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Abstract: Transmembrane proteins involved in metabolic redox reactions and photosynthesis catalyse
a plethora of key energy-conversion processes and are thus of great interest for bioelectrocatalysis-
based applications. The development of membrane protein modified electrodes has made it possible
to efficiently exchange electrons between proteins and electrodes, allowing mechanistic studies and
potentially applications in biofuels generation and energy conversion. Here, we summarise the most
common electrode modification and their characterisation techniques for membrane proteins involved
in biofuels conversion and semi-artificial photosynthesis. We discuss the challenges of applications of
membrane protein modified electrodes for bioelectrocatalysis and comment on emerging methods
and future directions, including recent advances in membrane protein reconstitution strategies and
the development of microbial electrosynthesis and whole-cell semi-artificial photosynthesis.

Keywords: membrane protein; bioelectrocatalysis; electrode modification; biofuel cells; photosynthesis;
liposomes; hybrid vesicles; microbial electrosynthesis

1. Introduction

Membrane proteins constitute 20–30% of all proteins encoded by both prokaryotic and eukaryotic
cells. They perform a wide variety of functions, including material transport, signal transduction,
catalysis, proton and electron transport (Figure 1) [1]. They are also key to a number of earth’s most
fundamental reactions, such as respiration and photosynthesis [2,3]. Redox enzymes in the respiratory
chain catalyse a variety of fundamental processes for energy conversion and fuel production, including
H2 oxidation, O2 reduction, and carbon and nitrogen cycling. Membrane proteins that are involved in
the light reaction of photosynthesis harvest light and facilitate electron transfer essential for solar energy
conversion. The amphiphilic nature of membrane proteins makes them difficult to isolate, study and
manipulate. Despite these challenges, membrane proteins have been widely advocated and studied
for applications in bioelectrocatalysis, such as biofuel cells [4] and semi-artificial photosynthesis [5].
Here, we will review electrochemical studies of membrane proteins with the view to using these
systems for bioelectrocatalysis. To aid discussion later on, we will briefly introduce a small selection of
membrane enzymes active in bioenergy conversion, although this is far from a comprehensive list.
We will then summarise the main strategies to immobilise membrane proteins on electrodes and discuss
common techniques used to characterise these electrodes, including electrochemistry, spectroscopy,
spectroelectrochemistry, microscopy and quartz crystal microbalance. Finally, some critical application
challenges and potential future research directions will be highlighted that might find application in
bioelectrocatalysis. Specifically, we will focus on two emerging directions. One is the reconstitution
of membrane proteins into hybrid vesicles to extend their functional lifetime. The other is the use of
microorganisms for microbial electrosynthesis and semi-artificial photosynthesis.
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Nature offers highly specialised enzyme machineries that can be exploited for (bio)fuel 
conversion. Among them, membrane-bound hydrogenases, found in many bacteria, archaea and 
lower eukaryotes, are metalloenzymes capable of catalysing the reversible oxidation of H2 to protons 
and electrons [6]. Depending on the metal located in the active site, three phylogenetically unrelated 
classes can be identified: [NiFe], [FeFe] and, less common, [Fe] hydrogenases. Most hydrogenases are 
rapidly and almost completely inactivated by O2 [7]. However, aerobic or facultative aerobic H2-
oxidising bacteria have a particular subtype of O2-tolerant [NiFe] hydrogenase, which withstands the 
presence of O2 and are membrane-bound hydrogenases (MBHs) [8]. The most studied O2-tolerant 
[NiFe] hydrogenases are found in Ralstonia eutropha, Ralstonia metallidurans, Aquifex aeolicus, 
Hydrogenovibrio marinus and Escherichia coli. MBHs are multimeric proteins with one large subunit 
and one small subunit, bound to the periplasmic side of the cytoplasmic membrane through a 
transmembrane protein (b-type cytochrome) [8]. The [NiFe] active site, with the same configuration 
as other [NiFe] hydrogenases, is deeply buried in the large subunit. MBHs couple oxidation of 
hydrogen in the large subunit to the reduction of either menaquinone-7 or ubiquinone-8 in the b-type 
cytochrome in the membrane. 

In the respiratory chain, terminal oxidases catalyse the reduction of molecular oxygen to water 
without formation of reactive oxygen species (ROS). They oxidise quinones (ubiquinone and 
menaquinone oxidases) or cytochromes (cytochrome c oxidases) and can be classed into haem-copper 
oxidases [9], bd oxidases [10] or alternative oxidases [11]. For instance, cytochrome bo3 enzymes are 
haem-copper oxidases in bacteria such as E. coli and couple oxidation of ubiquinol-8 to the reduction 
of oxygen [12]. Cytochrome bd is a quinol-dependent terminal oxidase found exclusively in 
prokaryotes and is structurally unrelated to haem-copper oxidases [13]. 

Nitrate reductases are molybdoenzymes capable of reducing nitrate (NO3−) to nitrite (NO2−). This 
enzyme family can be found in eukaryotic and prokaryotic cells. Eukaryotic nitrate reductases are 
present in plants, algae and fungi, and are involved in the assimilation of nitrate. Prokaryotic nitrate 
reductases are classified into three classes: assimilatory nitrate reductases (Nas), periplasmic nitrate 
reductases (Nap) and respiratory nitrate reductase (Nar). The latter are transmembrane enzymes 
which use nitrate as the electron acceptor of an anaerobic respiratory chain [14]. Facultative anaerobic 
bacteria use these alternative respiratory enzymes in oxygen depleted environments, replacing 
oxygen with different electron acceptors [15]. For instance, under anaerobic conditions, E. coli 
expresses a respiratory membrane-bound NarGHI coupled with a membrane-bound formate 
dehydrogenases (FDH-N). These two membrane enzymes form the supermolecular formate:nitrate 
oxidoreductase system. FDH-N oxidises formate to CO2, after which electrons are transferred to 
nitrate with the formation of a proton-motive force across the cytoplasmic membrane [16].  
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2. Membrane Proteins in Biofuel Conversion and Photosynthesis

2.1. Membrane Enzymes in Biofuel Conversion

Nature offers highly specialised enzyme machineries that can be exploited for (bio)fuel conversion.
Among them, membrane-bound hydrogenases, found in many bacteria, archaea and lower eukaryotes,
are metalloenzymes capable of catalysing the reversible oxidation of H2 to protons and electrons [6].
Depending on the metal located in the active site, three phylogenetically unrelated classes can be
identified: [NiFe], [FeFe] and, less common, [Fe] hydrogenases. Most hydrogenases are rapidly and
almost completely inactivated by O2 [7]. However, aerobic or facultative aerobic H2-oxidising bacteria
have a particular subtype of O2-tolerant [NiFe] hydrogenase, which withstands the presence of O2 and
are membrane-bound hydrogenases (MBHs) [8]. The most studied O2-tolerant [NiFe] hydrogenases
are found in Ralstonia eutropha, Ralstonia metallidurans, Aquifex aeolicus, Hydrogenovibrio marinus and
Escherichia coli. MBHs are multimeric proteins with one large subunit and one small subunit, bound to the
periplasmic side of the cytoplasmic membrane through a transmembrane protein (b-type cytochrome) [8].
The [NiFe] active site, with the same configuration as other [NiFe] hydrogenases, is deeply buried in
the large subunit. MBHs couple oxidation of hydrogen in the large subunit to the reduction of either
menaquinone-7 or ubiquinone-8 in the b-type cytochrome in the membrane.

In the respiratory chain, terminal oxidases catalyse the reduction of molecular oxygen to
water without formation of reactive oxygen species (ROS). They oxidise quinones (ubiquinone and
menaquinone oxidases) or cytochromes (cytochrome c oxidases) and can be classed into haem-copper
oxidases [9], bd oxidases [10] or alternative oxidases [11]. For instance, cytochrome bo3 enzymes are
haem-copper oxidases in bacteria such as E. coli and couple oxidation of ubiquinol-8 to the reduction of
oxygen [12]. Cytochrome bd is a quinol-dependent terminal oxidase found exclusively in prokaryotes
and is structurally unrelated to haem-copper oxidases [13].

