly focused on a class of open-pit mine production

scheduling problem known as C-PIT, the goal of which is

to maximise the net present value. Following TopoSort, a

number of techniques based on it were proposed to tackle

mining problems of extremely large instances. Samavati et

al. [15] also uses the TopoSort heuristic in their attempt to

solve C-PIT problems of very large size.

The integrated blending optimisation is not restricted to

mining supply chains. Instead, it can be adapted to apply

a wide range of production planning problems such as oil

refinery production [1]. From an operational research point

of view, it belongs to a class of extended pooling problems

in which streams from sources to destinations (targets) are

optimised by bypassing multiple layers of blending pools [2,

9, 10].

3. Modelling

3.1. Assumptions
There are a few assumptions made in the modelling of

the MTP-MMPP and they are summarised as follows:

(1) The blending targets of each port product including the

metal grade and other quality attributes are known as

a priori, that is, these targets are deterministic and stay

constant across the planning horizon.

(2) The ore split and chemistry composition in each stock-

pile is assumed to be constant during a time period and

equal to the value at the start of that time period. How-

ever, their values in a following time period is updated

once the extraction schedule in the preceding time pe-

riod is determined.

(3) The transportation of produced ores in a time period

from mines to ports must be completed by the end of

next time period.

3.2. Mine-side Scheduling
At each mine site, the production scheduling problem Om

is formulated as a MIP with a pair of hierarchical objectives.

The primary objective is to minimise the deviation present

between the grade and quality attributes of produced ore and

a set of production targets. As a lower priority, it is also de-

sired to maximise the productivity across the planning hori-

zon. The productivity is defined such that dumping waste

has a positive contribution and that stockpiling has a posi-

tive contribution if and only if a wet processing plant exists

for upgrading low grade ore.

Most of the MIP formulation of Om in [6] remains un-

changed with one exception - the constraint regarding the

utility of processing plants. In the original formulation, each

processing plant is constrained to be fully utilised within a

tolerance �, as shown in Eq. 1. The variable xm,t
s,d

denotes the

amount of material sent from source s to processing plant

d in mine m in period t. The notation Sm represents the

set of sources (blocks/stockpiles) in mine m. From Eq. 1,

First Author et al.: Preprint submitted to Elsevier Page 5 of 17
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the amount of produced ore from each processing plant, de-

noted by d, in period t is restricted to be equal to its pro-

cessing capacity Cm
d

with a tolerance of �. A potentially

more flexible constraint is used in our work, given by Eq. 2.

In the new constraint, the upper bound remains unchanged

while the lower bound is specified by a multiplicative factor

�− ∈ [0, 1]. Such modification is justified by the fact that

it is not always possible to fully utilise a wet/dry processing

plant due to the limited availability of low/high grade ores.

For brevity, the full MIP formulation is omitted and inter-

ested readers are referred to [6] for details.

Cm
d
− � ≤

∑

s∈Sm

xm,t
s,d

≤ Cm
d
+ � (1)

�−Cm
d
≤

∑

s∈Sm

xm,t
s,d

≤ Cm
d
+ � (2)

Om is solved in two steps - firstly, a MIP is formulated with

an objective to minimise the total deviation present between

the chemistry composition of mine products and a set of pro-

duction targets, denoted by Om,1; secondly, the MIP is up-

dated such that the achievable grade and quality figures are

imposed as hard constraints and the objective is changed to

maximise the total productivity, denoted by Om,2. Each pro-

duction target is expressed as a pair of production bounds.

Zero deviation is achieved when the pertaining quality at-

tribute lies between the upper bound and lower bound.

3.3. Mine-to-port Schedule Selection
A random value is drawn from a normal distribution with

a specified standard deviation, and this value is added to the

production targets of each mine to form a new set of targets.

A Om is solved for a specified number of times with a differ-

ent set of production targets each time so that multiple pro-

duction schedules are generated for each mine. As such, the

mine-product composition across the schedules produced for

each Om is designed to be normally distributed around the

given production target, with a specified standard deviation,

i.e., the size of the standard deviation controls the diver-

sity of mine-products formed across the schedule set. This

schedule set forms the input of a new MIP that determines

the best combination of schedules across all mine sites. Hence,

the new MIP is referred to as the mine-to-port schedule se-

lection problem, denoted by O� , where port capacities and

blending targets are taken into account as constraint and ob-

jective, respectively. Consequently, the best combination of

schedules is determined such that the match between mine

products and port products leads to correctly blended port

products with lowest deviation from the blending targets.

As a secondary objective, the overall productivity across all

mine sites is to be maximised. In formulating O� , a much

higher weighting is given to the deviation-based objective in

a weighted sum of the two objectives.

The modelling of O� remains unchanged as in [6] ex-

cept the following extension to quantity-based blending tar-

gets. A new decision variable, denoted by qt
n,l

where t, n

and l are the index of time periods, products and granulari-

ties(i.e., lump and fines), respectively, is defined to represent

the amount of blended product of each granularity formed in

each time period. The expression of qt
n,l

is given in Eq. 3.

TR denotes the tonnes of ore in a trainload. r
m,l,t′,j
�,n,t refers

to the number of trainloads of ore in granularity l departing

from mine m in period t′ and blended into product n at port

� in period t, as specificed in schedule j. �
m,t′,j

g,l
denotes the

main grade g in percent in the ore of granularity l ∈ L pro-

duced at mine m in period t of schedule j. Notations N , Π

and M refer to the number of schedules, ports and mines,

respectively. Eq. 4 is introduced in O� enforcing the mini-

mum production requirement for each port product of each

granularity (denoted by Q∗
n,l

where n ∈ N and l ∈ L re-

fer to products and granularities). The secondary objective

of maximising productivity is changed to maximising total

production of all desired products, denoted by z�,2 in Eq. 5.

qt
n,l

= TR

N∑

j=1

Π∑

�

M∑

m

t∑

t′

r
m,l,t′,j
�,n,t �

m,t′,j

g,l
(3)

T∑

t

qt
n,l

≥ Q∗
n,l

∀n ∈ N , l ∈ L (4)

z�,2 =

T∑

t

∑

n∈N

∑

l∈L

qt
n,l

(5)

4. Methodology

Based on the framework of DA and its associated MIPs,

new techniques and modifications are proposed in this paper

with a goal to improve computational efficiency and solution

quality. The following in this section briefly summarises the

basic DA by Blom et al. [5, 6] and its major technical com-

ponents, followed by a detailed description of our proposed

DA and its new techniques.

