UNIVERSITY OF LEEDS

n # $||
%& '& (&)& %&* + -+./-0 1 %) 21 $ %
#, $3 0 o$" 1 3 4555
4 , 6 $7 & 182 477 9 2/8

$ %/ | 467 ../18/":8

;.[.1 4555 < , , $< : ,4555, 1
1 $ & 5 & $ % % 1 %
H = % 1] % = &
$ 1 = & % $.

4,% 3 $1 % & % =$
$ 9 , 1% $%$°9 $ = $& , $1
% 1 % $ $ $ 2
? = $ $1 : $
4 $ 1 1 @ & 1
% > $ % $9% $ A

\ White Rose i

university consortium

/‘ Universities of Leeds, Sheffield & York

Combining Graph-based Learning with Automated
Data Collection for Code Vulnerability Detection

Huanting Wang , Guixin Yet , Zhanyong Tanyj , Shin Hwei TaR
Songfang Huany Dingyi Fand, Yansong Ferfy Lizhong Biar?, and Zheng Warfy
1: Northwest University, China2: Southern University of Science and Technology, China;
3: Alibaba DAMO Academy;4: Peking University, China;
5: Alipay (Hangzhou) Information & Technology Co., Ltd; University of Leeds, U. K.

Abstract—This paper presents FUNDED?, a novel learning classical machine learning techniques, DL has the advantage
framework for building vulnerability detection models. FUNDED of not requiring expert involvement to tune representations for

leverages the advances in graph neural networks (GNNS) 10\ o4ram structures manually; instead, it automatically captures
develop a novel graph-based learning method to capture and d det . th f traini |
reason about the program's control, data, and call dependencies. and determines them irom training samples.

Unlike prior work that treats the program as a sequential Existing DL-based approaches for program modeling typi-
sequence or an untyped graph, BENDED learns and operates cally use recurrent neural networks (RNNs) such as the Long
on a graph representation of the program source code, in which Short-Term Memory (LSTM) or a variant of it [5, 6, 8, 3, 7].
individual statements are connected to other statements through These approaches work by treating source code and its corre-
relational edges. By capturing the program syntax, semantics .
and ows, FUNDED nds better code representation for the sponding program structure, such as the abstract. synta}x tree
downstream software vulnerability detection task. To provide (AST), as a sequence of tokens. However, LSTM is designed
suf cient training data to build an effective deep learning model, for sequential sequences [9] and is ill-suited for modeling the
we combine probabilistic learning and statistical assessments to well-structured control and data ows of programs. As a result,
automatically gather high-quality training samples from open- s | STM-based methods only capture the shallow, surface
source projects. This provides many real-life vulnerable code . o
training samples to complement the limited vulnerable code ;tructure of the source code_ text and fail to capitalize on the
samples available in standard vulnerability databases. rich and well-de ned semantics of the program structure. As
We apply FUNDED to identify software vulnerabilities at the shown in our evaluation, existing LSTM-like approaches often

function level from program source code. We evaluate BNDED give poor accuracy, either missing vulnerabilities or giving
on large real-world datasets with programs written in C, Java, overwhelmingly false-positive results

Swift and Php, and compare it against six state-of-the-art code To bett del th I de struct hich
vulnerability detection models. Experimental results show that 0 better model the complex code structures - which were

FUNDED signi cantly outperforms alternative approaches across traditionally represented as graph structures in compilers for

evaluation settings. code analysis [10] - we need an approach that could directly

Index Terms—Software Vulnerability, Code Vulnerability De- operate 9” and I.eam from the g.raph representation of the
tection, Deep Learning, Deep Graph Neural Networks code. Doing so will allow the learning framework to preserve
. INTRODUCTION and reason about much of the control and data ow infor-

Software vulnerabilities are responsible for many systematlon for capturlln_g. the essential code structures for many
ftware vulnerabilities. For example, to detect thse-after-

attacks [1] and data breach incidents [2]. Machine Iearnlng?f;e vulnerability, we need to know where and when a buffer

a viable means for constructing tools and models to identiI located and deallocated acr multiole execution path
common software vulnerabilities. It works by rst learning, allocated a caflocated across mulip'e execution patns.
We introduce [ENDED, a better approach for modeling code

from training samples, the latent patterns indicative of vulner- ctures. BNDED operates on arach reoresentations of the
able programs. A machine-learned model can then be appl%&u ures. P grap pres !

to new software projects to identify potentially vulnerable co fogram source code with the capability to learn and aggregate

that exhibits similar patterns as those vulnerable samples sgéwt'ple code relationships. It achieves this by leveraging the

in the training data. There is now ample evidence showing t:?ét/cently proposed gated graph neural networks (GGNNs) [11].

machine learning techniques can exceed expert-crafted r nesa ?;:eﬁgwgfgatgﬁmosn ia%;aimgve\/ﬁr?setgfﬁgr?’ tgjcgézggs
[3] for detecting common code vulnerabilities or bugs. () 9

. . in _social networks [12], and knowledge graphs [13] and
Recent studies have leveraged deep learning (DL) to reaé'%/rén compiled binaries [14]. While GNN provides a good

about program structures to identify potential software vuf/en X . . .
nerabilities at the source code [4, 5, 6, 3, 7]. Compared 6art|ng point, applying it to develop a practical and ef cient
R ramework for software vulnerability detection is not trivial.

This work was supported in part by the National Natural Science Fouks a standard GNN operates orsiagle graph representation

dation of China (NSFC) under grant agreements 61972314, 61672427 ; ot ;
61872294, The International Cooperation Projects of Shaanxi Province un?j?efih untypededges, it cannot distinguish between the control

grant agreements 2019KW-009 and 2020KWZ-013, an Ant Financial Scier@@d data ow information. However, such information is
funded project and an Alibaba Innovative Research Program. essential for capturing vulnerable and buggy code patterns. As

Corresponding authors: Zhanyong Tang (zytang@nwu.edu.cn) agdmonstrated by our evaluation, when ignoring the different
Zheng Wang (z.wang5@leeds.ac.uk))

*Huanting Wang and Guixin Ye are the co- rst authors. code relationships, a recent work that uses a vanilla GNN
LFUNDED = Flow-sensitive WINerability cdDE Detection. [15] gives marginal improvement compared to the LSTM

alternatives for code vulnerability detection. perform better. However, machine learning is well known to

FUNDED extends the GNN's capability to distinguish ande brittle to uncertainties. When facing an situation that is
model multiple code relationships (including data, controhot seen before, machine learning techniques often produce
operation order, and operand values). This is achieved &y answer with a high probability. The high probability in
rst encoding different code relationships in different relatiorthe uncertain situations often lead to poor prediction results
graphs, and then using learnable, relation-speci ¢ functions +oin our case, this will introduce noise into training data and
propagate and aggregate information across relation grapteteriorate the quality of the learned model.
By representing the input program as multiple relation graphsTo ensure the quality of the training data, we take a
with explicit control and data ows or syntactic information,different approach by adopting a “mixture of experts” scheme
our new graph model captures richer intra-program relatiofsl] to collect training data from open-source projects. Our
than prior GNN-based approaches [15]. This richer set approach reduces data noise by employing multiple predictive
relationships improves the model's ability in learning usefuhodels (referred to agxperty and only using predictions
program representation, leading to better performance of tfug expert recommendations) that we have high con dence
downstream code vulnerability detection task. As we will shoan the model's output. To evaluate the con dence (or cer-
later, by employing the GGNN to model and distinguish thiinty) of each recommendation, we apply Conformal Pre-
rich code relationships, our approach signi cantly outperforndiction [22] to measure the statistically valid con dence for
alternative graph-based methods. the predictions given by individual models. In this way, we

While our novel GNN extension provides a potentially powdse only recommendations with high con dence. Given this
erful capability for learning code representation, its potentiability to measure the con dence of predictions, we only ask
can only be unlocked with suf cient training data. Typicaldevelopers to inspect low-con dent predictions to provide the
DL algorithms require up to millions of examples to learn aground-truth, which then serves as additional training data
ef cient model [16], but the scarcity of real-life vulnerableto improve the data collection model over time. We show
training samples is a common problem [3]. The lack dhat our mixture-of-expert approach improves the quality of
training data limits the quality of machine-learned detectiathe collected training data, leading to a better-performing
models, as they have very sparse training data for typicallnerability detection model. This also provides a scheme to
high-dimensional program space. Some prior approaches sajvadually and continuously update the data collection model
this problem using program generation for compiler testingith minimum developer involvement.
[17]. However, synthetic programs have two signi cantly We demonstrate the benets ofuRDED by applying it
drawbacks. They are biased by the grammars, templatestmmetect function-level vulnerabilities from program source
models used to generate the programs, and may not re ect tiwelé. We thoroughly evaluate UWDED on large real-life
diverse and evolving patterns of real-life programs. Henceatasets of code commit history and vulnerable programs
models learned over synthetic data are hard to generalize.written in C, Java, Php and Swift. We compar&NDED

Our solution for addressing the scarcity of vulnerabilitpgainst six state-of-the-art (SOTA) learning-based detection
trainining data is to utilize the wealthy historical informatiormethods for software bugs or vulnerabilities [4, 5, 16, 6, 3, 15],
in open-source projects. We achieve this by usingfitine and ve SOTA methods for automatic vulnerable code sample
trained model to predict which code commit is used to patawllection [18, 19, 23, 20, 24]. Experimental results show that
a code vulnerability. Therulnerability-relevant commit i.e., FUNDED consistently outperforms competing methods across
a code revision that provides a patch for a code vulnerabiligyaluation settings, by discovering more code vulnerabilities
- is then used to locate a vulnerable source code snippet franth a lower false-positive rate.

the version before the patch commit. Contributions. This paper is the rst to:

Translating this high-level idea to build a practical data show how a multi-relational, gated graph neural network
collection system is, however, not trivial. Collecting a large can be developed for vulnerability detection (Sec. IV);
number of high-quality vulnerable code samples are challeng- combine probabilistic learning and statistical assessment
ing because we need to exclude commits that are irrelevant to develop a “mixture-of-experts” approach to address the
to software vulnerabilities (e.g., code commits for enhanCing Shortage of vulnerable training code Samp|es (Sec_ V),
performance or functionalities but not repairing a vulnera- exploit transfer learning to port vulnerability detection

bility). Failure to exclude such benign code snippets in our models across programming languages (Sec. VII-D);
training samples will confuse the machine learning algorithm.