Nitrate reductases are molybdoenzymes capable of reducing nitrate (NO3
−) to nitrite (NO2

−).
This enzyme family can be found in eukaryotic and prokaryotic cells. Eukaryotic nitrate reductases are
present in plants, algae and fungi, and are involved in the assimilation of nitrate. Prokaryotic nitrate
reductases are classified into three classes: assimilatory nitrate reductases (Nas), periplasmic nitrate
reductases (Nap) and respiratory nitrate reductase (Nar). The latter are transmembrane enzymes
which use nitrate as the electron acceptor of an anaerobic respiratory chain [14]. Facultative anaerobic
bacteria use these alternative respiratory enzymes in oxygen depleted environments, replacing oxygen
with different electron acceptors [15]. For instance, under anaerobic conditions, E. coli expresses a
respiratory membrane-bound NarGHI coupled with a membrane-bound formate dehydrogenases
(FDH-N). These two membrane enzymes form the supermolecular formate:nitrate oxidoreductase
system. FDH-N oxidises formate to CO2, after which electrons are transferred to nitrate with the
formation of a proton-motive force across the cytoplasmic membrane [16].
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2.2. Membrane Proteins in Photosynthesis

Photosynthesis is the natural process by which photosynthetic organisms convert light energy into
chemical forms. The key steps, which include light harvesting, charge separation and electron transport,
occur in the membrane. For oxygenic photosynthesis in algae, higher plants and cyanobacteria,
two photosynthetic complexes are involved: photosystem I (PSI) and photosystem II (PSII) [17],
each with a peripheral antenna system: light harvesting complex I (LH I) for PSI and light harvesting
complex II (LH II) for PSII [18]. Anoxygenic photosynthesis in bacteria, such as purple bacteria,
is conducted by just one type of photosystem [19]. There are two types of light-harvesting complexes
in most purple bacteria. The light-harvesting complex I and reaction centre forms the RC-LH I complex
which is surrounded by multiple light-harvesting complex II [20]. In both oxygenic and anoxygenic
photosynthesis, light-harvesting complexes exert the vital function to effectively absorb light and
transfer the energy to the reaction centres [21]. Light-harvesting complexes absorb a limited spectral
range depending on their natural pigment. The light-induced charge separation occurs at the reaction
centres: PSII catalyses the light-driven water oxidation to reduce quinones, while the reaction centre of
purple bacteria only catalyses the reduction of quinones (part of the cyclic electron transfer process).
PSI is not catalytically active but instead serves as an “electron pump” which can be potentially coupled
to the other redox catalysts. Electrodes interfaced with photosynthetic proteins have found broad
applications in biosensors, biophotovoltaic cells and solar fuels generation [5,22,23].

3. Membrane Protein Electrode Design

Redox enzymes are molecular electrocatalysts that can function either in solution or while
immobilised on an electrode surface. Immobilising enzymes on the electrodes has several advantages
for electrocatalysis and this review will consider only immobilised systems. It is important that the
enzymes retain their structural integrity and catalytic activity upon immobilisation [24]. Unlike soluble
proteins, transmembrane proteins exist within lipid membranes and, consequently, are less stable in an
aqueous environment where the amphiphilic properties of membrane proteins can lead to aggregation
and denaturation. Therefore, it is challenging to retain the stability and function of membrane proteins
in in vitro studies [25]. Suitable detergents or mixed lipid/detergent systems are needed to maintain
an amphiphilic environment surrounding the membrane protein and mimic the original membrane
conditions [26,27]. Alternatively, for some multisubunit, heteromeric membrane proteins the solubility
problem can be circumvented by either purifying only the soluble subunits or engineering the protein to
express only the soluble subunits [28]. For instance, the large and small subunits of membrane-bound
hydrogenases can be separated from the transmembrane “anchor” subunit (b-type cytochrome).
More sophisticated approaches have been developed for the mammalian membrane-bound cytochrome
P450 that has been bioengineered without the hydrophobic membrane anchor domain [29]. However,
similar methods are not always applicable for other proteins, either because the catalytic centre is
located in a polytopic membrane subunit or because the water-soluble subunits on their own are not
stable. It is worth mentioning that the activity of certain membrane proteins can be dependent on the
presence of particular annular lipids [30] and therefore the strategies that improve the solubility by
removing the need of the membrane environment can have some potential downsides.

Various immobilisation methods have been developed to achieve efficient electron transfer between
a membrane protein and an electrode. There are several aspects to consider when designing and
assembling (membrane) protein modified electrodes for bioelectrocatalysis: (1) orientation of the protein
on the electrode surface, (2) preservation of the protein structural integrity and functionality, (3) low
overpotential to minimise the energy loss, (4) protein loading of the electrode [24,31,32]. Some methods
developed for electrocatalysis using soluble proteins can be adapted to detergent solubilised membrane
proteins. An alternative strategy to the use of detergent is represented by reconstitution of membrane
proteins within a lipid membrane on the electrode surface and several strategies have been developed
to achieve this. We will discuss the most commonly used immobilisation methods.



Catalysts 2020, 10, 1427 4 of 29

3.1. Unmodified Electrode

Detergent solubilised membrane proteins can be absorbed directly on carbon, metal or semi-conductor
electrodes in an approach known as protein film electrochemistry (Figure 2a) [33]. A frequently used
electrode material is pyrolytic graphite “edge” (PGE) which has a rough, negatively charged surface,
which can be tailored with polycations such as polymixin B or poly-l-lysine if required. Respiratory
nitrate reductase (NarGHI) isolated from Paracoccus pantotrophus in n-dodecyl β-D-maltoside (DDM)
buffer was adsorbed onto PGE electrodes and showed direct electron transfer (DET) with the
electrode [34]. The catalytic activity of NarGHI from E. coli was studied over a wide pH range
(5 < pH < 9), nitrate concentrations and in the presence of inhibitor [35]. Similarly, purple bacteria
RC-LH I was solubilised in 0.1% lauryldimethylamine N-oxide (LDAO) buffer and immobilised directly
on a bare Au electrode [36]. RC-LH I did not exhibit DET, but showed photocurrents (~64 nA/cm2)
when ubiquinone-0 and cytochrome c were present in solution, indicating that electron transfer
needs to be mediated by small redox compounds in this system (mediated electron transfer, MET).
Like water-soluble proteins, membrane proteins on bare electrodes often lack a specific orientation
and this can impede efficient electron transfer between electrode and proteins. Making use of the
amphiphilic nature of membrane proteins, a densely packed protein monolayer with defined orientation
can be formed on electrode surfaces by Langmuir−Blodgett deposition and this was shown to increase
the electron transfer efficiency [37–41]. An example of this strategy can be found in Kamran et al.
where detergent solubilised-RC-LH I was first pre-assembled in a monolayer at a water-air interface
and then transferred onto a gold-coated electrode, reaching photocurrent values of ~45 µA/cm2 [37].

3.2. SAM Modified Electrode

An electrode surface can be modified to promote protein immobilisation and control the orientation
of the protein on the surface. A common method to functionalise metallic electrode surfaces, in particular
gold electrodes, is to form a self-assembly monolayer (SAM) of thiols (e.g., alkanethiols) (Figure 2b).
By changing the length of the thiol compound (e.g., the alkyl chain), the distance between the protein
and electrode can be controlled. More importantly, by changing the terminal group of the SAM (e.g.,
n-hydroxy-alkanethiol or n-amino-alkanethiol), the surface chemistry of the electrode can be controlled.
As protein binding to surfaces is typically governed by van-der-Waals and electrostatic interactions,
the surface chemistry strongly influences the orientation of proteins on the surface [42,43].

Besides tuning the chemistry of the electrode surface, proteins can be genetically engineered to
control their orientation on the electrode through affinity interactions. RCs from Rhodobacter sphaeroides
in LDAO detergent have been immobilised on SAM-modified electrodes terminated by Ni–NTA
groups. By genetically engineering a poly-histidine tag (His7) at the C-terminus of the M-subunit
of the RC, the primary donor of RC was positioned to face the electrode [44]. The histidine tag
can also be engineered on H subunit of RCs to achieve the opposite orientation [45]. The Ni-NTA
modified gold electrodes have also been used to immobilise His-tagged PSII solubilised in DDM
buffer [46]. A different strategy that has been explored is to modify the gold electrode surface with an
amine terminated SAM for further reaction with terephthaldialdehyde (TPDA). The TPDA modified
SAM reacts with lysine residues from PSI to form covalent imine bonds [47]. Such an approach
does not create the same orientational control compared to the His-tag/NTA coupling. Irrespective
of selective orientation on the surface, mediators are often required for efficient electron exchange
with membrane proteins. Small proteins like cytochrome c are widely used as mediators for PSI and
purple bacteria RC [48]. Water-soluble redox mediators such as 2,6-dichloro-1,4-benzoquinone (PSII),
2,6-dichlorophenolindophenol (PSI), sodium ascorbate (PSI) and ferricyanide (PSI) are also commonly
used to facilitate efficient electron transfer between the protein and electrode [49].