4.1. DA
The framework of DA is illustrated in Fig. 6 in which

the two sub-problems (Om and O�) constitute a cyclic struc-

ture. A set of production targets �, including grade and qual-

ity specifications, are initialised for each mine at the begin-

ning. The values of these targets are either based on port-

side blending targets or sourced from a medium-term plan.

Plus, each production target is associated with a standard de-

viation �, the value of which can only vary between a set of

bounds. The bounds are specified as significant change Δ+
q

and insignificant change Δ−
q , where q ∈ Q refer to quality

attributes. All � are equal to Δ+
q initially whereas they will

have converged to Δ−
q by the termination of DA.

The mine-side component deals with the production schedul-

ing for each mine via a staged solution process. At the first

stage, blocks in a mine are amalgamated into larger size ag-

gregates and a MIP of Om is solved with respect to these ag-

gregates. At the second stage, blocks in those schedules are

selected to formulate a new MIP of Om, yielding the extrac-

tion schedule of blocks. The staged solution process is in

place for reducing computation complexity induced by the
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Figure 6: Framework of DA

large number of blocks encountered in practical mine plan-

ning. The output of the mine-side component is a pool of

candidate schedules for each mine. In order to generate mul-

tiple schedules for each mine, a random deviation (drawn

from a zero-mean normal distribution) is introduced to each

� every time the two-stage solution process is applied.

After the mine-side component, the candidate schedules

are forwarded to the port-side component in which the best

combination of schedules with respect to a set of predefined

blending targets is determined by solving a MIP of O� . Sub-

sequently, a feedback mechanism is in place to refine each �

and its corresponding � such that the subsequent execution

of the mine-side component is more likely to generate sched-

ules that better suit the port-side blending targets. After-

wards, the aforementioned cycle is repeated until all � have

converged to the minimum values defined by Δ−
q . In prac-

tice, a maximum number of iterations in conjunction with

a maximum computation time are also implemented as ad-

ditional stopping criteria. For a step-by-step description of

DA, interested readers are referred to [6] for the details.

4.2. Aggregation Algorithm
In the original DA, a set of grade and quality targets in

terms of upper and lower bounds are generated which are

used to construct the quality-based objective function in the

MIP formulation of Om. For brevity, interested readers are

referred to [6] for the exact algorithm.

An aggregation algorithm is applied to form a set of ag-

gregated blocks and a Om is solved to schedule the mining

of the aggregates. Then a second Om is solved while being

restricted to mining blocks within the aggregates chosen for

mining in the first pass. As such, the overall complexity of

dealing with an enormous set of blocks is relaxed. Since the

authors in [6] did not specify the exact procedure for aggre-

gation, a probably similar aggregation algorithm used in this

paper is presented in Algorithm 1. There are two principles

followed by the aggregation algorithm. Firstly, blocks resid-

ing on the same horizontal slice of earth, called a bench, are

selected for aggregation. The intuition behind this principle

is that blocks across benches are less likely to be mined in the

same time period as compared to blocks on the same bench.

In addition, aggregating vertically distant blocks should be

avoided since the associated precedence constraints can be

hard to satisfy. The second principle is related to the cate-

gorisation of blocks, including grade, blast, and pure waste.

For ease and accuracy in estimating the aggregated chem-

istry compositions, only blocks of the same category are al-

lowed for aggregation. For blocks in a bench, the procedure

described in Algorithm 1 is applied to each category sepa-

rately, the combined results of which constitute a set of ag-

gregates for further processing.

In Algorithm 1, k is the index of aggregate and Ak is the

aggregate being constructed. B denotes the set of blocks of

same category in a bench and its complement set, namely

blocks not in B, is denoted by Bc . Later on, already ag-

gregated blocks are marked as prohibited for aggregation by

adding them to Bc . N(b) refers to blocks adjacent to block b.

Besides, F and FA denote blocks on the mining face and ag-

gregates containing blocks on the mining face, respectively.

These sets are initialised in step 2 and 3. The algorithm it-

eratively generates block aggregates and updates a lookup

function A(Ak) that records the aggregated blocks. In step

6 and 7, a maximum number of aggregated blocks, denoted

by M , is determined and it must be an integer in the closed

interval [1,MA], where MA dictates the size limit. Then a

block b is randomly selected from B. In step 9, blocks in

the prohibited set, Bc , are excluded from the set of neigh-

bouring blocks of b, i.e., N(b). From step 10 to 14, an ag-

gregate a is formed by blocks in b ∪ N(b). The function

Aggregate(b,N(b),M) in step 11 recursively builds up a

with a cap of M blocks. The blocks now contained in a are

removed from B in step 15, followed by addition to Bc , i.e.,
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they are labelled as not available for aggregation. From step

17 to 21, A(Ak), FA and k are updated. The algorithm con-

tinues to form new aggregates till B becomes empty.

Algorithm 1 Aggregation Algorithm

1: k ← 0, Ak ← ∅

2: Initialise blocks in the same category B, prohibited set

Bc , neighbouring set N(b) ∀b ∈ B and face set F

3: Initialise face aggregate set: FA ← ∅

4: Initialise aggregate lookup function A(Ak)

5: while |B| ≠ 0 do

6: M ← RandInteger(MA)

7: M ← min(M, |B|)
8: Randomly pick a block b, b ∈ B

9: N(b) ← N(b)∖Bc

10: if |N(b)|>0 then

11: Ak ← Aggregate(b,N(b),M)

12: else

13: Ak ← b

14: end if

15: Remove the blocks in Ak from B: B ← B∖Ak

16: Mark the blocks in Ak as prohibited: Bc
← Bc∪Ak

17: Save the aggregate Ak: A(Ak) ← {b|b ∈ Ak}

18: if any face blocks in Ak: Ak ∩ F ≠ ∅ then

19: Update the face aggregate set: FA ← FA ∪ Ak

20: end if

21: k ← k + 1

22: end while

23: Return A(Ak) and FA

4.3. Rolling-Horizon Heuristic
A rolling-horizon heuristic is used in each mine-side prob-

lem for the generation of a mining schedule over a multiple-

time-period planning horizon. The T time periods of a plan-

ning horizon are discretized into two aggregates of time hori-

zons of size 1 and T − 1. The first horizon, denoted by H1,

always contains only a single time period. And the second

horizon, denoted by H2, includes the remaining undeter-

mined time periods of the mining schedule. Accordingly, a

two-time-horizon MIP of Om is formulated and solved, after

which the mining schedule of H1 is fixed and H1 rolls for-

ward to the next time period in queue (which is also the first

time period inH2). AndH2 is updated such that the time pe-

riod now contained inH1 is excluded. The two-time-horizon

MIP of Om is formulated and solved repeatedly asH1 andH2

move towards the last time period and null, respectively, at

which point a single-time-period MIP of Om is solved. As

such, the mining schedule for all time periods is obtained.