Meanwhile, it is impractical to ask developers to manually [l. BACKGROUND
check all the training samples due to the large volume #&f Problem Scope
data collected. Thus, we must nd a better measure to ensurg-npep is a general learning framework for code vulner-

_the quali_ty of the collected data and only ask for developgbi"ty detection. In this work, we apply UNDED to identify

intervention when necessary. _ vulnerabilities from the source codeURDED predicts if a
Prior work on vulnerable training sample collection [18, 1%yiven function or method contains a potential vulnerability and

20] is characterized by a one-size- ts-all assumption. They use \what type. Here, the target function may invoke standard

a single monolithic model for locating vulnerability-relevantip ary calls and user-de ned functions. Note that our intention
commits. These approaches often fail to examine whether the

model ts the current inputs or whether another model would 2Code and data available at: https:/github.com/HuantWang/FUNDESL

TABLE |

1 attr_value = (char *)malloc(attr_len + 1); GITHUB COMMIT EXAMPLES

2 ..

3 else if (Istrcmp(attr_name, “dateadded")) Code revisions C1: 'Vulnerability—relevant C2: yulnerab. irrelevant
4 commit commit

5 ae->date_added = atoi(attr_value); Message Add NULL check to avoid Check err when partial ==
6 free(attr_value); null pointer access. NULL is meaningless because
7} partial == NULL means get-
8 else ting branch successfully with-
9 free(attr_value); QUL G

4 addition lines , 2 deletlon IIrIe§_addition lines, 2 deletion lines
-sap ctx > csareason = reasory (em)

Fig. 1. Benign code sample from GitHub. UVDEEPECKER +if (sap_ctx) -goto cleanup:
VULDEEPECKER and LIN et al. all misclassify the code containing Patch +sap cix >°Sa—rea50“:reascl%f (e ’
a “double-freé vulnerability for buffer attr_value . -hddapctx >... mutex unlock(ei > ...

+if (hdd_ap ctx > sap contex .
+hdd ap ctx > ... bgoto cleanup;

- free — attr_value Dependené¢flow
Com] Y (attr_value) > Control Flow at the source code level. The second is an automatic frame-
/ . = atoi free work for collecting vulnerable code samples from open-source
‘1""“&}:’?\'7“9%” 8 }—’ 5 (ttr_value] = ® (attr_value) repositories (i.e., GitHub in this work) to provide additional

training data for learning the vulnerability detection model.

number is given in each rectangle box.
A. Software Vulnerability Detection

is not to uncover a new type of vulnerabilities. Instead, we . . .
want to detect if a new, unseen piece of code contains a vul-our vulperapmty detection model builds on a nhew GNN
posed in this work. The model takes as input source code

nerable code pattern that is similar to one seen in the trainif}

dataset. Therefore, UNDED is useful for detecting common, o the ta_rg_et f_unctlon._ Next, it construcis pogram graph
k?%/ combining information extracted from the abstract syntax

repeatedly occurred software vulnerabilities (or bugs). To th 2e (AST), and the program control and dependence graph

end, our work focuses on detecting common vulnerabiliti DG) Th iruct ted directed
(or weaknesses) de ned in the common weakness enumerati r%:). The program s fuctures are presented as directe
Tgphs, where statements, identi ers, and immediate values

(CWE) database, and is not concerned about non-vulnera;
bugs like performance issues. are graph nodes, and a direct relationship (e.g., parent-child,

data or control ow, etc.) between two nodes is recorded
as an edge. As there may exist multiple relationships (or
B. The Need for Flow-sensitive Methods edges) among a pair of nodes, we use a relation graph to

To show the need for modeling the control and dafgcord each type of relationships (see Sec.IV-C2). The node

ows, consider the benign code example given in Figure £ONnectivity of a relation graph is encoded as a program
VULDEEPECKER [5], VULDEEPECKER[6] and LIN et al. graph matrix. Our GNN takes in the program matrices and

[3] are SOTA vulnerability detection models. They buildnitial node representations to learn code representations called

upon bidirectional LSTM (BIiLSTM) [25] - a sequence deepembeddings that are reprgsented as a vector of numerical
learning model. For this example, they all incorrectly classiff2/U€s- The code embeddings are passed to a downstream
the code containing double-freevulnerability. The root cause N€ural network to make a prediction. o

for this false positiveis that a sequence model has to linearize 1h€ detection model is traineaf ine using training datasets

and treat the code structure as a sequential sequencefr%'?“ both standard software vulnerability databases like CVE
tokens, which omits the control ow divergence (see Figure 2§"d SARD, and examples gathered from open-source reposito-

Consequently, they regard dynamic bufiérr_value (line fies. The traingd model can then applies to angwW unseeh '
9) to be deallocated again after it being freed at line 6. Programs. Unlike prior work [4, 5, 3, 16, 6, 15], our multi-
For this example, we want to capture the control and dartedlat_lonal GNN can better capture multiple Coqle relationships,
ow of the target program by using a ow-sensitive decisior{ead'n_g to signi cantly_more ac_curate detgctlon results. We
model. If we can do that, we can then infer that the pufrélescribe the vulnerability detection model in Sec. IV.
attr_value at line 9 is deallocated in a different executiorg3 Training Data Collection
path and hence will not lead todouble-freevulnerability. For
more general cases, we need to capture syntactic informatiod © 9ather vulnerable code samples from open-source repos-
(when trading sequential representations for graphs), as welftgéies like GitHub, we develop an automatic data collection
the control and data ows or any other code relationships thii@mework. This framework aims to provide real-world vul-
may be essential for the downstream processing taskpEp nerable code samples, complementary to those available from

is designed to offer such capabilities by extending the recengi{gndard vulnerable databases like the common vulnerabilities
proposed GNN architecture. and exposures (CVE) and the software assurance reference

dataset (SARD). Our framework uses a set of predictive
models orexperts each independently predicts whether a code
commit provides a patch for a code vulnerability in the previ-
FUNDED consists of two key components. The rst is aous version of a software project. By identifying vulnerability-
GNN-based model to identify potential software vulnerabilitieselevant code commits, we can examine the changes brought

I1l. OVERVIEW OF OUR APPROACH

2 5 o\ - = ;
Fl— /C%’b N === %5 — - Predictior 1 a = (char *)malloc(b+1);
gos lama) . o) 3 dise if _(strcmp(c dateadded?) {
_ S 3 else i Istrcmp(c,"dateadded"
Code Augmented ASTMatrices Vulnerability 4 d>do = atoi(a);
Snippets detection model 5 free(a):
Fig. 3. Code vulnerability detection. Our detection model takes as inputan 6 } else {
AST and CDFG of the target code snippet at the function level. 7 free(a);
8

by the patch to locate which code segments of the previous
version are likely to lead to a vulnerability. The identi ed (a) Code in Figure | after source code rewriting (variable renaming)

code segment (a function or method in this work) is then | i ; ' A
used as a vulnerable cod&aining example. This automatic - [eue) @@@@@@ [ELeel (o]

data collection framework enables us to build a large training mates ko (CAID (A (o) CARS) 0
dataset of real-life programs. [Cha () ARG - CED @RY S,

Consider the two commits in Table | from a customized = fﬁf@[@@f@@;_CJQ_“%:;@B;N‘GWW
Linux kernel hosted on GitHub. The rst commit (C1) xes a Child GuardedBy -+
NULL pointer vulnerability and the second commit (C2) xes ~ ~ -2stVsem = -~ NextTokem = ComputeFrom- ------Data flow-----
a performance issue but not vulnerability. For the detecting (b) Augmented AST
vulnerable code, code extracted from the second comrhi@- 4. Normalized code (a) and the extended AST (b).
should be excluded from the vulnerable training samplegraphs, where statements, code blocks or values are graph
However, existing approaches (VCGIER [18] and ZHOU nodes, and a direct relationship (e.g., parent-child and other
et al.[23]) may incorrectly label the second revision in Table felationships between two nodes) is recorded as an edge. As
as vulnerability-relevant commit because the commit messaiere may exist multiple relationships among a pair of nodes,
contains keywords “check” and “NULL". To avoid such miswe use a relation graph to record each type of relationships
takes, we apply Conformal Prediction (CP) to quantify thgnine relationships in total). The node connectivity of a relation
con dence (or credential) of each expert model's prediction (@jraph is encoded as an adjacency matrix.
recommendation) for a commit and only consider predictions
when we trust the model's outcome. The use of CP helps Bs GNN Model Structure

to improve the quality of the collected data. We describe this Building upon our recent work [26], we extend the gated

training data collectlon_ framework _|n Sec. V. _ graph neural network (GGNN) [27] to model multiple code
Roadmap. In the following two sections, we rst describe ourrg|ationships extracted from the source code. Our GGNN
and then present our training data collection model in Sec. \Gated Recurrent Unit (GRU) [28], so that it can incorporate
higher degree neighborhoods across relation graphs. It takes
IV. DETECTING CODE VULNERABILITIES in the adjacency matrices of relation graphs and initial node

In this section, we describe our GGNN-based code vulndepresentations to learn a global embedding vector, which is
ability detection model. We start by giving an overview ofhen passed to a standard fully-connected network to make a
our model in Sec. IV-A. We then move to explain the modellassi cation using a softmax layer.
structure in Sec. IV-B before describing how we organize the Graph Representations

program structures as a graph input to the model in Sec. IV—C.l) Code DreprocessinaAs a preprocessing step. we use a
This is followed by a detailed description of the training and prep GAs a prep g step,

learning process of our model in Sec. IV-D, Sec. IV-E anaompller parser to rewrite the variable names using a consis-
.~ fent naming scheme. This step ensures that trivial semantic
Sec. IV-F. Finally, we discuss the model interpretability iss

in Sec. IV-G. u(§ln‘ferences in programs such as the choice.of variable names
do not affect the choice of token embeddings (Sec. IV-D).
Figures 4(a) shows the source rewriting applied to the example
A. Overview of Our Detection Model shown in Figure 1.