Catalysts 2020, 10, 1427 5 of 29

Catalysts 2020, 10, x FOR PEER REVIEW 4 of 28 

 

3.1. Unmodified Electrode 

Detergent solubilised membrane proteins can be absorbed directly on carbon, metal or semi-
conductor electrodes in an approach known as protein film electrochemistry (Figure 2a) [33]. A 
frequently used electrode material is pyrolytic graphite “edge” (PGE) which has a rough, negatively 
charged surface, which can be tailored with polycations such as polymixin B or poly-L-lysine if 
required. Respiratory nitrate reductase (NarGHI) isolated from Paracoccus pantotrophus in n-dodecyl 
β-D-maltoside (DDM) buffer was adsorbed onto PGE electrodes and showed direct electron transfer 
(DET) with the electrode [34]. The catalytic activity of NarGHI from E. coli was studied over a wide 
pH range (5 < pH < 9), nitrate concentrations and in the presence of inhibitor [35]. Similarly, purple 
bacteria RC-LH I was solubilised in 0.1% lauryldimethylamine N-oxide (LDAO) buffer and 
immobilised directly on a bare Au electrode [36]. RC-LH I did not exhibit DET, but showed 
photocurrents (~64 nA/cm2) when ubiquinone-0 and cytochrome c were present in solution, 
indicating that electron transfer needs to be mediated by small redox compounds in this system 
(mediated electron transfer, MET). Like water-soluble proteins, membrane proteins on bare 
electrodes often lack a specific orientation and this can impede efficient electron transfer between 
electrode and proteins. Making use of the amphiphilic nature of membrane proteins, a densely 
packed protein monolayer with defined orientation can be formed on electrode surfaces by 
Langmuir−Blodgett deposition and this was shown to increase the electron transfer efficiency [37–
41]. An example of this strategy can be found in Kamran et al. where detergent solubilised-RC-LH I 
was first pre-assembled in a monolayer at a water-air interface and then transferred onto a gold-
coated electrode, reaching photocurrent values of ~45 μA/cm2 [37]. 

 
Figure 2. Overview of the strategies for membrane protein modified electrodes (not to scale). Proteins 
absorbed on (a) an unmodified electrode, (b) a SAM modified electrode and (c) a nanoparticle 
modified electrode. (d) Immobilisation of membrane proteins within a redox polymer. Examples of 
lipid membrane-modified electrodes: (e) a hybrid bilayer lipid membrane (hBLM), (f) a solid 
supported bilayer lipid membrane (sBLM), (g) a tethered bilayer lipid membrane (tBLM) and (h) a 
protein tethered bilayer lipid membrane. (ptBLM). (i) Layer-by-layer deposition of alternating 

Figure 2. Overview of the strategies for membrane protein modified electrodes (not to scale). Proteins
absorbed on (a) an unmodified electrode, (b) a SAM modified electrode and (c) a nanoparticle modified
electrode. (d) Immobilisation of membrane proteins within a redox polymer. Examples of lipid
membrane-modified electrodes: (e) a hybrid bilayer lipid membrane (hBLM), (f) a solid supported
bilayer lipid membrane (sBLM), (g) a tethered bilayer lipid membrane (tBLM) and (h) a protein
tethered bilayer lipid membrane. (ptBLM). (i) Layer-by-layer deposition of alternating charged films.
(j) Multilayered lipid membrane stacks. (k) 3D structure electrode for protein immobilisation.

3.3. Nanoparticle Modified Electrode

Nanoparticles (NPs) have been shown to enhance interfacial electron transfer between a variety of
electrodes and proteins [50] and gold NP-modified electrodes have been successfully used to study
membrane proteins (Figure 2c), such as terminal oxidases: E. coli cytochrome bd (a quinol oxidase) [51],
Paracoccus denitrificans cytochrome aa3 [52] and Thermus thermophilus cytochrome ba3 [53] (two cytochrome
c oxidases). The use of NPs facilitated DET between the electrode and protein, enabling more in-depth
studies on enzyme activity. The size of the NPs significantly affects the electron transfer rates and
smaller particles reduced the requirement of overpotential for O2 reduction activity by E. coli cytochrome
bo3 [54]. The group of Hellwig has recently studied the role of the surface charge of thiol-modified
gold NPs, the length of the thiols and the effect of phospholipid composition on the interaction and
DET between NP and the membrane enzyme, cytochrome bd [55]. Both cytochromes bo3 and bd used
in the aforementioned studies were isolated and stabilised in DDM buffer. Besides gold NP, various
other particles have been used for protein immobilisation [56]. The Armstrong group used graphite
microparticles to pair electron donor and acceptor membrane enzymes [57]. [NiFe] membrane-bound
hydrogenase was reconstituted with either E. coli nitrate reductase (NarGHI) or E. coli fumarate reductase
(FrdAB; not a membrane protein) on single microparticles; both systems catalysed the reductions of
nitrate or fumarate, respectively, by hydrogen. In 2015, Duca et al. [58] demonstrated a cascade
electrochemical reduction of nitrate to ammonia by immobilising E. coli respiratory nitrate reductase
(NarGHI) on an electrode (in polyoxyethylene 9-dodecyl ether detergent) with Pt or Rh nanoparticles.
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3.4. Redox Polymers

Redox polymers are widely used for wiring redox proteins on electrode surface (Figure 2d) [59].
Redox polymers act simultaneously as immobilisation matrix and as redox mediators. High coverages
of proteins can be achieved and the ubiquitous localisation of redox mediators bound to the polymer
matrix negates the need to control protein orientation. These polymer-bound redox mediators overcome
mass transport limitations, typically observed with freely diffusing redox mediators. The chemical
and physical properties of the redox polymers can be tailored by tuning the polymer backbone
and the redox mediators. The Schuhmann group has extensively explored Os redox polymers to
“wire” DDM-solubilised PSI [60] and PSII [61] on electrode surfaces for photocurrent generation.
A two-compartment cell with a PSII photoanode and a PSI photocathode was constructed to mimic the
Z-scheme of natural photosynthesis and an open-circuit voltage (OCV) of 90 mV was achieved [62].
By tuning the redox potential of Os complexes in the redox polymers to match the redox sites of
the proteins (PSII and PSI), the OCV could be increased from 90 mV to 372 mV [63]. Interestingly,
by exploiting the pH-dependent properties of Os-modified polymer, the group of Plumeré improved
the interfacial electron transfer rates for the PSI photocathode, even exceeding rates observed in natural
photosynthesis [64].

3.5. Membrane Modified Electrode

Because of the nature and functions of the membrane proteins, it is important that their assembly
on electrodes preserves their structural integrity and functionality. In the examples provided so far,
detergents are used to retain stability of the immobilised membrane enzymes. Although detergents are
required to accommodate the amphiphilic nature of membrane proteins, they also have adverse effects
to membrane protein stability and are likely to influence the electrode-protein interaction. To mimic
the native environment of membrane proteins, electrodes have been modified with model membranes,
as reviewed previously [65–67]. These membrane-modified electrodes can be categorised into hybrid
bilayer lipid membrane (hBLM) system (Figure 2e), solid supported bilayer lipid membrane (sBLM)
system (Figure 2f), tethered bilayer lipid membrane (tBLM) system (Figure 2g), and protein tethered
bilayer lipid membrane (ptBLM) system (Figure 2h).