The details of this rolling horizon heuristic and its variants

are described in [6] and [3], respectively.

4.4. Prune Routine and Enhanced DA
In between two consecutive iterations of the rolling-horizon

heuristic, it is necessary to update the chemistry and ton-

nage within blocks and stockpiles before formulating a new

MIP of Om. However, only updating the values of these time-

varying data inputs as in [6] results in a successively redun-

dant formulation of Om, in which ’ghost’ blocks of empty

tonnage exist, as time horizons move forward. To prevent

ghost blocks from creation during rolling-horizon heuristic,

a prune routine is proposed here to remove any empty blocks

that will appear after fixing the schedule in H1. Apart from

removal of the ghost blocks, it is necessary to update the

precedence relations of the remaining blocks. Algorithm 2

outlines the steps of the prune routine.

The inputs of prune routine include a set of blocks (B),

their precedence relations (disjunctive sets A∨ and vertical

sets A∧), a set of face blocks (F), sets of internal blocks

adjacent to the face blocks (A∨
F

), a set of empty internal

blocks (I−), and a set of empty face blocks (F−), as shown

in the first line of Algorithm 2.

At start, a set of empty blocks to be removed is con-

structed by uniting I− and F−. And a set of new face blocks,

denoted by Fn, is initialised with zero element. From step 3

to 15, each member in B− is removed from B, A∨ , A∧, F

and Fn. Meanwhile, blocks exposed to the mining face due

to removal of preceding blocks are identified and added to

Fn, as shown in step 6 and 9. Notice that the sets pertaining

to the empty blocks are also removed in step 7 and 10.

It is necessary to update the adjacent relations of face

blocks after the removal process. By definition, an adja-

cent set of a face block contains only internal blocks, namely

neighbouring face blocks are excluded. Accordingly, step 16

to 18 make sure that the new face blocks next to any remain-

ing face block are excluded in the corresponding adjacent

set. Then in step 19, any remaining face blocks and new

face blocks are combined to form a new face block set. Note

that the adjacent set of a face block is empty, i.e., |A∨(f )| =
0 ∀f ∈ F. Accordingly, the steps from line 20 onwards

ensure that the adjacent sets of new face blocks follow the

aforementioned definitions.

It was found later in tests that this prune routine results

in better solutions at a cost of solve time comparing to the

original DA. Therefore, we name this new variant of DA En-

hanced DA. Surprisingly, the observation of better solution

and longer solve time is actually unexpected and contradicts

with our intuition. Initially, the removal of redundant vari-

ables and constraints from a MIP formulation is expected

to save some solve time by downsizing the solution space.

Instead, the solve time increases and so does the solution

quality in terms of total productivity. A speculation around

this is DA itself is subject to sub-optimality due to the us-

age of the rolling-horizon heuristic and of the decomposition

strategy. These techniques are used to simplify the nonlinear

large-scale optimisation problem of MTP-MMPP into linear

smaller-sized sub-problems that make up partial solutions to

the entire problem. Although the prune routine may not af-

fect the optimality of each individual sub-problem but the

results have shown that it motivates Enhanced DA to search

more extensively in the solution space. However, the exact

mechanism of how the prune routine leads to better solutions

has not been identified and requires further investigation.
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Algorithm 2 Prune Routine

Input: B, A∨, A∧, F, A
∨
F

, I−, F−

Output: Updated B, A∨, A∧, F, A
∨
F

1: Initialise blocks to be removed: B−
← I− ∪ F−

2: Initialise new face blocks: Fn ← ∅

Remove empty blocks and identify new face blocks:

3: for b− ∈ B− do

4: if b− is a face block then

5: Remove b− from set F

6: Add each b ∈ F
∨
F
(b−) to Fn if b ∉ B−

7: Remove set A
∨
F
(b−)

8: else b− is an internal block:

9: Add each b ∈ A∨(b−) to Fn if b ∉ F, b ∉ B−

10: Remove b− from sets A
∨
F
(f ) ∀f ∈ F

11: end if

12: Remove set A∨(b−)

13: Remove b− from sets A∨(b) and A∧(b), ∀b ∈ B

14: Remove b− from set B

15: end for

Update face blocks and their adjacent relations:

16: for each remaining face block f ∈ F do

17: Remove blocks in A
∧
F
(f ) that are now face blocks

18: end for

19: Update face set: F ← F ∪ Fn

20: for each new face block f ∈ Fn do

21: Remove any face blocks in A
∨
F
(f )

22: Neutralise disjunctive precedence of f : A∨(f ) ← ∅

23: end for

4.5. Ranked TopoSort Heuristic
In this section, we present a new topological sort heuris-

tic in an attempt to reduce the computation time of DA. A

topological ordering of blocks represents a feasible mining

sequence that satisfies all precedence constraints. Such a se-

quence can be found by searching through a directed acyclic

graph (DAG) that depicts the precedence relations existing

between any given a set of blocks. The heuristic to gener-

ate a topological order is often referred to as TopoSort and

is commonly utilised in many mining optimisation studies

such as [7, 8, 15]. Our new TopoSort is equipped with a

ranking mechanism to better suit the needs of blending.

The diagram in Fig. 7 shows an example of a DAG with 6

vertices, each denoting a block. An arrow is directed toward

vertex i from vertex j if j precedes i in priority, representing

a precedence relation between block i and j. In other words,

the number of incoming arrows directed toward a given ver-

tex indicate its degree of constraint. For example, block b4 is

preceded by blocks b1 and b2 while itself precedes block b6
in Fig. 7 Notice that a DAG is not only able to represent

vertical precedence relations between blocks but also can

denote any existing horizontal precedence relations. There-

fore, a realistic DAG of mining blocks is always in 3 dimen-

sional space with a multitude of degrees of constraint. Ini-

tially, all vertices with zero degree of constraint are simply

blocks on the mining face, i.e., F as mentioned previously.