Figure 3 depicts the work ow of our detection model, which 2) Program graph:Our program graph is constructed from
takes as input the source code of the target program (i.etha AST that containsyntax nodegi.e., nonterminals in the
function). We construct an AST of the code using a standal@hguage grammar, e.g., an AST node forifin statement
compiler parser. We extend the AST with additional contrar function declaration) andyntax tokens(terminals like
and data ows and sequential information like the token sédenti er names and constant values). A standard AST has
guence. The extended AST are presented as directed multjpef only the child edge for encoding the parent-child

relationships between two AST nodes. To capture additional
3In this work, avulnerability—rele_\{ant co_de commit a code revision log syntax, data and control information, we add eight additional
that provides a x for a vulnerability, whilevulnerable code= a piece of gsypes of edges to the AST, foIIowing the methods described

code that contains a type of vulnerability de ned in the CWE. We stres X '
that identifying vulnerability-relevant code commits is fundamentally differerin [29]. We describe our additional edges as follows.

from identifying vulnerabilities from source code as we can utilize addition t d trol We int te the dat d trol
information like commit messages and code changes between two com a and control ows. Ve Integrate the data and contro

to assist with the former task. paths extracted from the PCDG to the AST.

L WK LWHUDWLRQ

GuardedBy. We connect each AST token of a variable to the = ‘ .
variable's enclosing guard expressions usin@G@ardedBy 7D“J“W*§;'3'Q’“" SHOEiWLRQ *UDFF
edge. For example, for thié statement in Figure 4(a), we) 1fLiKERU & — 5| FT
add aGuardedBy edge fromd andfree(@) to the AST LHLIKERD O)

) . 7DUJHW GR,[G O = @ *SHODWLRQ *UDSK
node corresponding tistrcmp() . This could be useful for SHODWLRQ "UDSK

determining the wrong order of operands [16]. L LUpsl QR = QRGH HPEHGGLEIVIDWH UHFEXUUHOW X

i i D 1IHLIJKERUKRRG DJJUHJDWIHROP WLKR QJIWB JDWL

Jump. We use aJump edge to connect variables with controIF_ & Leami g beddings b i informati "

: ig. 5. Learning node embeddings by aggregating information across neigh-
dependencies. ThG_uard_edBy gnd J_ump edges allow us bors (a) and from other relation graphs of the same node (b). The initial node
to record the I’elatlonshlp of d|Verg|ng control ows. Sucrbmbeddings are generated using a word2vec network.
a relationship is important for capturing control and data
ow patterns for vulnerabilities like thedouble-fre¢ example ~ To capture the type information, we concatenate the embed-
given in Figure 1 andCWE-413: improper resource lockinhg dings of the (return) type of a variable, constant and function —
ComputedFrom. For each assignment,= expr, we connect such adnt for an integer variable — with the AST node name
v to all variable tokens occurring in expressi@xpr, using representation, and pass it through a linear layer to obtain the

ComputedFrom edges. This edge captures where a variabf@itidl representations for each node in the graph.
or buffer is used and is useful for detecting vulnerabilities likg | earning over Multi-relational Graphs

“NULL pointer dereference Given the adjacency matrices and initial node embeddings,
NextToken. As the standard AST child-parent edge doesur multi-relational GNN generates a global one-dimensional
not induce an order on children of a syntax node, we adghbedding of 100 features across relation graphs.
NextToken edges to connect each syntax token to its succes-1) Neighborhood aggregationLike all GNNs, we use a
sor. This is used to capture the order of opcode and operaméfghborhood aggregation scheme (Figure 5a) to update node
for statements. Such information is useful for vulnerabilitgmbeddings. Our 100-dimensional embedding vetigrof a
types like'CWE-404: improper resource shutdown or reléasegraph nodey, is computed by the embedding layer through
because it captures the order of API uses and releases. recursively aggregating and transforming the representation

LastUse and LastLexicalUse.We connect all uses of the Vvectors of its neighboring nodes. Nodes exchange information
same variable usingastUse edges to capture the use ooy sending their current state (i.e., the embedding vector) as a
variables, where a special case is variablés irstatement and Mmessage to all neighbours along the edges. At each node, mes-
we connect such type of variables usibastLexicalUse sages are aggregated and then used to update the associated
edges. For instance, for thE statement in Figure 4(a), we node representation at the next embedding layer (i.e., the next
would link the occurrences af in the loop head and where ititeration). After repeating this process of updating node states
is used. By recording when a variable or buffer is last used, tA®§ @ xed number of iterations aeadoutfunction is used to
relationship helps in identifying vulnerabilities likeléuble- 2aggregate the node states to a single embedding vector.
free’. Figure 4(b) shows the augmented AST after processing2) Multi-relation modeling: Unlike a standard GNN, our
the code given in Figure 4(a). model propagates and aggregates information across multiple
3) Relation graphs:We store the relationships of the augrelation graphs. As depicted in Figure 5b, we achieve this
mented AST in separate relation graphs - one graph for eact¥f st using learnable, relation-speci ¢ functions to compute
the nine relationships described above. In this work, a relatifgW graph states of individual relation graphs through neigh-
graph is a directed graplG =< V;E >, that contains the borhood aggregation. We then apply a GRU cell to aggregate
AST nodes)V, and edge<, that indicate the existence of aand update states for the same nodes across relation graphs.
given relationship between two nodes. We use an adjacef@mally, we use forward propagation to update the stafe,
matrix to record the edge connections of each relation grap@ll vertex,v, of a relation graph to obtain a new staltg:™ :
For each edge, we a!so add a rgspeciﬁm:kward edge A GRU(h‘V;X X (W- h.)) @
(by transposing the adjacency matrix), doubling the number (v)2A-

of edges_ an_d edge _types. These b_ackward edges help W'trv]vhereA\ are the directed edges between nodeandv.
propagating information across relation graphs.

. W- and the GRU are learnable parameters. The initial node
D. Graph Node Representations state h?, is created using word2vec as described in Sec. IV-D.
We map every program graph's nodes (e8tmt) and | sireq by work in natural language processing [31] that

tokens to anembeddingvector of numerical values using a,,5q5 highway gates [32] to control the noise propagation, we
word2vector network [30]. The idea is to construct a vectjs, employ layer-wise highway gates to our GGNN:

space such that words found in similar contexts in the source

code are put in close proximity to one another in the vector T(h(") = (h{PwWP +16Y) (2)
space. The embedding table and word2vector for mapping A = T(h(D) (D 11 T(h()) hP ©)
words and tokens to values are constructed from the training W _ .

code corpus consists of node types, and tokens gathereWhere hy” is the input to layer t+1 and obtain a new
from training programs. As variable and function names asd@ate,né ™ sigma is a sigmoid function; is element-wise
constant values can be of arbitrary lengths, we encode themltiplication; W and b’ are the weight matrix and bias
as tokens (i.e., letters, symbols, and numbers). vector for gateT(h\(,t)), respectively.

3) Readout: After we performed the neighborhood aggre-
gation procedure across multiple embedding layers, we will
obtain another set of embeddings for each token. To represent” .
the entire program, we use a readout function to concatenat&™™ _ _ — ,
graph representations across all the neighborhood aggregafif ur 125 abeino model consisi of muple ividus lasster. For
iterations and embedding layers, to form an output vebter, c, which is used to Iter out predictions of low con dence.
as the global program representatiomofelation graphsG;:

|

LS 4 S ? L S—
Csw] [R | [KW] [R] [GB]

o n o At the heart ot our deta collection tqol ie a set of expert
he = CONCAT hjv2 G jt=0;1:::;n (4) models for predicting if a code revision is vulnerability-
i1 ' relevant. In essence, we form agxpert committéecomprised
wheret = 0;1;::::n, is the neighborhood aggregation itera:_several representative classi ers (Sec. V-A). Eactt expert model
tions. Given individual node embeddings, this readout funCti‘%:%krﬁfnssmlgssattgae Z?rtdO(Iof::tgtzzzg(er:tt)::tvct)e:nbt:acl)rrfr?ti :Sro(rrgft;io
produces the global embedding for refation graphs. Table 1). It then predicts if the target code revision provides a
F. Training the GNN patch for a vulnerability or not. All expert models are trained
Our GGNN is trainedof ine using training samples from of ine using Iebeled training samples. The trained models can
both standard vulnerability databases (CVE and NVD in thifen be applied to anpew, unseercode commits from the
work) and open-source code examples gathered using our dtgeenprojects (Sec. V-D). In Sec. VII-E1, we compare our
collection framework described in Sec. V. The learned moddlnixture-of-experts” approach against alternative modeling
can then be applied tonseerprograms. techniques that use a single monolithic model.
We train our GGNN on batched training samples, where
each batch consists of positive and negative samples. As aurMixture-of-expert Model
goal is to minimize the distance between two probability dis-
tributions - predicted and actual, we choose the cross—entrocq
loss as our objective function. This function is proven to be

Figure 6 depicts our model mixture, which consists of ve
¥ssi ers: support vector machine (SVM), random forests
§2F), k-nearest neighbor (KNN), logistic regression (LR) and

good t for the sigmoid and softmax activation functions use 4 b . h dels b h
by our GNN [33]. We use the minibatch stochastic gradier(":?tra lent boosting (GB). We use t €se models because they
' have been shown to be useful in prior work [20, 23, 19, 24],

descent (SGD). and Ad_am algorithm [34] Wit.h a learning ratg t other models can be added into our expert committee too.
g: ?éoacz:lh'ir-]rratlﬂg]gmt:;mqlz?;eiovéhggi:;re] Iossc;ir:gssp\;hweo\ﬁ E\Jnlike prior work [18] [19] [20] that directly makes use of