In hBLM systems a phospholipid layer is absorbed onto a self-assembled monolayer (SAM)
of alkylthiols (Figure 2e). This strategy was used by the Hawkridge group to study cytochrome c
oxidase immobilised on gold electrode [68,69]. In sBLMs, a lipid bilayer is non-covalently bound to
the electrode surface (Figure 2f). Photosynthetic reaction centres including Rhodobacter sphaeroides
RC [70,71], spinach photosystem I [72] and photosystem II [73] have been integrated into sBLMs on
pyrolytic graphite. Electron transfer between electrode and the aforementioned proteins was achieved
and showed well-defined peaks in voltammetry which corresponded to the redox sites of the proteins.
Noji et al. incorporated Rhodopseudomonas palustris RC-LH I into sBLMs on an ITO electrode. Anionic
phospholipid like phosphatidylglycerol (PG) were shown to stabilise the charge-separated state of
RC-LH I and enhance the photocurrent [74]. In tBLM systems, the membrane is ‘tethered’ to the
lipid-modified electrode surface via a linker (Figure 2g). Cytochrome bo3 has been incorporated into
tBLMs and was shown to retain its catalytic activity [75]. We previously included the membrane-bound
[NiFe]-hydrogenases (MBH) from R. eutropha into a tBLM approach and used electrochemistry to study
the activity of the entire heterotrimeric membrane-bound form of the enzyme [76]. In 2016, Pelster
and Minteer isolated mitochondrial electron transport chain (ECT) enzymes, reconstituted them into
liposomes and immobilised them onto a gold electrode in a tBLM. The authors used this reconstructed
mitochondrial inner membrane biomimic to show the interdependence of the different complexes on
bioelectrocatalytic activity [77]. In ptBLMs, the membrane protein is first anchored to an electrode via
a His-tag/NTA interaction and subsequently reconstituted into a lipid membrane (Figure 2h). Ataka et
al. have immobilised the Rhodobacter sphaeroides cytochrome aa3 (a cytochrome c oxidase) by using a
ptBLM system [78–80]. Two opposite protein orientations were compared, by varying the position
of the His-tag. Cytochrome c bound and exchanged electrons with cytochrome c oxidase only when
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the latter was orientated with its subunit II (the binding domain for cytochrome c) facing the bulk
aqueous medium.

3.6. Multi-Layer Assembly, Multilayered Lipid Membrane Stacks, 3D Structure Electrode

An important aspect to improve the performance of bioelectrocatalysis is catalyst loading on the
electrode surface. For membrane proteins, this can be achieved via two alternative strategies: multi-layer
(membrane) assembly (Figure 2d,i,j) and/or 3D electrode structure (Figure 2k). For a more detailed
discussion on layer-by-layer assembly approach for redox proteins, we also refer to [65,81]. Multilayer
immobilisation within a redox polymer matrix was already discussed in Section 3.4. As an example
of a layer-by-layer approach (Figure 2i), PSI has been co-assembled with cytochrome c as mediator
using DNA as an anionic polymer [82]. The purple bacteria RC was also co-assembled into a multilayer
architecture by alternating layers of RC with a cationic polymer poly(dimethyldiallylammonium
chloride) (PDDA) [83,84]. Our group used poly-l-lysine (PLL) as an electrostatic polymer to construct
multilayered lipid membrane stacks (Figure 2j) [85,86]. Two membrane proteins, E. coli cytochrome
bo3 and R. eutropha MBH, were incorporated into these lipid membranes stacks. Lipophilic quinones,
the natural substrates of cytochrome bo3 and MBH, diffuse freely between the multilayered membranes
and mediated electron transfer between the proteins and the electrode. Catalytic activity was shown to
increase linearly with the number of membrane layers for at least up to 5 layers [86].

The high surface area of so-called 3D electrodes can be used to immobilise proteins at high
loading [87]. Mesoporous metal electrodes have been shown to increase protein loading compared to
planar electrodes, e.g., rough silver electrode for bacteria RC [88] and nanoporous gold electrode for
PSI [89]. A mesoporous WO3-TiO2 film electrode has been reported for the entrapment for bacterial
RCs [90] and mesoporous indium tin oxide (ITO) electrodes have been used to immobilise PSII [91].
The ITO electrode can be modified with SAM to covalently bind and orientate PSII with the electron
acceptor side of towards the electrode surface, enhancing electron transfer kinetics and electrode
stability [92]. A hierarchically structured, inverse opal, mesoporous (IO-meso) ITO electrode was
later developed to provide even larger surface areas [93]. These electrodes were combined with
redox polymers to electrically wire PSII with the 3D structure of IO-meso ITO, yielding photocurrent
densities of up to ~410 µA cm−2 [94]. Mesoporous ITO electrodes were also applied to co-immobilise
cytochrome c and PSI and photocurrent densities >150 µA·cm−2 were achieved [95]. The effect of pore
size was studied by comparing photocurrents between mesoporous (20–100 nm) and macroporous
(5 µm) electrodes using 2,6-dichlorophenolindophenol (DCPIP) and ascorbate as redox mediator
for PSI. The macroporous electrode showed three times higher photocurrent than the mesoporous
electrode [96]. The authors observed that the macroporous electrode increased the active surface area
twice compared to the mesoporous electrode with the same PSI mass loading. They concluded that the
increase in photocurrent was due to multilayers of PSI deposited along pore walls and the macropores
enhanced the MET within a single pore.

4. Methods to Characterise Membrane Protein Modified Electrode

The characterisation of electrodes and protein films is very often achieved through a combination
of powerful and advanced techniques and their combination with electrochemical tools. In this section,
we will focus on the most commonly used techniques to study membrane proteins on electrode surfaces
and we will report some representative works.

4.1. Electrochemical Methods

Protein film electrochemistry (PFE) is a well-established and important technique to study
protein modified electrodes and has proven powerful to probe the thermodynamic, kinetic and
catalytic properties of redox proteins, typically with voltammetry [97–99]. PFE is also compatible with
membrane-modified electrode and allows to probe the membrane proteins within detergent solutions,
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polymer matrices or model-membrane environment [100,101]. We refer to the following reviews for a
detailed description of PFE methods [102–106].

Besides voltammetry, impedance spectroscopy has been used to study the electrode-membrane
protein interface. The quality and the structure of electrode surfaces modified with planar lipid
membranes (Figure 2e–h) are particularly suitable for investigation by electrochemical impedance
spectroscopy (EIS). EIS can monitor the resistance and the capacitance of a planar membrane covering
the electrode. For ideal planar lipid bilayers on the electrode, the capacitance value should be in the
range of ~0.5 µF·cm−2 with a resistance of >MΩ cm2 [107]. Disorders and defects of these bilayers
will result in lower resistance and/or higher capacitance values. For instance, we monitored the
formation of multilayer membrane stacks (Figure 2j) by EIS [86] and observed only small reductions
in capacitance upon the formation of each additional bilayer, indicating that the additional lipid
bilayers permeable to ions and thus contain large or many defects. EIS can also provide information
on whether protein incorporation in the membranes affects the electrode structure. For instance,
incorporation of cytochrome bo3 into tethered membranes (tBLM, Figure 2g) had almost no effect on
the capacitance, indicating that cytochrome bo3 did not induce large defects in the tBLM [75]. Similarly,
only small changes in capacitance were observed of a hBLM (Figure 2e) after integrating human enzyme
cytochrome P450, indicating that the hBLM retains its integrity upon protein adsorption [108]. Besides
the membrane, the quality of a SAM on metal electrodes is also often evaluated with EIS. Compact,
well-formed SAMs act as ideal insulating layers with high resistance values. The compactness of the
SAM will influence subsequent protein immobilisation steps and can determine the thickness of the
SAM, impacting on interfacial electron transfer kinetics.

Protein-film photoelectrochemistry (PF-PEC) is a PFE technique which has been developed
for photosynthetic proteins [22,109–111]. PF-PEC combines illumination with PFE to investigate
photoactive proteins. Voltammetry and chronoamperometry can be used to illustrate the charge
transfer processes and the kinetics of the light driven reactions. Recently, other electrochemical setups
have been used to investigate photosynthetic proteins, including rotating ring disk electrode (RRDE)
and scanning electrochemical microscopy (SECM). The set-up of RRDE includes a central rotating disc
electrode and a ring electrode surrounding it. The potential on these two electrodes can be controlled
independently and products generated by a protein film at the central disk electrode are transferred
to the ring electrode for electrochemical analysis. For instance, oxygenic photoreactivity of PSII was
studied with RRDE [112] and products generated by PSII at the central disc, e.g., oxygen and radical
species, were detected by the ring electrode. This study revealed ET pathways that generate reactive
oxygen species and O2 by PSII. SECM employs a microelectrode as a tip above the protein modified
electrode to detect the products generated locally. It was used to monitor H2 evolution of a PSI-Pt
complex within redox polymer under illumination [113]. SECM has also been used to quantify the
reduction of charge carriers (methyl viologen) by PSI and compared this to the photocurrent [114].
Methyl viologen is often used as a charge carrier to collect electron from PSI in biophotovoltaic systems,
but reoxidation on the electrode leads to charge recombination. The authors compared PSI on gold
and silicon surfaces, both with Os-based redox polymers. SECM showed that gold and silicon exhibits
different photocurrents due to different charge recombination kinetics, i.e., electron transfer kinetics for
the reoxidation of the methyl viologen radical cation. Finally, by monitoring the photocurrent and
H2O2 generation of a PSI photocathode with SECM, it was shown that light-induced formation of
reactive oxygen species caused degradation of PSI modified electrodes [115].