Picking any block from F does not break any precedence

Figure 7: An example of DAG with 6 vertices/blocks

constraints. Hence, F is also called the eligibility set in the

context of TopoSort.

As a typical way of selecting a vertex during TopoSort,

a weight is computed and assigned to each vertex and the

vertex of highest weight in F is selected with highest prob-

ability. A weight function in TopoSort is usually problem-

specific and depends on the definition of the objective func-

tion. In many literature that included TopoSort, much em-

phasis has been given to maximisation of net present value

whereas little attention has been given to grade and quality

targets. Here, a new ranked TopoSort heuristic is proposed

in which each vertex is assigned a rank representing its fit-

ness with respect to a given set of grade and quality targets,

denoted by �̂. Since the objective of Om is to minimise the

total deviation present between chemistry of produced ores

and �̂, blocks of lower ranks (smaller deviations) are pre-

ferred.

Given a set of grade and quality targets �̂m,t in period t

at mine m, the corresponding set of qualities Q and the set

of granularities L, the rank of block b ∈ F is computed as

in Eq. 6 - a weighted sum of deviation present between the

chemistry of a block b and a set of quality targets.

Rank(b) =
1

2
T ℎi
b

∑

l∈L

∑

q∈Q

Sℎi
b,l

Δ+
q

[|||G
ℎi
b,l,q

− �̂m,t
l,q

|||

+
|||G

ℎi
b,l,q

− �̂m,t+1
l,q

|||
]

+
1

2
T lo
b

∑

l∈L

∑

q∈Q

Slo
b,l

Δ+
q

[|||G
lo
b,l,q

Rl,q∕Yl − �̂m,t
l,q

|||

+
|||G

ℎi
b,l,q

Rl,q∕Yl − �̂m,t+1
l,q

|||
]

(6)

Specifically, the first half of the first double summation de-

notes the accumulated deviation incurred by mining the high

grade portion of block b with respect to the grade and quality

targets in time period t. And the second half computes the

deviation with respect to the grade and quality targets in the

next time period. Note that the deviation existing for each

granularity l is weighted by the high grade tonnage of that

granularity in b, indicated by the multipliers T ℎi
b

(tonnes of
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high grade ore in block b) and Sℎi
b,l

( ore split of granularity l

in block b). Furthermore, an adjusting factor, known as sig-

nificant change Δ+
q , is used as the denominator to account

the fact that the deviations of different attributes may vary

from each other by a few orders of magnitude. For instance,

a difference of 0.01% between the target and actual level of

phosphorus may be just as significant as a difference of 1.0%

for iron. Similarly, the second double summation computes

the accumulated deviation in terms of mining low grade por-

tion of block b. The additional multiplier and divider inside

the absolute operators account for wet processing where low

grade ore is upgraded into a high grade concentrate. Rl,q

denotes the recovery rate of quality q in granularity l in this

concentrate, which is proportional to the input feed of low

grade ore. And Yl represents the portion of granularity l in

the input feed that makes up the concentrate, known as yield

factor. The values of these wet-processing parameters can

be estimated from historical production data.

Given a set of blocks B, a set of grade/quality targets �̂

and relevant parameters including precedence relations (dis-

junctive sets A∨ and vertical sets A∧), chemistry compo-

sition G, granularity split S,extraction capacity Ce and so

forth, the Ranked TopoSort Heuristic in Algorithm 3 itera-

tively builds up a candidate set of blocks whose order is a

feasible mining sequence, denoted by T. The algorithm al-

ternately selects blocks from an eligibility set E according to

their ranks in each time period (indexed by t) and updates E

until a sufficient number of blocks are chosen. The output T

is a set of blocks selected for the formulation of mine-side

scheduling problem Om.

In initialisation (step 1 and 2), the output set T is empty

and the total tonnage of selected blocks Te in time period

t = 1 is zero. The while loop ensures that all blocks are

selected in the worst case scenario. The eligibility set E is

a subset of all face blocks (f ∈ F) and it excludes those

that are not immediately available due to vertical precedence

constraints, i.e., |A∧(f )| > 0. E is reconstructed at the start

of each iteration (step 4). From step 5 to 11, the current E

is evaluated such that a maximum number of NR blocks are

selected for consideration of forming the output T, where

NR takes even value only. Whenever the number of eligible

blocks is greater than NR, the first half of selected blocks

are made up from the top ranked ones whereas the second

half are chosen randomly. The partial random selection en-

courages the algorithm to look for a wide range of possibili-

ties by investing in future eligible blocks instead of focusing

too much on short-term gain. The resulting set of selected

blocks is denoted by P. The algorithm then starts from the

first picked block and add it to the output set.

Before the algorithm proceeds its operation with each

selected block, the accumulated tonnage Te in time period t

is calculated (step 13) and the time period index increments

by 1 when 1.5 times the current extraction capacity C t
e is

exceeded (step 14). Such saturated inspection is also a mea-

sure to consider a wide range of blocks in addition to the par-

tial selection in step 7. In fact, the number of total selected

blocks in T by saturating the extraction capacity is almost

always less than the total number of blocks in a real-world

mine. Due to the saturated selection, some of the blocks

may not be mined at all while some of them are mined either

partially or completely across multiple time periods in the

schedule formed by the rolling-horizon heuristic. Accord-

ingly, Eq. 6 is formulated such that the rank of an eligible

block depends on its average contribution to meeting pro-

duction targets of two consecutive time periods. In addition,

the algorithm will stop if all time periods have saturated with

selected blocks (step 15). Otherwise, the accumulated ton-

nage Te is reset to the currently selected block’s tonnage and

the algorithm continues.

In step 16, the selected block p ∈ P is added to the out-

put setT. Next in step 17, p is considered mined completely,

and hence is removed from all relevant sets. Meanwhile, new

blocks exposed to the mining face are identified (step 18) and

added to the set of face blocks (step 19). Subsequently, the

internal blocks adjacent to those new face blocks (Fn) are

labelled among which new face blocks in the next iteration

will spawn (step 20 - 22). Additionally, any instances of new

face blocks (Fn) in the adjacent sets of face blocks A
∨
F

are

removed to be consistent with the definition (step 23 - 25).