. 9 - g ep ' . Hte predictions, we rst apply CP to evaluate the credential of
show in Sec. VII-F4, the training overhead of our vulnerab|I|t¥ndi

detection model is comparable to other DNN schemes. Since vrd.ual classi ers for the given input to Iter out predrctrons
N . . with high uncertainty. We then use a majority voting scheme
training is performedfine, it is a one-off cost and has no

impact on the end-user to aggregate the remaining predictions to generate an outcome.
P ' We describe how to build and use an expert model following
G. Intuitions of FUNDED the three-step process of supervised learning: (1) training data

Like most machine learning techniques, DNNs work as 3neration; (2) modeling training; (3) using the model.
black box [35], and that is just as true for our approach. .
Model interpretation and theoretical analysis of the working: 172ining Data for Expert Models
mechanism of a DNN remains an outstanding challenge and isl) Collecting code revision training sample§Ve use the
out of the scope of this work. Xat al. [36] shows that GNNs same training dataset to train each expert model. The training
are the same powerful as the Weisfeiler-lehman test [37] data are constructed from two sources. The rst contains
distinguishing graph structures. At a high level - as depictedmmit logs and patches reported in CVE [38] and the na-
in Figure 4(b) - GNNs follow a neighborhood aggregatiotional vulnerability database (NVD) [39]. The second contains
strategy, including theaggregatelayer and combinelayer, commit logs and patches extracted from open-source projects
which are used to iteratively update the representation ofhasted on GitHub such as the examples given in Table I.
node by aggregating representations of its neighbors. For thé.ogs from CVE and NVD are already associated with a
code example shown in Figure 1uRDED learnsallocation known vulnerability, they can be used directly. To collect data
and deallocation of variable a by aggregating its neighbor from GitHub, we consider 1,000 top-ranked projects with the
AST nodesmalloc andfree . The learnt information will primary programming language in C or Java. We choose C and
be mapped into a numerical vector during the readout stadgva as they are among the most popular programming lan-
to allow FUNDED to learn operations performed on variablgguages. However, our data collection framework is generally
a across the program control and data ow graph. applicable and can be applied to other programming languages
too. We apply a set of regular expression (RE) rules extended
from [23] to choose commits that are likely to be vulnerability
To provide large and high-quality training data for our GNNelevant.
model, we leverage the available data in open-source projecto simplify the process for extracting vulnerability code
by building a data collection tool. samples, our current implementation only considers code

V. TRAINING DATA COLLECTION

B "\ RE,] togs/ | __, [E H SJ g ([SHU
FEATURES FOR LABELING VULNERABILITY-RELATED COMMITS. ruol) = — |patche EEE O\Q EREEL
Category Features code revision feature vectors

Project quality and activities (1) #stars; (2) #commits; (3) # releases; (4) #con- Fig. 7. Collecting and labeling open-source code samples.
tributors; (5) contribution rate; (6) #branches

Code commit description commit message; . i i
Code patch code changes; by an expert model will be given a larger nonconformity score

than more common patterns.

revisions that modify one source le at a time. After collecting TO calculate the statistical con dence, we set aside 10% of
the initial code revision samples, we manually inspect thBe model training data as the calibration set (that is not used
collected data to identify if the vulnerability reported in thdO train the expert models). We compudéine, the calibration
code commits been published in the CVE or not. If afcoresa; ;a; ;:;a) , by applying functiomA to each of the
identi ed vulnerability has previously been reported in CVEDN instances in the calibration set using the probabilit) (
we use the CVE number to establish a link with a publigiven by modeh for each class label. Given a new input,
CVE description. Otherwise, we manually extract the cod+1 We calculate the conformity scora) ., , using function
segment that contains the vulnerability, the commit logs, afd We then conmpute p-value pv, for xp+1 as:

the issue report (if any). We manually laksl code revisions COUNT i2fLnn+1g:yi = y? and ¥ o O
that have passed our RE rules to be vulnerability-relevant opy = T - et
not. We then use the labeled samples as our training data. In COUNT fi2fLzin+1g:yi = y°g (5)

this work, we use over 3,000 manually labeled code commitsHere if the p-value is small (close to its lower boutydn -+
(from projects with C or Java as the primary language)), then the prediction is very nonconforming (an outlier). If

train the expert models (see' also Sec. V-C3 and Sec. V-l large (close to its upper bourl, then the prediction is
We stress that this manual inspection process only needs fy conforming. We will only consider a prediction if its p-
be performed once for training the models, and the learngg o is greater thah ¢, wherec is a con gurable signi cant
models can be used to gather many more samples. Theref%\ga (empirically set to 0.3 in this work).
the training overhead can be amortized. . 3) Training overhead: The time for training the expert

2) Feature extraction:A key aspect of building a good mqdels is dominated by training data collection and labeling.
machine-learning model is nding the right features to chafp, this work, it takes us less than three days to collect the
acterize the input. For this work, we use the three types @fiub revision samples using an automatic script (largely
features given in Table Il to capture the quality of the opefimited by the number of requests can be issued by Github
source project and the purpose of a code commit. Intuitivelye.ounts per day), and two paid annotators less than two days
the commit message describes the reason for a code revisig§ manually inspect and label the collected code revisions used
whether it is relevant to a vulnerability xing or not, and ther raining by cross-referencing the commit message, code
type of the vulnerability. The higher the quality an open-sourGganges and issue reports. The time in training classi ers and
project is, the more rigorous and meaningful a code comnyifying the training data ratio is negligible (less than an hour

message is likely to be; and an actively developed project,jging a multi-core server) in comparison. Since training is only
more likely to have regular patches for vulnerabilities. performed once, it is ane-off cost.

The commit message and the modied code statements
are mapped into an embeddings vector, using a pre-traiféd Ysing the Expert Models
word2vec network [40]. The generated embeddings togethefONC€ We have learned the expert models, we can use them

with the feature values for the project quality and activitie® Predict if a code commit provides a patch for a vulnerability.
are put together to form an aggregated feature vector. Figure 7 depicts the process of C(_)Ilectlng and labeling open-
source code samples. We use GitHub APIs to automatically

o crawl and obtain the code commits of top-ranked projects.
C. Expert Model Training We then apply our RE rules (see Sec. V-B1) to choose code

1) Training individual expert modelsThe training data are COmmits that are likely to be vulnerability relevant.
used to determine the optimal hyper-parameters of each expebeling code commits.For code revisions that passed our
model. Each of the training samples consists of a feature vecRE lIters, we apply the of ine trained expert models to predict
of numerical values and a label indicating if the code revisidfi the code revision is relevant to code vulnerability xing
sample is for xing a code vulnerability or not. For training,or not. We use the feature extractor to process the collected
we simply supply the expert models with the training data artbde commit log, patch and project-related information, to
it carries out its internal supervised learning algorithm. form a feature vector (as described in Sec. V-B2). Given

2) Con dence evaluationWe also apply CP to capture thethe feature values, each expert predicts if the code revision
“strangeness” (termed nonconformity measure) of class lalielrelevant to vulnerability xing or not. To reach consensus
y (i.e., vulnerability-relevant or not) for input. To do so, among multiple classi ers (experts), we apply CP to estimate
we use a model-speci ¢ nonconformity functioA(x;y;h), the nonconformity score of each expert's output. We keep
to estimate the nonconformity score for motlelWe use the outputs whose nonconformity scores are greater the con dence
default method-speci ¢ nonconformity function given in PyCRevel (see Sec. V-C2). We then make the nal consensus based
[41]. Intuitively, unusual patterns on the feature space de newh a simple majority voting of the remaining outputs.

TABLE Il 2,298 are obtained from the top-1000 most popular projects

DATASET FOR EVALUATING VULNERABILITY DETECTION. on G|tHub th C and Java as the primary programming
Source Language #vuln. types #samples #positive samples languages. For the latter, we manually examined and labeled
c 30 90,954 45,477 the commits to establish the ground-truth. Note that the

D & Ve éi\:;a 1;‘ i?g% 1‘;;33 SAP and Z/D datasets already contain negative samples (i.e,
Github c 10 10,400 5,200 randomly chosen vulnerability-irrelevant commits collected
Swift 5 2,506 1258 from the same project where a vulnerability-relevant code

TABLE IV commit is found). We apply the same methodology to obtain

CODE REVISION HISTORY DATASET

negative commits from GitHub. Speci cally, we retain code

Source Language # commits #vulnablility related commits .

o g1ag - i pa. commits that have passed our RE lters but are found out to
GitHub 2195 179 be vulnerability-irrelevant through manugl inspection. Ove_ra}ll,
SAP Java 1,787 804 we have a total of 13,122 code commit samples, containing
ZvD C/C++ 3,422 1,540

both vulnerability-relevant and irrelevant commits.

Extracting code samples.For each code commit that passeg. Competitive Approaches
our .RE lters, we use COd(.:" changes to locate the Previouse, vulnerability detection, we compareUNDED to six
version of a patched function. We then extract the code of

. . ST fBlevant methods: VLDEEPECKER [5], VULDEEPECKER
thls function and assomate. it with the label (vulnerable or n], Lin et al. [3], Vuppy [4], DEEPBUGS [16], and
given by the expert committee.

DEVIGN [15]; the rst three build upon BILSTM, \WUDDY uses
Continuous learning. One of the advantages of using CP t®ash functions to discover vulnerable code cloneEPBUGS
evaluate an expert's con dence is that we can use samples Wifflizes a feedforward neural network for bug detection, and
low credibility to improve an expert model over time. DoinghevigN uses a standard GNN [45] operating on graph repre-
so allows us to continuously improve expert models over timgentation with untyped AST edges. All buY ULDEEPECKER
In Sec. VII-G2, we demonstrate how continuous learning caj the competitive schemes make a binary decision to predict

be utilized to improve our data collection framework. if the code contains a bug or vulnerability or not.
For data collection, we compareuRDED with ve SOTA
VI. EXPERIMENTAL SETUP data collection methods: VCGRDER [18], SABETTA et
A. Evaluation Datasets al. [20],VULPECKER[19], ZvD [24] and ZHou et al. [23].