4.2. Spectroscopic Methods

While electrochemical methods provide information about redox reactions, in situ spectroscopic
methods can be applied to characterise the structure of the protein and the electrode assembly.
Surface-enhanced Raman spectroscopy (SERS) is a surface-sensitive technique for molecules and
proteins immobilised on roughened metallic surfaces, in particular Ag [116]. The SERS effect is due to
a large increase in the Raman cross-section of molecules in contact with the metal surface, which is
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enhanced at metallic nanostructured surfaces due to local surface plasmon resonance (LSPR) effects.
SERS has been used to successfully characterise oxidised and reduced forms of adsorbed cytochromes
(cytochrome c, haemoglobin and myoglobin) under precise potential control with low laser power [117].
In 2005, Hrabakova et al. showed that no structural changes occurred to the haem sites (e.g., a and a3) of
cytochrome c oxidase embedded in a phospholipid bilayer tethered to a functionalised silver electrode
via a histidine-tag [118]. In 2011, Weidinger group used SERS to study the electron transfer of MBH
from R. eutropha H16 [119]. Interestingly, the authors compared the behaviour of the entire enzyme
with just the transmembrane “anchor” subunit (b-type cytochrome) and determined two independent
pathways for the electrons from the active site of the enzyme to the electrode. A slow rate pathway
crosses all the three subunits of the enzyme, whilst a faster pathway only crosses two subunits and
leaves out the transmembrane anchor subunit which, however, contributes to the stabilisation of the
enzyme on the electrode.

A different variation of conventional infrared spectroscopy is represented by surface-enhanced
infrared absorption spectroscopy (SEIRAS) in which the signal enhancement is due to plasmon
resonance from a nanostructured metal thin film [120]. The Hellwig group used SEIRAS to characterise
the deposition of gold NPs on gold electrodes, the modification of gold NPs with thiols and, finally,
the absorption of cytochrome bo3 on these modified electrodes [51,54]. Wiebalck et al. characterised
the formation of a tBLM and incorporation of functional cytochrome bo3 from E. coli by SEIRA
spectroscopy [121].

4.3. Spectroelectrochemistry

Spectroelectrochemistry combines electrochemistry and spectroscopic approaches to monitor a
specific molecular response while varying the electrode potential [122,123]. This can be done with
proteins in solution [124] or immobilised on the electrode surface [125,126]. Insights into reaction
mechanisms of membrane enzymes could be gained by methods such as UV-vis spectroelectrochemistry
and infrared spectroelectrochemistry. UV-vis spectra of a protein are often specific for the redox state
of a cofactor, e.g., haems, FeS clusters or flavins. A common application is a spectroelectrochemical
titration to determine the reduction potential of a cofactor in an enzyme in solution, where results
are usually evaluated by fitting the titration data to the Nernst equation. An example is a study
of the cytochrome bc1 complex where the midpoint potentials of the cofactors were determined
by UV-vis and IR spectroelectrochemical titrations [127,128]. The redox potentials of the primary
electron acceptor pheophytin a in photosystem II [129] and the primary electron donor P700 in
photosystem I [130] were also revealed by UV-vis spectroelectrochemistry with proteins in solution.
UV-vis spectroelectrochemistry can also be used to study proteins on electrode surfaces. For instance,
Haas et al. used UV-vis spectroelectrochemical titrations to determine the midpoint potentials for
cytochrome c oxidase either in solution or in a Langmuir-Blodgett monolayer film [131]. A multi-protein
system was studied with UV-vis spectroelectrochemistry in which an outer-membrane cytochrome,
MtrC from Shewanella oneidensis MR-1 (a peripheral membrane protein), was used as an electron conduit
between an electrode and other redox enzymes. MtrC was shown to be an effectively transfer-electron
conduit by monitoring the absorbance of reduced FeII-haems in MtrC [132].

Infrared (IR) spectroscopy is a powerful technique to detect structural changes of proteins
during or in response to an electrochemical reaction although few studies have been reported for
membrane proteins. Reactions can be triggered either by light or redox potential and infrared
difference spectroscopy of proteins is typically measured to investigate the reaction mechanisms.
This approach has been developed for membrane proteins involved in photosynthesis, respiration
and metabolic pathways [100]. Electrochemical SEIRA was used to study the conformational changes
of the R. sphaeroides cytochrome c oxidase induced by direct electron transfer in ptBLM system [133].
The cytochrome c oxidase was shown to change from a non-activated to an activated state after it
involving enzymatic reaction. By applying periodic potential pulses switching between −800 mV and
open circuit potential to control the state of cytochrome c oxidase, the kinetics of the conformational
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changes was monitored by time-resolved SEIRA spectroelectrochemistry [134]. The bacterial respiratory
ubiquinol/cytochrome bo3 couple was incorporated into a tethered bilayer lipid membrane (tBLM)
on SAM modified electrode. The transmembrane proton gradient was successfully monitored by
spectroelectrochemical SEIRA [121].

4.4. Microscopy

4.4.1. Electron Microscopy

Electron microscopy (EM) techniques are available to investigate membrane proteins (typically
by cryo transmission electron microscopy, TEM or cryo-EM) and electrode structures (typically by
scanning electron microscopy, SEM) at various scales. However, EM has not been widely used to
study membrane proteins immobilised on electrodes as TEM and SEM are based on different modes of
observation [135]. In 2015, Monsalve et al. [136] used SEM and TEM to characterise the morphology
and size distribution of gold nanoparticles on a gold electrode used for direct absorption of Aquifex
aeolicus [NiFe] membrane-bound hydrogenase surrounded by DDM detergent.

4.4.2. Atomic Force Microscopy

Atomic force microscopy (AFM) is a scanning probe microscopic technique based on a nanoprobe,
a tip placed at the end of a long and narrow cantilever, that interacts with the sample surface to measure the
topography of a surface [137]. Although AFM has been widely used to study lipid membranes [138–140],
membrane proteins [141–144] and electrochemical systems with soluble proteins [145–147], AFM is less
often used to study membrane proteins on electrode surfaces. In 2006, we used tapping-mode AFM to
analyse the distribution of cytochrome bo3 on a tethered bilayer lipid membrane (tBLM) on stripped
gold electrode [75]. AFM combined with Polarisation Modulation Infrared Reflection-Absorption
Spectroscopy (PM-IRRAS) was used to study the different orientation of membrane-bound Aquifex
aeolicus (Aa) [NiFe] hydrogenase immobilised on hydrophilic and hydrophobic SAM on gold electrodes.
This work highlighted that on charged or hydrophilic interfaces, H2 oxidation proceeds through
both direct and mediated electron transfer processes, while on hydrophobic surfaces, a mediator
is required [148]. In 2014, Gutiérrez-Sanz et al. [149] characterised the functional reconstitution of
respiratory complex I on SAM on gold electrode. Their AFM study showed the formation of a
phospholipid bilayer on SAM modified gold electrode and protrusions of 6–8 nm height were observed
which were ascribed to the hydrophilic arm of complex I as this arm extends outside the membrane.

4.5. Quartz Crystal Microbalance

Quartz crystal microbalance (QCM) is a sensitive mass sensor which utilises acoustic waves
generated by oscillating a piezoelectric, single crystal quartz plate to measure mass changes in the order
of nanograms. The association of QCM with dissipation monitoring (QCM-D) allows to also measure
the energy loss or dissipation (∆D) of the system [150]. QCM was used to monitor the different stages
of the ptBLM formation with cytochrome c oxidase from Rhodobacter sphaeroides as model protein [151].
The adsorption of cytochrome c oxidase at the surface decreased the resonance frequency while
increased the dissipation. The Hawkridge group investigated the electrostatic association between
cytochrome c and cytochrome c oxidase immobilised in hBLM with QCM [68,69]. The QCM data
revealed the binding of cytochrome c and cytochrome c oxidase at different ionic strength which was
related to the mediated electron transfer. QCM-D was also used to characterise the formation of the
cystamine–pyrroloquinoline quinone–thylakoids layers onto SAMs [152].