4.6. DA with TopoSort
The Ranked TopoSort Heuristic (referred to as TopoSort

hereafter) can be used as an alternative to the aggregation

step in DA since both procedures serve to reduce the total

number of blocks selected for solving production schedul-

ing problem Om. Moreover, the block selection in DA with

TopoSort is likely to be more efficient comparing to DA with

aggregation where an additional MIP of Om needs to be solved

with randomly aggregated blocks. The algorithmic struc-

ture of solving Om for each mine via DA with TopoSort is

described in Algorithm 4.

To generate multiple production schedules for each mine,

the iteratively changing production targets �⃗i
m are deviated

by adding some random number (drawn from a zero-mean

normal distribution the standard deviation of which is �⃗im)

and a pair of production bounds
[
Lm,t
l,q

, Um,t
l,q

]
are generated

for each quality attribute in each granularity (step 5). The

gap between the upper and lower bounds is exactly twice the

value of a predefined insignificant change (Δ−
q ) in the cor-

responding quality attribute (q ∈ Q). Details of this bound

generation procedure is described in Algorithm 2 in [6]. As a

slight change to the original procedure, the deviated produc-

tion targets (�̂) are retained for rank assignment in TopoSort.

Then a number of suitable blocks are selected via TopoSort

(step 6), followed by a data input preparation routine (step

7) where all relevant data are extracted from their respective

universe. Afterwards a MIP of Om is solved via the rolling-

horizon heuristic mentioned in Section 4.3 and [6]. If a fea-

sible production schedule (s⃗m,j) is not found, step 5 to 8 is

repeated. Otherwise, s⃗m,j is considered as a candidate sched-

ule of mine m and hence is added to Ωi
m.
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Algorithm 3 Ranked TopoSort Heuristic

Input: B, �̂, A∨, A∧, F, A
∨
F

, S, G, Y, R, T k
b

, Ce

Output: T

1: Initialise a candidate set: T ← ∅

2: Initialise a tonnage counter for t = 1: Te ← 0

Pick blocks from B till a total tonnage larger than 1.5 times the extraction capacity in each time period is reached:

3: while |B| > 0 do

4: Initialise an eligibility set: E ←

{
f |f ∈ F ∧ |A∧(f )| = 0

}
(i.e., face blocks with no vertical precedence)

Pick a predefined number, denoted by NR, of blocks from the eligibility set:

5: if |E| > NR then

6: Compute the rank of each block in E using Eq. 6 and sort E by ranks in ascending order.

7: Pick the firstNR∕2 blocks in the sorted E and pick anotherNR∕2 blocks from the remaining blocks in E randomly.

8: Assign all picked blocks to a set P

9: else

10: Pick all blocks in E: P ← E

11: end if

Remove each picked block in P from its inclusive sets then update face set and precedence sets:

12: for each picked block p ∈ P do

13: Update tonnage counter: Te ← Te +
∑
k

T k
p

14: Increment time period index when 1.5 times the current extraction capacity is surpassed: t ← t+1 if Te > 1.5C t
e.

15: If t updates and t >T stop and output T. Otherwise, reset tonnage counter for the next time period: Te ←
∑
k

T k
p .

16: Add p to output set: T ← T ∪ {p}

17: Remove p from its inclusive sets F, B, A∨(b) and A∧(b) ∀b ∈ B, and A
∨
F
(f ) ∀f ∈ F

18: Identify new face blocks after removing p: Fn ← {n|n ∈ A
∨
F
(p)}

19: Update face set: F ← F ∪ Fn

20: for f ∈ Fn do

21: Identify internal-adjacent blocks of face block f : A
∨
F
(f ) ← {n|n ∈ A∨(f ) ∧ n ∉ F}

22: end for

23: for f ∈ Fn do

24: Remove face block f from inclusive sets: A
∨
F
(i) ← A

∨
F
(i)∖{f} ∀i ∈ F, i ≠ f

25: end for

26: end for

27: end while

Algorithm 4 Om in DA with TopoSort

Input: number of mines M , number of schedules for each mine N , production targets �⃗i
m and associated standard

deviations �⃗im of each mine m in iteration i of DA

Output: Set of production schedules generated by solving Om for mine m in iteration i of DA, denoted by Ωi
m

1: for m ∈ [1, 2, ...,M] do

2: Ωi
m ← ∅

3: for j ∈ [1, 2, ...N] do

4: do

5: Generate a set of production bounds
[
Lm,t
l,q

, Um,t
l,q

]
using �⃗i

m and �⃗im via Algorithm 2 in [6] and

retain the deviated production targets �̂m,t
l,q

= �m,t
l,q

+ Δ
j,t

l,q
for each quality q ∈ Q in granularity

l ∈ L at mine m in each period t ∈ [1, 2, ...T ].
6: Find a topological ordering of blocks T via Algorithm 3.

7: Initialise all data input pertaining to T and mine m.

8: Solve a Om of production bounds
[
Lm,t
l,q

, Um,t
l,q

]
via the rolling-horizon heuristic (Algorithm 3 in [6])

with the prune routine (Algorithm 2) implemented and output the production schedule s⃗m,j .

9: while s⃗m,j is not feasible

10: Add s⃗m,j to Ωi
m

11: end for

12: end for

13: Return Ωi
m

First Author et al.: Preprint submitted to Elsevier Page 11 of 17



Integrated blending optimisation

Algorithm 5 Framework of Adaptive DA

1: Initialise the best solution and its objective values: S⃗best ← ∅, z⃗best ← ∅

2: Maximum standard deviations: �⃗+ ← {�+
l,q

= Δ+
q |l ∈ L, q ∈ Q}

3: Minimum standard deviations: �⃗− ← {�−
l,q

= Δ−
q |l ∈ L, q ∈ Q}

4: Iteration indexes: i ← 1, istuck ← 0, iconv ← Eq. 7

5: Initialise mine-side production targets: �⃗i
m for all m ∈ M

6: Initialise standard deviations: �⃗im ← �⃗+

7: Go_Deep ← FALSE

8: while i ≤ MAXi do

9: if istuck ≥ iconv∨ Go_Deep is TRUE then

10: if Go_Deep is False then

11: Go_Deep ← TRUE

12: if z
�

best
> 0 then

13: �i,m,t
l,q

← (�+q + �−q )∕2 ∀m ∈ M, t ∈ [1, 2, ..., T ], l ∈ L, q ∈ Q

14: end if

15: end if

16: Solve each Om to find N production schedules (Ωi
m) for mine m via the procedures of Enhanced DA

(Section 4.4).
17: else

18: Solve each Om to find N production schedules (Ωi
m) for mine m via the procedures of DA with TopoSort

(Algorithm 4).
19: end if

20: Solve O� for Ωi
m ∪ {S⃗best,m} where S⃗best,m ∈ S⃗best is the production schedule of mine m ∈ M in the best

solution (S⃗best) so far. The output is the best solution and its associated objective values (z⃗i) in iteration i.
21: if zi ≥ zbest then

22: istuck ← istuck + 1

23: �i+1,m,t
l,q

← max{�−q , �
i
l,q
} ∀m ∈ M, t ∈ [1, 2, ..., T ], l ∈ L, q ∈ Q

24: if �⃗i+1 → �⃗− then

25: Terminate the algorithm and save the results.