We evaluate ENDED on two types of datasets. We evaluat Impl tat
our vulnerability detection model (Sec. IV) on code sample¥ mp emlen ation based vul bilitv d . del
written in four source languages: C, Java, Php and Swift. weVVe implement GNN-based vulnerability detection mode

test the mixture-of-expert approach (Sec. V), the core of oHF?ng Tensor ow V'1;8, [46] and models for data collection
data collection tool, on code revision history of projects usindsind the Python scikit-learn package [47]. To construct the

C, C++ and Java as the primary programming languages. 251+ We use Soot [48] for Java, ANTLR [49] for Swift, Php
.))) and Joern [50] for C/C++. We train and test all approaches on
Dataset for vulnerability detection. Table 11l gives details of

. . . multi-core server with a 14-core 2.4 GHz Intel Xeon CPU
this qlataset, Whlch contains a total (_)f 150,950 samples at %@d an NVIDIA 2080Ti GPU.
function level with source languages in C, Java, Php and Switt.

Half of our samples are positive (vulnerable) code samplg§. gyajuation Methodology

We restrict our scope to the top-5 to top-30 most dangerous

software errors de ned in CWE 2019 (e.g., “buffer over ow”,Model evaluation. Unless stated otherwise, we use-fold
“out-of-bounds read/write”, “NULL pointer dereference”). Wecross-validationto evaluate all approaches on their respective
construct this dataset from SARD [42], NVD [39] and operdataset. This standard methodology evaluates the generaliza-
source projects hosted on GitHub. Like prior work [5], we uséon ability of a predictive model.

the patched version provided by SARD and NVD as a negatierformance report. We use fourhigher-is-bettermetrics:

(or vulnerable-free) code sample. Similarly, for the vulnerablgccuracy The ratio of correctly labeled cases to the total
samples collected from GitHub, we apply the correspondingmber of test cases.

patch commit to obtain the vulnerability-free version. Our tefecision The ratio of correctly predicted samples to the
samples contain realistic code samples with thousands lines@k| number of samples that are predicted to have a specic
code. More information and examples can be found from thgnel. This metric answers questions lik®fall the code
supplementary documents. The supplemental document gi¥8gsions that are labeled to be vulnerability-relevant, how
the distribution for each CWE type used in the evaluation amqany are actually correct? High Precision indicates a low
an example of our test cases. false-positiverate.

Code revision history. As can be seen from Table IV, thisRecall The ratio of correctly predicted samples to the total
dataset includes a total of 6,713 vulnerability-relevant code neamber of test samples that belong to a class. This metric
visions from GitHub, and the SAP [43] and/D [44] datasets. answers questions likeOf all the vulnerable test samples,
Among the 4,369 vulnerability-relevant commits from GitHubhow many are actually labeled to be vulnerableigh recall
2,071 are established via CVE and NVD links; the remaininguggests a lovialse-negativeate.

Accuracy Precisio@@ Recall B F1 Score

0.9
0.8
0.
0.6
0 BRI | DR | DG | DRGS | DNECT | DN | NI | DA | DA | DGR | DN | DG | I | DG | | DRG] | N | DO | DO | G | DROS | e | G | DG | G | DN | DAL [DS | DRG] | DD | IR
. A A @’q e Q/IX @’6 AR @’q R R A R A R A A A Q/b‘ e’ N
o
SO N N TN G N N T T R T T R T T TR TN e
Fig. 8. FUNDED delivers on average, an accuracy of 92%, for detecting C functions with the top-30 CWE vulnerabilities.
F1 score The harmonic mean of Precision and Recall, cal- TABLE V
CUlated ag w It iS USEfU' When the test data EVALUATION DATASET OF FIVE OPEN-SOURCE PROJECTS
ecall + Precision * R .
have uneven distribution of vulnerability types. No. Project versions # vuln.
: : _ 1 FFmpeg v3.4.1,v3.4.2,v4.0.1, v4.1 12
We reporF thegeometric mearof thg aforementloned evall 2 ImageMagick V7.0.6.v7.0.8 14
uation metrics across the cross-validation folds because it = 3 Linux kernel v4.19 , v4.20 , V5.0, V5.4 16
widely seen as a more reliable performance metric over the # OpenSC v182,v0.19.0 8
y p 5 rdesktop v1.8.2 6

arithmetic mean [51].
side are the total number of successfully discovered vulnera-

VIl. EXPERIMENTAL RESULTS bilities. Here, a dark symbol means a vulnerability is identi ed
Highlights of our evaluation results are: by a model, where a circle means the vulnerability is reported

FUNDED delivers, on average, a 92% accuracy, for softwald NVD or CVE while a square indicates the vulnerability is
vulnerability detection (Sec. VII-A and Sec. VII-B) not reported in the two databases — also known as “silently-

FUNDED outperforms all competing methods for detectin§atched vulnerabilities” [5]. , ,
(Sec. VII-C) and collecting (Sec. VII-E vulnerable code). . TUNDED outperforms all competing approaches by iden-

We provide detailed analysis for the working mechanisn{dying 53 out of 56 vulnerabilities, including 11 *silently-
of FUNDED (Sec. VII-G and Sec. VII-F). patched” vulnerabilities, with a Recall of 0.95. By operating

on a graph representationERIGN outperforms the sequence

models with higher overall accuracy, showing the advantage
In this experiment, we apply UNDED to detect vulner- of a GNN-b&_l;(_ad model. However EDIGN also fails to detect _

abilities of C functions with the top-30 CWE vulnerability12 vulnerabilities that a sequence model succeeds because it

types, and we evaluate on other languages in Sec. V| |-BRcri ces many of thg syntactic and semantic relationsh[ps
In this experiment, we train our detection model using botff"en trading sequential for an untyped graph representation.
training samples from standard vulnerability databases ahNDED improves over EVIGN by identifying 13 more
those collected by our data collection tool. Figure 8 reporfdiinerabilities, giving 33% improvement in Accuracy and
evaluation metrics for each vulnerability typeuDED suc- Recall. Moreover, ENDED identi es four yulnerab|I|t|es that _
cessfully identi es most of the vulnerable samples with an a@!l 0ther models fail to detect. There is one each case in
erage Accuracy and Precision of 92%. High precision reducg§MPed, ImageMagick and Linux kernel that¥DED fails to

the false-positive rate and is important in practice becaudgtect but can be identi ed by others. Those are cases where
false-positive results waste developers' time for veri catiorfn€ Vulnerability is caused by the misuse of API parameters.
FUNDED also has a high Recall and F1 score of 0.94 (uch patterns are not captured by worq2vec model used by
to 0.99), indicating that it has a low false-negative rate ad’NDED- This issue can be tackled by using a better language
rarely misses vulnerabilities. UNDED gives less than 90% embPedding model, for which we leave as future work.
Accuracy (but still above 80%) on some CWE types like

CWE-400 and CWE-369 due to the word2vec model (used for Vulnerability Detection on Individual Datasets

initial node embeddings - see Sec. IV-D) is less accurately inWe now evaluate our vulnerability detection model on the
capturing tokens for API misuse. In future, we could enhandedividual datasets in Table Il using cross-validation.

FUNDED with a more powerful language model. Finally, we 1) Evaluation on standard datasetsThis experiment ap-
note that FNDED can identify vulnerabilities from real-world, plies all approaches to C functions from SARD and NVD. In

sophisticated code where other competing methods fail. Sec. VII-D, we extend the evaluation to Java, Php and Swift.
Figures 16 and 10 show thatuRDED delivers the best

B. Evaluation on Large Code Bases overall performance for vulnerability detection.u¥bpy and

We apply FUNDED to ve open-source projects that wereDEEPBUGS(give low detection accuracy due to the limitations
also evaluated in prior studies [5, 18, 52, 53]. Table ¥f their detection models. Using BiLSTM, M.DEEPECKER
lists the software versions and the number of function-levahd VULDEEPECKER are effective in a small number of
vulnerabilities. We exclude code from these projects in trainingilnerability types but gives an accuracy of less than 50%
to ensure the trained model is tested amseei programs. for certain types (like CWE-469, CWE-676, and CWE-834)

Figure 9 summarizes the successfully identi ed individuadnd can lead to a large number of false positives (i.e., low
vulnerabilities for each project, where bars on the left-hargtecision). By leveraging a rich set ahanually labeled

A. Overall Results

10

FFmpeg ImageMagick Linux kernel OpenSC rdesktop
[

VUDDY [5] oo oo

VULDEEPECKER 2] eeee ©¢ o o m o oo ° me o ooo ° o000
+VULDEEPECKER 25 |eee00000000 N e oo ° me o oo0o ° X0
Lin et al. [26 |eee e o e o000 H He o o ooo e0000 o o0
DEEPBUGS [34 |eee (X X)) 000 00000000 HO 0000 000 ©¢ o0 o o000 (X}
DEVIGN [40 |ecee © 000 H © 00 0000000 ONE HOOONOGOOO & 00 000 o000
FUNDED[53 |0000000000 HH000000000000 NHONNEEOCOONOCOCOCO HHOC00000000000

Fig. 9. The number of vulnerabilities identi ed by each approach for each open-source project. A solid symbol represents a successfully detected vulnerability,
where a circle means the vulnerability is reported in NVD or CVE, while a square means the vulnerability is not reported in the standard datebases. F
successfully detects more vulnerabilities than others.