5. Membrane Protein Modified Electrodes for Bioelectrocatalysis

The increased demand to produce energy and value-added chemicals from cheap and
environmentally friendly renewable resources has driven the recent advances in bioelectrocatalysis
research towards the development of alternative systems. The applications of bioelectrocatalysis range
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from biosensors, energy conversion devices and bioelectrosynthesis [153–156]. The majority of the
studies employ soluble proteins; however, some membrane proteins with suitable catalytic or electron
transfer properties also find applications in bioelectrocatalysis. Some of them show advantages over
soluble proteins or have unique functions. Here, we will discuss the membrane protein electrode
applications in the field of bioelectrocatalysis.

5.1. Enzymatic Biofuel Cells (EBCs)

One of the most studied energy conversion devices is the enzymatic biofuel cell (EBC) which uses
oxidoreductase enzymes as biocatalysts to convert chemical energy into electrical energy [157–159].
A typical EBC consists of a two-electrode cell in which the biofuels (such as H2, formate) are oxidised at the
bioanode and the oxidants are reduced at the biocathode (usually O2 is reduced to water) [160]. Among
these, H2/O2 biofuel cells are one of the most investigated enzymatic systems [161]. Hydrogenases are
promising biocatalysts to fabricate high performance H2-oxidation bioanodes. However, the extreme
oxygen sensitivity of highly active hydrogenases is one of the main limitations of hydrogenase based
H2 bioanodes [162]. The O2 sensitive hydrogenase can be protected by a low-potential viologen redox
polymer matrix [163] or enzymatic O2 scavenger [164]. However, these protection mechanisms either
consume the electron from H2 oxidation or add chemicals for protection. O2-tolerant MBH therefore
shows great advantage for H2/O2 biofuel cell. The first membrane-less H2/O2 cell was assembled by
Armstrong group. Two pyrolytic graphite electrodes, coated respectively with MBH from R. eutropha
and laccase from Trametes versicolor (Tv), were immersed in a H2/air flushed solution. The system reached
an OCV of ~970 mV and a maximum power output of ~5 µW [165]. High OCVs were achieved because
MBH directly exchanged electrons with the electrode and no mediators were required. The Re MBH
was solubilised from the membrane extracts by 2% Triton-X 114 and isolated via a Strep-tag sequence
on the small subunit. It is possible that the MBH was devoid of the transmembrane cytochrome b
anchor and this could explain why there was no need to use mediators. The Re MBH also showed
CO-tolerance [165]. The same group further improved the performance of the H2/O2 cell by replacing
the Re MBH with MBH (similarly Strep-tagged on the small subunit) from R. metallidurans, which is
more active and stable to O2 exposure (Figure 3a). The authors emphasised that such a system would
have the advantage to perform H2 conversion even in H2-poor mixtures. They also showed that three
cells in series provided a total OCV of 2.7 V which was sufficient to power a wristwatch for 24 h [166].

As described earlier, we have presented a strategy for using the full heterotrimeric MBH as a
biocatalyst (including the cytochrome b anchor) and have used multi-layer membrane stacks on gold
electrode to increase MBH loading [86]. In our approach, we used cytoplasmic membrane extracts
of R. eutropha and created interconnected layers of membranes with each layer containing anchored
MBHs. Lipophilic quinones were used as mediator, shuttling electron between electrode and protein.
However, the irreversible electrochemical behaviour of the quinone redox reaction increases the
required overpotential for H2 oxidation, which will limit the power output of the devices and more
research is needed to resolve this.

To optimise EBCs, gas diffusion electrodes have been investigated and enzyme coverage optimised.
The porous structure of the gas diffusion electrode can increase the mass loading of the biocatalyst and
overcome the mass transport limitation of gases. In 2016, Kano group used an O2-tolerant MBH from
Hydrogenovibrio marinus and an O2-sensitive [NiFe]-hydrogenase from Desulfovibrio vulgaris “Miyazaki
F” to create DET-type gas diffusion electrodes [167]. The authors did not specifically comment on
whether their enzyme purification methods might have affected the presence of the cytochrome b
anchor subunits of MBH. The MBHs were isolated through two different procedures. The large and
small subunits of the O2-tolerant MBH were isolated through detergent solubilisation and maintained
in 0.025% Triton-X. The O2-sensitive MBH went through a trypsinisation process which could lead to
the separation of the transmembrane cytochrome b anchor. These H2 oxidation electrodes generated
a current density of 10 mA·cm−2 in the half-cell configuration. Contrary to the O2-tolerant MBH,
the O2-sensitive MBH did not show overpotential for H2 oxidation and, on this basis, was selected
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by the authors as bioanode of a H2/O2 EBC for a further study. Coupling this O2 sensitive MBH
anode with bilirubin oxidase (BOD) from Myrothecium verrucaria immobilised on Ketjen black-modified
waterproof carbon papers (KB/WPCC) electrode, a dual gas-diffusion membrane- and mediator-less
H2/air-breathing biofuel cell was constructed (Figure 3b) which showed maximum power density in
the range of 6.1 mW·cm−2 at 0.72 V [168].Catalysts 2020, 10, x FOR PEER REVIEW 12 of 28 
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electrodes modified with O2-tolerant MBH of R. metallidurans CH34 (anode) and fungal laccase (cathode)
in aqueous electrolyte exposed to 3% H2 in air. Reprinted with the permission from ref [166]. Copyright
(2006), The Royal Society of Chemistry. (b) A dual gas diffusion membrane-free H2/air powered EBC
comprises of a [NiFe]-MBH (anode) and a bilirubin oxidase (cathode). Reprinted with the permission
from ref [168]. Copyright (2016), Elsevier B.V.

The O2-reduction biocathodes for EBC are usually based on multi-copper oxidases like bilirubin
oxidase or laccase which can reduce O2 almost without overpotential [169]. Among the membrane
proteins, cytochrome c oxidase has been studied as O2 reduction catalyst. Katz and Willner assembled
a membrane-less glucose/O2 biofuel cell with cytochrome c/cytochrome c oxidase as O2 reducing
cathode [170]. The cytochrome c was assembled on a maleimide modified gold electrode through
a cysteine residue to link cytochrome c oxidase. In a follow-up work, the authors developed an
electroswitchable and tunable biofuel cell. In this case, the cathode was modified with poly(acrylic acid)
loaded with Cu2+ to covalently attach cytochrome c and link the latter to cytochrome c oxidase [171].
Although cytochrome c was able mediated electron transfer to cytochrome c oxidase for O2 reduction,
only an OCV of 0.12 V was obtained, likely limited by the redox potential of cytochrome c (~0.25 V vs.
SHE), which is much lower than that of H2O/O2 (0.82 V vs. SHE at pH 7). Although cytochrome c
oxidase is not commonly used for O2 reducing cathode in biofuel cell, the recent work with gold NPs
by the group of Hellwig has shown renewed possibilities for cytochrome c oxidase as catalyst (see
Section 3.3). Recently, Wang et al. [172] reported that cytochrome c oxidase from acidophilic bacterium
Acidithiobacillus ferrooxidans can reduce O2 at exceptionally high electrode potentials (+700 to +540 mV
vs. NHE). The low overpotential for O2 reduction of this cytochrome c oxidase makes it an attractive
biocatalyst as cathode of biofuel cells in the future.