26: end if

27: else

28: istuck ← 0

29: if Go_Deep is FALSE then

30: if |�i,m,t
l,q

− �m,t
l,q

| > �i,m,t
l,q

then

31: �i+1,m,t
l,q

← min{�+q , �
i
l,q
∕} ∀m ∈ M, t ∈ [1, 2, ..., T ], l ∈ L, q ∈ Q

32: end if

33: end if

34: Update production targets for the next iteration: �⃗i+1
m ← �⃗m where �⃗m is the chemistry composition in

the produced ore at mine m ∈ M in the best solution so far.
35: end if

36: end while

4.7. Adaptive DA
It is realised through multiple tests that DA integrated

with TopoSort outperforms DA in [6] in solve time while

yielding equally good solutions. As mentioned in Section

4.4, it has been observed that Enhanced DA that incorporates

the prune routine (Algorithm 2) leads to better solutions at a

cost of greater solve time. As such, an Adaptive DA is pro-

posed to take advantage of both DA with TopoSort and En-

hanced DA. Specifically, the strategy of DA with TopoSort is

utilised in the first stage of Adaptive DA such that mine-side

production targets �⃗i
m are refined quickly; once their stan-

dard deviations �⃗im have converged closely to insignificant

thresholds �⃗−, the second stage of Enhanced DA is activated

to look for good solutions in a local area of solution space. It

is shown in Section 5 that the Adaptive DA outperforms DA

in [6] in both solve time and solution quality. The framework

of Adaptive DA is presented in Algorithm 5.

The main architecture of DA remains the same in Adap-

tive DA - mine-side subproblem Om and port-side subprob-

lem O� are solved in succession to form a solution to a MTP-

MMPP problem. By solving Om with respect to varying sets

of production targets �⃗i
m, the generated schedules (Ω⃗i

m) will

produce ore the chemistry composition of which is clustered

around �⃗i
m with a spread determined by the associated stan-

dard deviations (�⃗im) [6]. �⃗i
m along with the schedule in the
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best solution thus far (S⃗best,m) are used to form a O� with

respect to a set of blending targets defined in a given MTP-

MMPP. Upon obtaining the solution to MTP-MMPP (S⃗best)

and its associated objective values (z⃗best) by solving the O� ,

a feedback mechanism (step 21 to 34) updates �⃗i
m and �⃗im

and the whole cycle repeats until all parameters in �⃗im are

converged to a set of predefined insignificant values (�⃗−).

Apart from the unchanged key elements in DA, a few

new parameters are introduced to control the workflow of

Adaptive DA. istuck denotes the number of consecutive iter-

ations for which the algorithm has failed to find a better so-

lution. iconv is computed as per Eq. 7, specifying a threshold

on istuck for which the algorithm works under the strategy of

DA with TopoSort. Once iconv is exceeded, the algorithm

switches its strategy to that of Enhanced DA by activating a

control flag Go_Deep (Step 9). Notice that the logical ’OR’

(∨) ensures that switching to Enhanced DA is an irreversible

operation. Before Enhanced DA is executed for the first time,

all standard deviations are conditionally reset to the average

of two extremes - �⃗+ and �⃗− (step 13). The satisfying condi-

tion is that the total deviation present between the chemistry

composition of produced ore and mine-side production tar-

gets (denoted by z
�

best
) is positive (step 10).

iconv = max
{
3, RoundDown

( log(�−metal
∕�+

metal
)

log 

)}

(7)

After solving a O� in each iteration, the mine-side produc-

tion (�⃗) and their associated standard deviations �⃗ are re-

fined and feedback to Om of the next iteration. When no bet-

ter solution is found, �⃗ are reduced by a factor of  with a

lower bound specified in �⃗− (step 23). Otherwise a better

solution is found, �⃗ are conditionally increased by a factor

of 1∕ with a cap specified in �⃗+. The condition is twofold.

Firstly (step 29), the algorithm must be running in the first

stage of fast converging �⃗, i.e., under the strategy of DA

with TopoSort. Secondly (step 30), the magnitude of de-

viation present between chemistry composition of produced

ore (�m,t
l,q

) and the desired production target (�i,m,t
l,q

) must be

greater than the associated standard deviation (�i,m,t
l,q

). �⃗ are

replaced by achieved chemistry composition �⃗ only when a

better solution is obtained.

5. Numerical Results

In this section, the new variants of DA are evaluated

with several conceptually designed test cases. The first 2 test

cases involve the blending of metal grade without consider-

ing other quality attributes. For each scenario, 10 test runs

were conducted using each algorithm including the old DA.

Consequently, the results in terms of CPU time and solution

quality are compared among those algorithms. Furthermore,

the best performing algorithm - Adaptive DA is evaluated

extensively with more complicated test cases in which multi-

ple quality attributes are considered (Fe, Silica and Alumina)

and a set of minimum production requirements are enforced.

Lastly, the sensitivity of Adaptive DA with respect to blend-

ing targets is discussed.

A summary of each test scenario is given in Table 1 in-

cluding the number of blocks, total reserve of minerals and

extraction capacity. These quantities are the total of 3 mines.

Each mine has its own set of operational constraints (such as

stockpile capacity, transport capacity, processing plant ca-

pacity etc.) and precedence constraints (horizontal and ver-

tical). Ores in fines and lumps are produced in each mine.