DEEPBUGGUDDYWULDEEPECGKERULDEEPE MIDER/ I@\NIN e@&UNDE VUDD¥4VULDEEPE@KERDEEPECGKIEIR eflDEEPBUBBEVI @Y UNDE
1 ol | 1
0.8 0.
: 0.
0.2 || __ 0, I I
Accuracy Precision Recall F1 Score 7Accuracy Precision Recall "F1 Score
Fig. 10. Evaluation on standard vulnerability databases. Min-max bars show
performance across vulnerability types. (@) C to Java
VUDCYRGCH%VULDEEPECKERDEEPECKEREPBUMBISIN et@l®EVIA¥UNDE
1 I “VULDEEPE@KNERDEEPECGKIEIR et"aUDODNDEEPBUBBEVI@FUNDE
0.8 _
0.6 II " II II II o}
0.4 0. ;i
0.02 I it 0. I 1 I I iI W(. I
Accuracy Precision Recall F1 Score 0. : L .
Fig. 11. Evaluation on GitHub samplesuRDED gives the best Accuracy, Accuracy Precision Recall F1 Score
Recall and F1 score. (b) Java to Php

training data, IN et al. is the best-performing competing “vuDOML.IN e®alULDEEPECKERULDEEPE EIOERE PBUBSBEV I @FUNDE

method. However, its BILSTM-based model fails to detecg.1 z I : i

some vulnerable cases. For test cases with a CWE-834 vulnio 4 I . I i

ability, LIN et al. only successfully discovers 52.6% of the 0, cc\\\acy™ Precision Recall F1 Score

vulnerable samples. B/IGN gives the second-highest overall (©) C to Swift

accuracy, but that only translates to a marginal improvemes} 12 Apply transfer learning to port a detection model for a new

of less than 2% over VULDEEPECKERand is outperformed programming language.

by LIN et al. DEVIGN also gives low performance several

vulnerability types like CWE-138 and CWE-754, while othetesting samples. IN et al. is the best-performing alternative

models have an accuracy of over 80%. model for Accuracy, but its F1 score is 20% lower than that of
For the majority of the vulnerability types,UNDED out- FuNDED, suggesting that BNDED achieves a better balance

performs all other methods across all evaluation metrics. or false and negative positives.

a handful of types of vulnerabilities, UNDED misses one

vulnerable sample that can be detected byhthst-performing ,

alternative method. Most of such cases are because our tHe Cross-languages Learning

pre-trained word2vec network does not Capture a Certainprior work in other domains has shown that neural networks

|anguage keyword, e.gsizeof . This can be improved by trained on similar inpUtS for different tasks often share useful

explicitly adding important keywords to the network vocabcommonalities [55]. The observation is that the properties

ulary so that word2vec can directly model the semantics ©f the input that are abstracted by the beginning layers of

those keywords at the word (instead of token) level [54fhe neural networks are mostly independent of the task. By

Overall, FUNDED is the only scheme that delivers averagegontrast, information learnt at the last few layers in networks

accuracy of over 90% and has the best overall performariéenore specialized towards a speci ¢ task. Our work exploits
across evaluation metrics. this observation to reuse these parts of the network learned

2) Evaluation on GitHub datasetWe now extend our from one language to speed up the learning for a new language.
experiments to C functions collected from GitHub. In this ex-urthermore, by modeling the program graph structure rather
periment, we train on the SARD-NVD datasets and test on tiean the surface level information at the code level, our
GitHub dataset. Figure 11 reports results across metrics, whapproach can better capture the vulnerable code structure
the min-max bar shows the variance across vulnerability typesross programming languages too. This suggests that we
As expected, training data from the standard databases caroaot port a detection model for a new programming language
fully represent the vulnerable code samples seen in real-lifg leveraging the knowledge of the vulnerable code patterns
programs. As a result, we see a drop in accuracy for GitHlgarned from another language. The technology for achieving
code samples. Overall UNDED delivers the best performancethis is calledtransfer learning[56, 57]. Since we use the same
for Accuracy, Recall, and F1 score. Whiley¥Dy has the best network structure, transfer learning is achieved by copying the
Precision, it has a much lower Recall. This is because althougkights of a model built for one language to initialize the
VuDDY has the lowest false-positive rate, it is too restricted imetwork for another. Then, we train the model as usual using
detecting vulnerabilities — it misses over 85% of the vulnerabéesmall set of training samples for the target language.

SEele)

11

1 J— 1
. % better ’,.;;,‘/ & better /;///”
2 if (inputStream !'= null) { 0.8 Pttt
Z inputStream.close(); x 0.6 i _
} o A FUNDED
5 if (fileOutputStream != null) { 2 oromrreral Foa — IR
6 return false; ZHOU etal. RF
7 VCCFINDER 0.2 . ESM
8 fileOutputStream.close(); | o étJDLPECKER 0 | KNN
g rewrn false; 0 02 04 06 08 1 0 02 04 06 08 1
1 FPR FPR
L (a) Java code sample from GitHub with CWE-775 (a) Comp. to data collect. methods. (b) Comp. to individual experts
2 if ($usen‘i|e 1= FALSE{ _ Fig. 14. ROC curves for true positive rate (TPR) and false positive rate (FPR).
3 while (($user = fgetcsv ($userfile)) = We compare BNDED to other automatic data collection frameworks (a) and
~ FALSE individual expert models used in our expert committee (b). Methods that give
4 if ($user[0] == $username) curves closer to the top-left corner indicate a better performance.
5 return TRUE s
6 return FALSE : N ZHOU et ¢ ZvD BN SABETTA etEEM.FUNDE
7} 2 2
0 | T TR N T T AT T A
9 fclose ($userfile); 5 10"
10 ... B " Accuracy Precision Recall F1 Scor:
(b) Php code sample from Github with CWE-775 (a) Improvement over the baselineuUVDEEPECKER Model.
Fig. 13. Both the C code (a) and Php code (b) contain an “improper resourc ZHOU et ¢ ZvD W SABETTA etEMMFUNDE
shutdown” vulnerability. Although the programs were written in two different 2 X
languages and are from two different open-source repositories, they havg 2@ ; i ££ l
similar control and data ows that lead to a common vulnerability. :; 1& I I & I I EL I I I I &
219 Accuracy Precision Recall F1 Scor:

To illustrate how graph-level knowledge can be reused

across programming Ianguages for code Vumerab”lty det%:é 15. Performance improvement over the baseline code detection models

tipn, consider t.he.tWO code Segme_nts in Table 13 from twghen using extra labeled training samples from GitHub. The min-max bar
different repositories hosted on GitHub. Both code samplesows the range of improvement across the top-10 CWE vulnerability types.

contain animproper resource shutdownulnerability where
the program does not release a le handler after its effecti
life-cycle ends. Speci cally, the Java function in Figure 1
does not close the le handler ffileOQutputStream is

(b) Improvement over the baseline/ ULDEEPECKERmMOdel.

@gainst the false-positive rate (FPR) at different classi cation
hresholds, where a positive sample refers to a vulnerability-
relevant commit. Lowering the classi cation threshold (i.e., a

notnull , and the Php method does not close the le handl&jgher FPR) increases the likelihood for labeling more samples
if userfilé is True . By modeling the subtle programas vulnerability-relevant, thus increasing both true and false

structures that lead to a vulnerability, our approach can re R@sitives. FONDED delivers the best overall performance under

the knowledge learnt from the Java training samples to moc?elmeaningful FPR threshold (e.g, less then 0.5), by giving a
the same vulnerability for Php programs or vice versa. curve closer to the top-left corner than other methods.

In this experiment, we rst train a baseline model for 2) Impact of collected training datain this experiment,

one language. We then apply transfer learning to port e evaluate if the open-source project sample_s help in learn-
baseline model to another language using cross-validation. e 2 bette: detectlon_fm[?del. ,T(_) isolate The |mpr)1act of our
consider three cross-language settings: C to Java, Java to B mode_, we test It the t_ralnlng samples g".’lt ered by a
and C to Swift, where the rst is the language the baselirféaa collection method can improve the baseline model of
model is trained for, and the second is the new langua éJLDEEPECKER_[S_] and VULDEEPECKER[6]. We use the

to be targeted. Figure 12 shows thatNbED can better ARD—bas_ed training q_atasets [42] .to learn the baseline mo.del.
utilize prior knowledge to detect software vulnerabilities foP‘eXt’ we mcpde addltlpnal 4,00 GitHub code samples (with
a new programming language, by delivering the best perfdt” equal positive-negative split) that are go!lected bYBED
mance across language settings and evaluation metrics. ﬁﬂg other methods [23, 20, 24] to the training dataset FO learn
is because BNDED captures much of the language-agnosti second, re ned model. We then apply both the baseline and

information for vulnerable code patterns. This feature is useit# elfrefnﬁd modells to 1’00? c te;t sargples frorr]: C.;'thUb' where
for languages or libraries with scarce training samples. alf of the samples are vuinerable code. For a fair comparison,

we ensure that the test data only contain the same CWE types
seen in the training data of the baseline model.

Figure 15 reports the performance improvement by using a

We now evaluate our data collection framework on the codkata collection approach. The min-max bar shows the range
revision datasets given in Table IV using cross-validation. of improvement across different vulnerability types, where

1) Compare to alternative data labeling approachdsg- a negative value suggests a decrease in performance. Using
ure 14 shows the ROC curves for different data collectieextra training data from GitHub could improve the baseline
methods and individual expert models (Sec. V-A) used in thisodels. UNDED delivers the best and consistent improvement
work. The ROC diagram plots the true-positive rate (TPRjcross all evaluation metrics, outperforming the competitive

E. Evaluation of Data Collection

Fig. 16. Detection accuracy for the top-30 CWE vulnerability types on standard vulnerability databases.

TABLE VI
TOP-3 ACCURACY FOR PREDICTING THE VULNERABILITY TYPE
Method Accuracy || Method Accuracy
VULDEEPECKER 78.1% DEVIGN 81.4%
RGCN 79.0% FUNDED 93.8%

(a) VULDEEPECKER

Pos. Samples A Neg. Samples

12

Pos. Samples A Neg. Samples

(b) RGCN

Pos. Samples A Neg. Samples

Fig. 17. Comparing implementation variants afNDED. Our implementation
gives the best overall performance.