Besides the use of H2 as fuel for EBC, formate is also a valuable feedstock for biofuel cells because
its redox potential is similar to H2/H+. The Kano group reported a mediated electron transfer type
formate/O2 biofuel cell by coupling formate dehydrogenase modified bioanode with BOD modified
biocathode [173]. In nature, some formate dehydrogenases can catalyse the inverse reaction to reduce
CO2 to formate [174]. However, to the best of our knowledge, the research in this field has been
conducted only on soluble formate dehydrogenases. The ability of CO2 reduction and the applications
of membrane-bound formate dehydrogenase need to be further explored.
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5.2. Biophotoelectrocatalysis (PEC)

Biophotoelectrodes fabricated on planar carbon or SAM-modified metal electrode usually show low
photocurrent density which limits their applications in bioelectrocatalysis. However, the development of
redox polymer electrodes, layer-by-layer assembly and 3D architectures has enhanced the performance
of biophotoelectrodes [176,177]. PSII is the only natural protein able to catalyse the photooxidation
of water. The electron flow can be blocked by herbicide compounds since they bind to the terminal
plastoquinone QB of PSII. This inhibition effect can be exploited for designing PSII light-driven
biosensor to detect herbicides [178]. A similar approach to detect herbicides was taken with purple
bacteria RCs [179].

As water oxidation biophotocatalyst, PSII attracts more attention for solar energy conversion
to generate electricity or fuels. As mentioned above, PSII photoanodes have been connected to
PSI photocathodes (both in Os redox polymers) to mimic natural photosynthesis Z-scheme for
solar-to-electricity generation [62,63]. In a similar approach using a benzoquinone redox polymer, a PSII
photoanode (O2 evolution) has been connected to a bilirubin oxidase cathode for O2 reduction [180].
Recently, PSII was integrated together with PbS quantum dots within a TiO2 inverse opal electrode to
perform H2O photooxidation. This was combined with an inverse opal antimony-doped tin oxide
(ATO) cathode modified with bilirubin oxidase to catalyse oxygen reduction. This system achieved a
high open-circuit voltage of about 1V under illumination (Figure 4a,b) [181].

A full water splitting process can be realised by combining a PSII photoanode with a cathode
modified with hydrogenases. In contrast to EBCs (Section 5.1), water-soluble hydrogenases (typically
[FeFe] hydrogenases, but also [NiFe] hydrogenases; H2ases) are most commonly used for water splitting
systems. When combining PSII and H2ases, there is an energy gap between the terminal electron
acceptor QB within PSII and one of the FeS cluster within H2ase. A biophotoelectrochemical cell with
a PSII photoanode and a H2ase cathode thus requires an applied bias voltage of 0.8 V to drive H2O
splitting [93]. This was improved by wiring H2ase and p-Si on an inverse opal TiO2 photocathode,
lowering the required applied bias voltage to 0.4 V for H2O splitting [182]. Finally, by integrating PSII
on a diketopyrrolopyrrole dye-sensitised TiO2 photoanode and connecting it with a H2ase cathode,
a bias-free photoelectrochemical cell for H2O splitting was developed by the group of Reisner [183].
Coupling a dye-sensitised PSII photoanode with a W-dependent formate dehydrogenase (FDH) cathode,
a biophotoelectrochemical cell was constructed for CO2 reduction at a small bias voltage of 0.3 V
(Figure 4c,d) [184]. The latter study showed the possibility for rational design of biophotoelectrochemical
cells for value-added chemicals generation beyond H2.

Unlike PSII, PSI does not directly catalyse technologically valuable reactions such as water
oxidation. However, photoexcitation of PSI provides the reductive potential to drive reactions with
other catalysts, such as Pt and H2ase [185]. Recent studies show that it is possible to drive H2 production
from light with PSI and H2ase by electrode design. Photoelectrodes were manufactured in a ‘layered’
fashion using an Os redox polymer, PSI and, finally, a polymer/H2ase mix [186]. Photoelectrochemical
H2 production is achieved at an onset potential of +0.38 V vs. SHE. In this study, the PSI was randomly
orientated and did not form a compact layer, likely limiting efficiency by charge recombination
between the carrier and mediator or electrode. In a more recent study, an anisotropically oriented PSI
monolayer was formed using Langmuir-Blodgett deposition [187]. A compact and oriented PSI layer
minimises charge recombination and enables unidirectional electron transfer to H2ase for H2 evolution.
Combining this PSI/H2ase photocathode with a PSII photoanode created a system able of bias-free
light-driven water splitting [187]. Langmuir-Blodgett deposition transfers only a monolayer of PSI and
this might limit the performance of the biophotoelectrode as this limits the loading or coverage of PSI.

One of the limitations with biophotoelectrodes is the limited lifetime of the isolated proteins,
especially PSII [154]. Light-induced formation of reactive oxygen species can further limit the lifespan
of proteins [115]. Another limitation of biophotoelectrodes is that photosynthetic proteins only use
a limited range of the solar spectrum which reduces solar conversion efficiency. The absorption
spectral range can be enhanced by attaching complementary chromophores to light-harvesting complex
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proteins [188]. It also can be improved by integrating biological light-harvesting antenna complexes or
organic dyes/synthetic compounds to the RCs [189,190].
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Figure 4. Photoelectrochemical (PEC) cell for electricity or biofuels generation. (a) Schematic of
the electron transfer steps and energetic level of the components of the light-driven signal chain
composed of TiO2, PbS QDs, redox polymer (POs), and PSII. (b) A scheme of a PEC cell consisting of
an IO-TiO2|PbS|POs|PSII anode and an IO-ATO|PC|BOD cathode. Reprinted with the permission from
ref [181]. Copyright (2019), Wiley. (c) A schematic representation of a semi-artificial photosynthetic
tandem PEC cell coupling CO2 reduction to water oxidation. A blend of POs and PSII adsorbed on a
dpp-sensitized photoanode (IO-TiO2|dpp|POs-PSII) is wired to an IO-TiO2|FDH cathode. (d) Energy
level diagram showing the electron-transfer pathway between PSII, the redox polymer (POs), the dye
(dpp), the conduction band (CB) of IO-TiO2 electrodes, four [Fe4S4] clusters, and the [WSe]-active site
in FDH. All potentials are reported vs. SHE at pH 6.5. Reprinted with the permission from ref [184].
Copyright (2018), American Chemical Society.

6. Emerging Methods and Future Considerations

6.1. Extending the Lifetime of Membrane Enzymes

A major drawback of enzymes in EBC is their limited active lifetime, which usually ranges from
few hours to several days [191]. This applies particularly when membrane enzymes in detergent
solutions are used, and functional reconstitution of membrane enzymes into an amphiphilic bilayer,
such as liposome or polymersome vesicles, could represent a strategy to extend the enzyme lifetime.
Liposomes offer great biocompatibility because they mimic the natural environment of membrane
proteins, but they lack chemical and physical long-term stability [192]. Polymersomes offer a more
robust amphiphilic polymer environment with increased chemical and physical stability [193,194].
However, this non-native polymeric environment might be limiting the functional incorporation of a
wider range of membrane proteins [195]. Recently, hybrid vesicle systems composed of a mixture of
lipids and block copolymers, have been developed with the rationale to provide a compromise between
the biocompatibility of liposomes and the stability and robustness of polymersomes. In 2016 we showed
that hybrid vesicles, composed of biocompatible lipids and stable PBd–PEO copolymer, supported
higher activity of reconstituted cytochrome bo3 than the proteopolymersomes and significantly extended
the functional lifetime of the membrane enzyme when compared to standard proteoliposomes [196]
(Figure 5). In 2018, we achieved increased stability of cytochrome bo3 reconstituted in hybrid vesicles
up to 500 days [197]. Similarly, recent work from Dimova group showed that functional integration
of cytochrome bo3 oxidase in synthetic membranes made of PDMS-g-PEO was capable of lumen
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acidification and such reconstituted system showed to increase the active lifetime and resistance to
free radicals [198]. In 2017, Otrin et al. [199] demonstrated a similar ability to store gradients by
reconstituting cytochrome bo3 together with an ATP synthase in hybrid vesicles constituted of the
same copolymer, PDMS-g-PEO. In 2018, Smirnova et al. presented a method that allowed transfer of a
functional membrane protein, cytochrome c oxidase (cytochrome aa3 or yeast Complex IV), with a
disc of its native lipids into pre-formed liposomes of well-defined lipid composition and size using
amphipathic styrene maleic acid (SMA) copolymer [200]. This recent advance in using SMA copolymer
for membrane enzymes isolation and reconstitution offers the advantage to maintain the native
phospholipids environment surrounding the proteins and, moreover, could reduce time and cost for
enzyme isolation and reconstitution processes by avoiding detergent mediated extraction [201]. Further
research into affordable purification strategies and extending the stability of commercially-relevant
membrane enzymes is required for membrane enzymes to find applications in bioelectrocatalysis.
An alternative approach would be to omit purification altogether and exploit the regenerative capacity
of micro-organisms in microbial electrosynthesis.
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reconstituted hybrid vesicles with increasing polymer content over a period of 41 days. Reprinted with
the permission from ref [196]. Copyright (2016), The Royal Society of Chemistry.