Both grade blocks and blast blocks exist in each mine while

the number of grade blocks accounts for 54 − 62% of the

entire population. There are 2 ports where 2 blends of each

granularity are produced. The blending targets and port ca-

pacity are the same for each port. The overall planning hori-

zon spans 5 weeks, which are divided into weekly time peri-

ods. In addition, the number of quality attributes and the ex-

istence of quantity-based blending targets are varied among

test cases( indicated in the last two columns of Table 1).

Across all test cases, the number of blocks available for

production planning in a mine ranges from 42 to 270 and

the total number of blocks in the 3-mine and 2-port network

ranges from 142 to 592. All experiments are run on a per-

sonal computer with an Intel Core i7 CPU at base speed

2.60 Ghz, 16 Gigabytes of RAM. The program is coded with

Python programming language and Gurobi optimiser 8.1.

5.1. Metal Grade Only
First of all, the performance of two variants of DA - DA

with TopoSort and Adaptive DA are evaluated and compared

to DA. For simplicity, we only consider a single quality at-

tribute as our blending target - iron grade. The box plot in

Fig. 8 presents the solve times of applying each algorithm

to test case 1 and 2 in Table 1. For each test case, 10 exper-

iments are run with each algorithm. The results of both test

cases show that solve time is reduced dramatically via either

of the two variants of DA. For DA with TopoSort, the reduc-

tion in solve time in percent of DA’s solve time is 75.97% on

average with a standard deviation of 11.07%. As for Adap-

tive DA, the average reduction in solve time is 65.09% with

a standard deviation of 14.71%.

As far as solution quality is concerned, the box plot in

Fig. 9 presents the productivity values obtained by applying

the aforementioned algorithms to test case 1 and 2 in Table

1. The total deviation present between iron grade of blended

products and the desired blending targets is zero across all

tests. Therefore, only productivity is presented and com-

pared. For case 1, no noticeable difference in productivity

exists between applying DA and DA with TopoSort, whereas

significant improvement in productivity is observed by ap-

plying Adaptive DA. As for case 2, the productivity obtained

by applying DA with TopoSort is clustered around 500 kt

while that of applying DA has a slightly higher value ten-

dency but with a wider range. Similar to case 1, there is an

apparent improvement on productivity by applying Adaptive

DA to case 2. Quantitatively, the gain in productivity by ap-

plying Adaptive DA is 12.67 % on average with a standard

deviation of 7.25% across all tests of case 1 and 2 combined.
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Table 1

Summary of test scenarios.

Case No. No. of Blocks Reserve (kt) Extraction Capacity (kt/week) No. of Qualities Quantity-based Targets?

1 362 4310 270 1 No
2 592 7001 340 1 No
3 142 1550 126 3 Yes
4 142 1550 202 3 Yes
5 552 5970 307 3 Yes

Notes: Each scenario contains 3 mines and 2 ports and the planning horizon is set to 5 weeks for all tests. Quantities
shown are the total across all mines. Reserve includes the total of all grades and wastes.
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Figure 8: CPU time performance
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Figure 9: Productivity performance

5.2. Multiple Quality Attributes
In light of the performance gain in both solve time and

solution quality by applying Adaptive DA, we now present

its performance in more demanding scenarios in which the

blending targets include multiple quality attributes as well

as a set of quantity-based targets. Apart from desired iron

grade, percent compositions of impurities including silica

and alumina are specified. And a minimum amount of to-

tal production is stipulated for each blended product of each

granularity.

Table 2 describes the statistics of test results by applying

Adaptive DA in solving 3 varying scenarios. In all tested re-

sults, the total deviation present between quality attributes of

blended products and the specified blending targets is zero.

The first metric presented in Table 2 is the gap in percent to

maximum achieved productivity among all test runs. And

the second metric is solve time. The average across 10 test

runs and its standard deviation are reported.

Table 2

Statistics of test results via Adaptive DA.

Case No.
Gap to �

Max
(%) CPU Time (s)

Avg. Std. Avg. Std.

3 2.18 1.74 2567 840
4 2.03 1.16 3162 689
5 3.18 1.55 26900 9702

Notes: An average (Avg.) and standard deviation (Std.)
are taken across 10 test runs for each scenario. The
largest value among tested results of each scenario is
taken as the maximum productivity (�

Max
).

As shown in Table 1, case 3 differs from case 4 only in

terms of the extraction capacity at each mine. Comparing

to these two scenarios, the number of blocks almost quadru-

pled in case 5 (from 142 to 552) and the overall extraction

capacity across all mines is increased to approximately 2.4

times of case 3 and 1.5 times of case 4. Despite these dif-

ferences, the gap to maximum achieved productivity ranges

from 2.03% to 3.18% across all tests, on average. The as-

sociated standard deviation of solving each scenario never

exceeded 2.0%. These small gaps and deviations indicate

that Adaptive DA is able to provide solutions with consis-

tent quality.

As for solve time, it is observed that both increasing ex-

traction capacity and number of blocks lead to increased solve

time. The variation in solve time grows with the increased

number of blocks.

6. Conclusion

In this paper, we presented a range of modifications to

an existing method for integrated blending optimisation in

mine planning. It has always been such a challenge to ad-

dress blending optimisation for a network of multiple mines
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and ports over multiple time periods (MTP-MMPP). A de-

composition based algorithm (DA) in [6] was claimed to be

the first approach to solve MTP-MMPP. This approach in its

original modelling did not consider the existence of quantity-

based blending targets which is an important consideration

alongside quality-based blending targets for a mining busi-

ness. Accordingly, a set of minimum production require-

ments are included in the modelling in this paper and the

secondary objective is changed from productivity maximi-

sation to production maximisation.

To avoid the use of nonlinear constraints in modelling

time-varying compositions of stockpiles, a rolling-horizon

heuristic is used in DA to aggregate time periods into larger

horizons so that a production schedule of multiple time pe-

riods can be formed progressively as time horizons roll to-

wards the last time periods. It was discovered during ex-

periments that solution quality can be improved by imple-

menting a prune routine which removes completely mined

blocks and updates precedence relations in between rolling

horizons. Hence, we name the modified DA with prune rou-

tine ’Enhanced DA’. Although the prune routine was intro-

duced with an intention to reduce solve time, the experiment

results demonstrated that the gain mainly comes in solution

quality. To explain the observation, the algorithm is subject

to sub-optimality due to its usage of rolling-horizon heuris-

tic (which decomposes the multiple-time-period scheduling

problem into progressive solve of discrete time horizons) and

the decomposition of a holistic MINLP into two MIPs, i.e.,

the scheduling problem Om and the schedule selection prob-

lem O� . So our speculation is that changes made in variables

and constraints by the pruning algorithm may not affect each

individual sub-problem but it does in a way motivates the

algorithm to search more extensively in the solution space.