Fig. 18. Prosiam onhedd ven by diRrent SR achemED i
. . .Fig. 18. Program embedding space given by different approac is
methods with at least 4.6% (up to 10.2%) improvement W'more effective in mapping code samples into a space where a more distinctive

higher quality training data. For the 200 GitHub samples to eundary can be drawn to separate vulnerable and benign code samples.
labeled as vulnerability-relevant, the mixture-of-expert model
of FUNDED has an accuracy over 90%, while others havegh an augmented AST but with only additional control and
lower accuracy between 60.1% and 81.6%. The incorrectita ow edges. The fourth variant, referred to as F-CONCAT,
labeled examples given by some competing models could alsarns individual embeddings for each relation graph and then
have a negative impact on the resulting performance. Thisncatenates them for prediction. The last variant, referred to
experiment shows the need of having an accurate data labebgF-MLP, uses a multilayer perceptron (MLP) layer to learn
model to collect additional, high-quality training examplesand aggregate embedding of individual relation graphs [59],
FUNDED offers exactly such capabilities. but without attention and highway gates.
Figure 17 reports that using the standard AST is inadequate

F. Analysis of Vulnerability Detection Model for modeling the program structures. By augmenting the AST

1) Predict the vulnerability typeSo far, we have applied with control and data ow information, F-AST or F-CDFG
FUNDED to make a binary decision to predict if a piece ofmodestly improves the accuracy of F-vanilla-AST by 5%.
code contains a vulnerability or not. In this experiment, weowever, using the AST or CDFG alone is insuf cient, as
extend FUNDED to predict the types of vulnerabilities. Weboth give an accuracy of less than 85%. F-CONCAT also
compare ENDED to VULDEEPECKER the only multi-class gives lower performance compared twNDED, suggesting
vulnerability detection model in the competitive schemes, bthtat simply combining the embeddings of relation graphs is
we also extend two GNN-based variants: RGCN [58] ardss effective. This experiment reinforces the importance of
DEVIGN to multi-class predictions. We use the C datasets froutilizing and aggregating the information of the additional
SARD, NVD and GitHub (see Table Ill) for evaluation. control and data ow information. By operating on multiple

Table VI reports the top-3 accuracy of four methods. Thielation graphs, F-MLP is the best-performing competitive
metric checks if one of the top-3 predicted labels (rankeapproach, showing the great advantage of multi-relational
based on prediction probabilities) matches the ground-truthlefirning. RUINDED further improves F-MLP by employing an
a testing sample. This in practice means the developer oaligention mechanism and using highway gates to minimize the
needs to verify three potential vulnerabilities. As expected, veéminishing gradient issue when modeling long dependence.
see a drop in accuracy from binary prediction to the multi-class3) Program embedding spaceTo illustrate the learned
prediction. However, BNDED remains the best-performingprogram representation, we visualize the embedding space of
model and is the only one that gives an accuracy of over 90%sting data. Intuitively, an effective classi er should map the

2) Impact of implementation choicesWe compare testing inputs into space where distinct decision boundaries
FUNDED to several implementation variants using the SARDetween the positive and negative classes can be drawn.
dataset (that isolates the impact of our data collection method)Figure 18 shows how a trained BIiLSTM (that is used
The rst variant, referred to as F-vanilla-AST, operates ohy VULDEEPECKER VULDEEPECKER and LN et al.),
the standard AST (without the additional edges describesEVIGN (a standard GNN), RGCN anduRDED map more
Sec. IV-C). The second variant, referred to as F-AST, operatban 1,000 test samples of C functions from NVD, SARD, and
on the augmented AST but does not have the control and d&igHub (with an equal positive-negative split) onto the embed-
ow edges. The third variant, referred to as F-CDFG, operateling space. To aid clarity, we apply t-SNE [60], a visualization

13

Fig. 19. Training overhead (a) and accuracy (b). The min-max bars show the

variances across evaluation settings. Fig. 20. How performance of our data labeling model changes as the non-
conformity threshold increases on the SAP and Github datasets.

technique, to project the multi-dimensional embedding space
into a two-dimensional space. Compared with other methoddth a p-value greater than 0.7 (see Sec. V-C2), we manually
FUNDED (Figure 18b) is more effective in mapping the testheck the code revision to obtain the ground-truth. By using
samples into space where most of the samples can be separé@d@round-truth for only 5% of the mispredicted samples to
by a binary decision boundary. The result showsnBED is Update classi ers, our data labeling model can achieve over
more effective in extracting essential program structures f8p% for F1 score on the testing data. This translates into an
vulnerability detection. improvement of over 35% for the initial labeling model. Thus,
4) Model training overheadFigure 19 shows the training Using CP as a con dence measurement provides a practical
overhead and the achieved accuracy for different vulnerabilitfay to gradually improve our data collection framework.
detection models. The training time was measured by applying3) Impact of non-conformity thresholdFigure 20 shows
all approach to the largest training dataset used in this woflew the nonconformity threshold affects the performance of
which consists of 101,354 C functions from SARD, NVD, an@ur data labeling model on code commits collected from
Github as described in Table Ill. Training terminates when tige GitHub and the SAP datasets. A larger nonconformity
loss does not improve within 20 consecutive training epoct§reshold can help in reducing the false-positive rate, leading
or reaches a 95% accuracy on the valuation set, or met&digher Precision, but it can also negatively affect the Recall
the termination criteria given in the published implementatioRnd F1 score. In this work, we use 0.3 for the nonconformity
This experiment was conducted on a multi-core server usiHgeshold as it gives the best overall performance.

a desktop level NVIDIA 2080Ti GPU. VIIl. DI1SSCcUSSION ANDFUTURE WORK

¢ A" thed TOdTIS ;n converge thﬁlhml tW(: tho_ur_s O?_ OUr FunpED is among the rst attempts in employing GNNs
bralnlng .? asets. .PBtlJGfS'ng:rS 3 eas Ira”:\'lcg ka]—Ie and CP for code vulnerability detection. Naturally, there is
ecause 1t uses a simpie feedlorward neural NEtwork. HoWg, for future work and further improvement. We discuss a
ever, DEEPBUGS delivers the lowest accuracy because thf%w points here

model is inadequate in capturing complex code structures.

The remaining DNN methods require longer training timModel robustness.Machine learning models can suffer from
than DEEPBUGS but they give signi cantly better detection adversarial attacks where carefully constructed data samples
accuracy. ENDED incurs longer training time compared tota" lead to bias and deviant behavior of a trained model.

gwever, we believe that UNDED is less susceptible to

other DNN methods because the model learns across multiF\ !
relational graphs. However, the training overhead oRBED his problem for several reasons. First, we use code samples

is still comparable to other DNN models (within two hours)gollected from large-scale open-source repositories to improve

but it yields better detection accuracy. We stress that the molféf coverage and diversity of our training dataset. Injecting
training is performed of ine and is ane-off costFurthermore, 2dversarial samples into thousands of top-ranked, actively-

our approach can make a prediction within seconds, which tHi}&intained opensource projects without being noticed by the
has a negligible impact on the end-user. developers and users is highly unlikely, and even if this is

achievable, it will incur signi cant efforts. Therefore, the com-
_ . plexity of the attack is high. Secondly, since our data collection
G. Analysis of Data Collection Framework framework uses multiple models, launching an attackNto

1) Con dence evaluation:This experiment evaluates howmodels would typically increase the complexity of the attach
often our CP function (see Sec. V-C) successfully detects whdnN times because the adversarial examples are often tightly
a data labeling prediction is wrong. We apply our approach §@upled with the target model [61]. Finally, our CP model can
the code revision history dataset (Table V). Our CP scherR€ useful in ltering out adversarial samples by employing a
successfully catches 91% of the inputs when an expert moégleshold-based analysis which was shown to be effective in
gives a wrong prediction, and has a low false positive (i.€lefending against adversarial samples [62, 63].
when the CP model thinks the classi er is wrong but it is notModel capability. The capability of GNNs is limited by the
rate of 9%. Note that we can also apply CP to improve odepth and width of the model [64]. Our work targets at the
detection model further. We found that an unoptimized CP fanction level vulnerability detection, and we found that our
able to catch 80% of the cases when our detection model giv@&NN is suf cient in learning program structures. However,
a wrong prediction for vulnerable code. we envision that to model larger programs will need a larger

2) Continuous learning:In this experiment, we check if and deeper GGNN. To train a larger neural network typically
one can use the ground-truth labels for predictions aggeslso requires a larger amount of training data for which our
by the CP to update a classier. To do so, for predictiondata collection framework will be useful. It would also be

14

interesting in applying neural architecture search techniqugsired by these recent effortsyRDED combines probabilistic
[65] to nd the right neural network structures. We leave thigearning and statistical assessment to automatically extract vul-
as our future work. nerable code samples from open-source projects, signi cantly

Language model.In this work, we use word2vec to initialize iImproving the quality of the extracted samples.

the node embeddings by learning from the surface-level syntaxaph neural networks. GNNs have shown promising results
information (Sec. IV-D). The pre-trained word2vec modeh processing graph data structures for tasks like mining social
was originally designed for natural language processing andtworks [12], entity alignment [13], and binary similarity de-

is not tuned for exploiting the well-de ned structures otection [14]. DEVIGN [15] is most closely related to our work.

a programming language. As a result, it could miss sonméfferent from DEVIGN, our approach simultaneously models
important language keywords. In this work, we have tried tmultiple code relationships accuracy and is more effective for
circumvent this issue by explicitly adding some important keyross-languages learning. The GNN presented in this paper
words to the network's vocabulary. This workaround requiresxtends our recent work on using multi-relational graphs to
manual intervention and hence does not scale well to nemodel program structures [26]. The new GNN advances [26]
programming languages. A better language model desigrad extending the AST encoding to capture additional code
for modeling program language structures can alleviate thigationships and type information and using GRU and high-
issue by eliminating expert involvement. Our future work willvay gates to model longer-term dependencies, leading to better
explore a language model that is speci cally built for modelingerformance as shown in Sec. VII-F2.

program source code like code2vec [66]. Machine learning based software developmenfThere is an
Model interpretability. Machine learning techniques, in gen-increasing interest in applying machine learning techniques
eral, have the problem of relying on black boxes. Theoretical software development [73]. Existing approaches address a
analysis for the capability and boundaries of a DNN igariety of development tasks, including fuzz testing [74, 75],
currently an active research eld [36, 64, 67]. Providing a@etecting code clone [76, 4, 19, 77], improving static analysis
theoretical proof of the underlying working mechanism dfor bug funding [78, 79], repairing programs [80], defect
FUNDED is our future work. One way to gain insight intoprediction [81, 82], attack detection [83] and processing bug
why the model fails to produce the desired result is to traieports [18, 23, 24]. BNDED builds on those past foundations
an interpretable model (or the so-called surrogate models)t is quality different from these studies.

like linear regressor to approximate the predictions of the

X. CONCLUSION
underlying black-box model [66].

We have presentedUNDED, a novel graph-learning-based
IX. RELATED WORK approach for learning code vulnerability detection models.