6.2. Microbial Electrosynthesis and Whole-Cell Semi-Artificial Photosynthesis

Microorganisms are of great interest for electrochemical applications because of their self-reproduce
nature and diverse metabolic processes. The possibility to use directly the microorganisms overcomes
the need to purify and manipulate the proteins. Many microorganisms are exoelectrogens and can
communicate with electrodes through extracellular electron transfer (EET), either (1) directly through
membrane-bound cytochromes and conductive filaments (nanowires) or (2) via a soluble redox species,
such as flavins, either natively secreted by the microorganism or added as a mediator [202].

6.2.1. Microbial Electrosynthesis

Microbial electrosynthesis is an electricity-driven process which generates chemicals using
microorganisms as catalysts [203]. To date, the most well-studied exoelectrogens are Geobacter spp. and
S. oneidensis [204]. They are dissimilatory metal-reducing bacteria that can reduce extracellular metal
ions (and bulk electrodes) as part of their anaerobic respiration. These electron transfer steps can be
reversed to gain electron from electrode for reductive synthesis, some catalysed by membrane enzymes
in the microorganisms (Figure 6) [205,206]. It has been shown that Geobacter spp. can reduce nitrate to
nitrite [207], fumarate to succinate [207] and proton to hydrogen [208] using electrode as the electron
donor. S. oneidensis was also shown to electrocatalytically reduce fumarate to succinate [209]. It also has
been reported that S. oneidensis can catalyse CO2 reduction into formic acid with electron input from
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the cathode [210]. The cathodic CO2 reduction in S. oneidensis is associated with the electron uptake
through outer-membrane c-type cytochromes [211]. The efficiency of the microbial electrosynthesis is
mainly limited by the EET. With the genetic engineering of the microorganisms, the EET efficiency
can be improved [212–214]. Advances in synthetic biology allow the rational design of non-natural
functions in order to increase the diversity of products obtainable from microbial electrosynthesis [215].
For instance, by engineering genes for an ATP-dependent citrate lyase into Geobacter sulfurreducens,
the microorganism is able to fix CO2 through a reverse TCA cycle using an electrode as electron
donor [216]. A genetically engineered S. oneidensis with heterologous Ehrlich pathway genes was
shown to produce isobutanol by supplying electricity [217]. It has been demonstrated that S. oneidensis
can use electrons supplied by an electrode to reduce O2. This study also showed that the cathodic
reaction can reduce NAD+ via proton-pumping NADH oxidase complex I [218]. With addition of
a light-driven proton pump (proteorhodopsin) in the S. oneidensis to generate proton-motive force,
the electron transferred from cathode to quinone pool can be used to reduce NAD+ to NADH by native
NADH dehydrogenases. This was demonstrated by the reduction of acetoin to 2,3-butanediol via a
heterologous butanediol dehydrogenase (Bdh) which is a NADH-dependent enzyme [219].
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Figure 6. Conceptual model of the bidirectional EET pathways in S. oneidensis MR-1. The solid arrows
indicate the verified electron flow path, and the dashed arrows indicate the possible electron flow.
The blue arrows indicate the outward EET pathway, the red arrows indicate the inward EET pathway,
and the green arrows indicate the H+ flow pathway. (a) The outward EET toward extracellular acceptors
utilizes the metal-reducing (Mtr) pathway. (b) The inward EET toward intracellular terminal reductase
involves MtrCBA complex, periplasmic FccA, and inner membrane CymA. The cycle of oxidation (Ox)
and reduction (Red) states of self-secreted flavins mediated both outward and inward EET. DMSO,
dimethyl sulphoxide; Omc, outer-membrane cytochrome. Reprinted with the permission from ref [220].
Copyright (2020), Taylor & Francis.

6.2.2. Whole-Cell Based Semi-Artificial Photosynthesis

Semi-artificial photosynthesis has attracted great attention for harvesting solar energy for
electricity or chemical generation [5]. Instead of isolated photosynthetic proteins (e.g., PSII),
photosynthetic microorganisms such as algae [221], cyanobacteria [222–225] and purple bacteria [226],
or extracted organelles such as thylakoids [227] have been studied for biophotoelectrochemical
systems. The development of 3D structured electrodes increased the loading capacity which enhances
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photocurrents [228]. However, low EET rates still limit the efficiency of these photoelectrodes. It has
been shown that redox polymers can improve electron transfer kinetics between microorganisms
and electrode [221,226]. Furthermore improvement in EET kinetics and new electrode designs for
accommodating microorganisms are required to boost the performance of photoelectrochemical devices
that are based on photosynthetic microorganisms [111].

An emerging direction in the semi-artificial photosynthesis is to interface synthetic light-harvesting
materials with non-photosynthetic microorganisms for value-added chemicals [229,230]. As a model
microorganism, S. oneidensis has been widely studied for integration with artificial light-harvesting
materials for solar-driven microbial synthesis. The transmembrane cytochrome MtrCAB, helped by
OmcA located on the outside of the membrane, are known to transfer electrons between the interior
of the cell and extracellular materials (Figure 6) [231,232]. In the presence of a sacrificial electron
donor, MtrC and OmcA can be photoreduced by water-soluble photosensitisers including eosin Y,
fluorescein, proflavine, flavin, and adenine dinucleotide, riboflavin and flavin mononucleotide [233].
In an in vitro approach, it was showed that dye-sensitised TiO2 nanoparticles can photoreduce MtrC or
OmcA, either in solution or one an electrode surface [233–235] and it might be possible to extend this
process to reductive photosynthesis in S. oneidensis [236]. To provide a proof-of-concept, we recently
reconstituted MtrCAB into proteoliposomes encapsulating a redox dye, Reactive Red 120 (RR120),
which can be reductively bleached. Using light-harvesting nanoparticles including dye-sensitised TiO2

nanoparticles, amorphous carbon dots and nitrogen doped graphitic carbon dots, we observed RR120
reductive decomposition inside the lumen of the MtrCAB proteoliposomes, confirming that electrons
were transferred from the nanoparticles via transmembrane MtrCAB complex into the liposome
lumen [237]. These results show that the rational design of light-harvesting nanoparticles and protein
hybrids can lead to the development of semi-artificial photosynthetic systems for solar fuels synthesis.

7. Conclusions

Membrane proteins play an important role for biofuel conversion and photosynthesis, and the
catalytic and electron transfer ability of the membrane proteins makes them attractive for applications
in bioelectrocatalysis. Recent developments in bioelectrochemistry have provided the means to
control and improve electron transfer rate between immobilised proteins and electrodes, stabilising the
activity of immobilised enzymes. High surface areas of so-called 3D electrodes are able to increase
the protein loading, which is desired for bioelectrocatalysis. Despite these enhanced performances,
there is still the need to further optimise this technology for practical use in bioelectrocatalysis devices,
especially for membrane enzymes. Combining several immobilisation strategies would provide
possible solutions. Advances in characterisation techniques enable detailed characterisation of the
structure of the electrode, the electron transfer process, catalytic activity and protein structure, which
in turn provides an in-depth understanding of the catalytic reaction mechanism, aiding the rational
design of the electrode interface for bioelectrocatalysis. Membrane proteins are known to be difficult to
study and manipulate due to their amphiphilic nature. Preserving their stability and functionality is
crucial for successful application of this technology. Recently developed redox polymers and hybrid
vesicles, composed of lipids and block copolymers, are promising platforms to stabilise membrane
proteins on the electrode surface. Using exoeletrogenic microorganisms for electrosynthesis and
semi-artificial photosynthesis is an encouraging research direction, which will simplify time and
cost related with protein purification processes. The ability of microorganisms to regenerate and
self-replicate (at an energy cost), also removes the need to stabilise the biocatalyst. With synthetic
biology, the microorganisms can be further engineered for diverse biofuel and chemical synthesis.
However, the extracellular electron transfer kinetics might still be limiting the efficiency of the whole-cell
based systems, especially when organisms are used that have not been optimised by evolution for
extracellular electron transfer.
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