However, the exact mechanism behind such improvement

still requires future investigation.

Inspired by studies that utilise a topological ordering heuris-

tic (TopoSort) to quickly generate feasible extraction sequence

[8, 7, 15], a new heuristic named Ranked TopoSort was pro-

posed that features a ranking mechanism which sort the el-

igible blocks in order of their fitness to achieve the desired

grade and quality targets. The Ranked TopoSort replaces the

aggregation planning stage of DA and serves to select blocks

for mining. The experiment results showed that solve time

can be reduced by 75% on average when Ranked TopoSort

is used in DA. As a drawback, lower solution quality in terms

of productivity (when blending targets are achieved with zero

deviation) is likely to occur.

An Adaptive DA was proposed to combine the benefits

of Enhanced DA and DA with TopoSort. It was realised that

a great amount of time is spent on obtaining a set of con-

verged blending targets, after which local search for solu-

tions of higher quality become a priority. Therefore, Adap-

tive DA takes a two-stage approach to address the blending

optimisation. During the first stage, DA with TopoSort is

used for fast convergence of blending targets and their as-

sociated standard deviations. As these values become close

to convergence, the algorithm enters the second stage where

Enhanced DA becomes the active approach to search for so-

lutions of higher quality. Comparing to DA without mod-

ification, solution quality in terms of productivity can be

increased by 12.67% on average when blending targets are

achieved with zero deviation.

Additional experiments were conducted for Adaptive DA,

where multiple quality attributes are specified in blending

targets and the extension to quantity-based blending targets

are considered. From the test results, it can be concluded

that Adaptive DA maintains a consistent performance in pro-

viding solutions of good quality regardless of the number of

blocks and the extraction capacity. For the largest instance

of 552 blocks, the average solve time was less than 7.5 hours

on a personal computer with i7 Core running at base speed

2.6 Ghz and 16 Gigabytes of RAM.

Glossary

Abbreviations

DA Decomposition-based Algorithm

DAG Directed Acyclic Graph

MINLP Mixed Integer Nonlinear Programming

MIP Mixed Integer Programming

MTP-MMPP Multiple Mines and Ports Planning Problem

in Multiple-time-period Setting

TopoSort Topological Sorting Heuristic

Problem Definitions

O� Schedule selection problem between mines and ports

Om Production scheduling problem of mine m

Om,1 Sub-problem of Om that minimises deviation present

between produced chemistry and production targets

Om,2 Sub-problem of Om that maximises productivity

Indices and Sets

Δ+
q , Δ−

q Significant and insignificant change for each quality

attribute, q ∈ Q

A∨(b) Set of blocks that precedes block b horizontally

A
∨
F
(f ) Set of internal blocks adjacent to face block f

A∧(b) Set of blocks that precedes block b vertically

B− Empty blocks to be removed, I− ∪ F−

C Set of contiguous blocks that form a continuous min-

ing sequence

E Set of eligible blocks for mining in TopoSort

F− Empty face blocks to be removed
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Fn New face blocks identified after removal of empty

blocks

I− Empty internal blocks to be removed

N(C) Set of face blocks adjacent to the blocks in C

N(b) Set of blocks adjacent to block b

P Set of blocks selected for mining in TopoSort

T Set of topological ordered blocks considered for min-

ing after applying TopoSort

� Production targets on grade and quality attributes

� Standard deviations for product targets

Ak, A(Ak) Aggregate of blocks, indexed by k, and the set

of blocks inside

b, B Blocks, particularly in Algorithm 1 refer to those are

of same category (i.e. grade, blast and waste)

b, Bc Blocks prohibited for aggregation in Algorithm 1

b−, B− Blocks to be removed in rolling-horizon heuristic

d, Dm Destinations (stockpiles, plants, waste dumps) in mine

m

f, F Blocks on the mining face

f, FA Aggregates that contain face blocks

H1,H2 Time horizons

l, L Granularities (fines and lump)

m, M Mines

q, Q Grade and quality attributes

s, Sm Sources (blocks and stockpiles) in mine m

Parameters, Variables and Expressions

�, �− Relative tolerance and multiplicative tolerance

�̂m,t Production targets of mine m in time t

�̂m,t
l,q

Target of quality q in granularity l at mine m in time

t

Rl,q Percentage of quality q in the granularity l that will

be recovered after upgrading (wet processing)

Yl Percentage of granularity l that will be recovered

after upgrading (wet processing)

Ωi
m Mining schedules generated for mine m in iteration

i

Π Number of ports

�⃗i
m Production targets of mine m in iteration i

�⃗im Standard deviations on production targets of mine m

in iteration i

s⃗m,j Mining schedule j of mine m

Cm
d

Processing capacity of plant d in mine m

Ce, C
t
e Extraction capacity (in time t)

Gℎi
b,l,q

Percentage of quality q in the granularity l within

the high grade ore of block b

Glo
b,l,q

Percentage of quality q in the granularity l within

the low grade ore of block b

M Number of mines

MA Maximum number of blocks in an aggregate

N Number of schedules for each mine-side scheduling

problem, Om

NR Maximum number of blocks for selection in TopoSort

Q∗
n,l

Minimum production requirement for product n in

granularity l

qt
n,l

Quantity of product n in granularity l in time t

r
m,l,t′,j
�,n,t Number of trainloads in granularity l departed from

mine m in time t′ and blended into product n at port

� in time t, as specified in schedule j

Sℎi
b,l

Percentage of granularity l in the high grade ore of

block b

Slo
b,l

Percentage of granularity l in the low grade ore of

block b

T ℎi
b
, T lo

b
Tonnage of high/low grade ore in block b

Te Accumulated tonnage of selected blocks in TopoSort

TR Tonnage of a nominal trainload

v
m,t′,j

g,l
Proportion of metal grade g in ore of granularity l

produced in mine m in time t′, as specified in sched-

ule j

xm,t
s,d

Amount of material sent from source s to destina-

tion d in mine m during time t

z�,2 Secondary objective in mine-to-port sub-problem,

O�
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