Our work builds upon the past foundations of code vulne|':-UN_DED extends th? star_1dard graph neural f?etWO”‘ to mo_del
ability analysis, machine learning and software engineerin%”lt'ple code relationships thqt_ are ess_ent|al for modellng
We leverage the recent development in graph neural netwo ogram _st.ructures for vulnerab|I|t_y detectlon..To .prowde_ suf-
to model the program graph structures to learn vulnerabfdent trallnl'ng data, FUNDED combme§ probabilistic learning
code patterns and use the learned knowledge to detect 0888 statistical assessments atotomancallycol_lec_t vulnera-
vulnerabilities. Our work also exploits ensemble learning l%le code samples from open-source rgpqsnorles. we a_pply
collect training samples from real-life open-source projeCFUNDED to detect source code vulnerabilities at the function

S . .
to provide additional data for training the code vulnerabilit vel on large real-life datasets. Experimental results show that
detection model.

UNDED signi cantly outperforms a wide range of competi-
,) .. tive approaches across evaluation metrics.

Classical approachesEarly work in software vulnerability

detection relies on expert-crafted rules [68] . However, it is not REFERENCES

trivial to construct high-quality rules as this requires heavilyj;) N. sun, J. Zhang, P. Rimba, S. Gao, L. Y. Zhang, and Y. Xi-

expert involvement. Symbolic execution [69, 70] sidesteps the ang, “Data-driven cybersecurity incident prediction: A survey,”

need for hand-crafted rules by exploiting symbolic values and Proceedings of the IEEE Communications Surveys & Tutgrials

analyzing their use over the control ow graph of a program__ Vol 21, no. 2, pp. 1744-1772, 2018.

. F. Wu, J. Wang, J. Liu, and W. Wang, “Vulnerability detection
on source code, but it does not scale to large programs a %J with deep learning,” inProceedings of the 2017 3rd IEEE

often suffer from high false positives [71]. International Conference on Computer and Communications
Deep learning based vulnerability detection.Our work is (ICCC). IEEE, 2017, pp. 1298-1302.
part of the recent efforts in DL-based software vulnerabilityt3] G- Lin. J. Zhang, W. Luo, L. Pan, O. De Vel, P. Montague, and
. - . Y. Xiang, “Software vulnerability discovery via learning multi-
detection [5, 6, 3, 72]. A comprehensive review of the eld can ;. 14in knowledge basesProceedings of the IEEE Transac-
be found at [7]. Prior work in the area treated source code or tjons on Dependable and Secure Computip@19.
the AST as a sequential string and often ignores the structurg] S. Kim, S. Woo, H. Lee, and H. Oh, “Vuddy: A scalable
information of the program. Our work exploits and extends approach for vulnerable code clone discovery,Pioceedings
GGNN to better model programs with multiple relationships. ?éEtEe 22(?1177 :)I;Elgggxgnlp‘logum on Security and Privacy .(SP)
To provide SL_Jf qent training data, some of the recent workg; - Li,’D. Zo'u, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and
develop predictive models to automatically extract vulnerable * v, zhong, “Vuldeepecker: A deep learning-based system for

code samples from code revision history [43, 20, 24]. In- vulnerability detection,Proceedings of the NDS2018.

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin, Yuldeepecker:

A deep learning-based system for multiclass vulnerability de-
tection,” Proceedings of the IEEE Transactions on Dependable
and Secure Computin@019.

G. Lin, S. Wen, Q.-L. Han, J. Zhang, and Y. Xiang, “Softwarg25]
vulnerability detection using deep neural networks: A survey,”
Proceedings of the IEE®oI. 108, no. 10, pp. 1825-1848, 2020.

Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “Sysevr: A[26]
framework for using deep learning to detect software vulnera-
bilities,” Proceedings of the arXiv preprint arXiv:1807.06756
2018. [27]
S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Proceedings of the Neural computatjoml. 9, no. 8, pp. 1735— [28]
1780, 1997.

D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and
M. Wolfe, “Dependence graphs and compiler optimizations,”
in Proceedings of the 8th ACM SIGPLAN-SIGACT symposiuf29]
on Principles of programming language$981, pp. 207-218.
Z.Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networRsgceedings [30]
of the IEEE Transactions on Neural Networks and Learning
Systems2020.

H. Gao, Z. Wang, and S. Ji, “Large-scale learnable graph
convolutional networks,” inProceedings of the 24th ACM [31]
SIGKDD International Conference on Knowledge Discovery &
Data Mining 2018, pp. 1416-1424.

Y. Wu, X. Liu, Y. Feng, Z. Wang, and D. Zhao, “Jointly learning[32]
entity and relation representations for entity alignmeRtb-
ceedings of the arXiv preprint arXiv:1909.09312019.

X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural[33]
network-based graph embedding for cross-platform binary code
similarity detection,” inProceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Se¢l2dy7,
pp. 363-376.

Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective
vulnerability identi cation by learning comprehensive program
semantics via graph neural networks,” Rroceedings of the [35]
Advances in Neural Information Processing Syste2049, pp.
10197-10207. [36]
M. Pradel and K. Sen, “Deepbugs: A learning approach to
name-based bug detectiorRfoceedings of the ACM on Pro- [37]
gramming Languagesvol. 2, no. OOPSLA, pp. 1-25, 2018.

C. Cummins, P. Petoumenos, A. Murray, and H. Leather,
“Compiler fuzzing through deep learning,” iRroceedings of

the 27th ACM SIGSOFT International Symposium on Softwalf@8]
Testing and Analysj2018, pp. 95-105.

H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck39]
S. Fahl, and Y. Acar, “Vcc nder: Finding potential vulnerabil-[40]
ities in open-source projects to assist code auditsProceed-

ings of the 22nd ACM SIGSAC Conference on Computer and
Communications SecuritR015, pp. 426—437. [41]
Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, “Vulpecker: an
automated vulnerability detection system based on code simi-
larity analysis,” inProceedings of the 32nd Annual Conference
on Computer Security Application2016, pp. 201-213.

A. Sabetta and M. Bezzi, “A practical approach to the automatjd2]
classi cation of security-relevant commits,” iRroceedings of

the 2018 IEEE International Conference on Software Maintd43]
nance and Evolution (ICSME) IEEE, 2018, pp. 579-582.

R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hintorj44]
“Adaptive mixtures of local expertsProceedings of the Neural [45]
computationvol. 3, no. 1, pp. 79-87, 1991.

G. Shafer and V. Vovk, “A tutorial on conformal prediction,” [46]
Proceedings of the Journal of Machine Learning Researcfd7]
vol. 9, no. Mar, pp. 371-421, 2008.

Y. Zhou and A. Sharma, “Automated identi cation of security[48]
issues from commit messages and bug reportsProteedings

of the 2017 11th Joint Meeting on Foundations of Softwar@9]

EnglneeanZOl? pp. 914-919.
X. Wang, K. Sun, A Batcheller and S. Jajodia, “Detecting” 0-

[34]

15

day” vulnerability: An empirical study of secret security patch
in 0ss,” in Proceedings of the 2019 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks
(DSN) IEEE, 2019, pp. 485-492.

Z. Huang, W. Xu, and K. Yu, “Bidirectional Istm-crf mod-
els for sequence taggingProceedings of the arXiv preprint
arXiv:1508.01991 2015.

G. Ye, Z. Tang, H. Wang, D. Fang, J. Fang, S. Huang, and
Z. Wang, “Deep program structure modeling through multi-
relational graph-based learning,” pp. 111-123, 2020.

Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” Rroceedings of the ICLR2015.

K. Cho, B. Van Merrénboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase rep-
resentations using rnn encoder-decoder for statistical machine
translation,” 2014.

M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning
to represent programs with graphs,”Rmoceedings of the ICLR
2018.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Proceedings of the Advances in neural
information processing systep2013, pp. 3111-3119.

A. Rahimi, T. Cohn, and T. Baldwin, “Semi-supervised user
geolocation via graph convolutional networks,” Rmoceedings

of the ACL, 2018".

R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway
networks,”Proceedings of the arXiv preprint arXiv:1505.00387
2015.

Z. Zhang and M. Sabuncu, “Generalized cross entropy loss for
training deep neural networks with noisy labels,Aroceedings

of the Advances in neural information processing syst@®8,

pp. 8778-8788.

D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” Proceedings of the arXiv preprint arXiv:1412.6980
2014.

F. PasqualeThe black box society Harvard University Press,
2015.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?Proceedings of the ICLR2018.

B. Weisfeiler and A. A. Lehman, “A reduction of a graph to
a canonical form and an algebra arising during this reduction,”
Proceedings of the Nauchno-Technicheskaya Informatsia2,

no. 9, pp. 12-16, 1968.

“Common Vulnerabilities and Exposures (CVE),” https://cve.
mitre.org/.

“National Vulnerability Database (NVD),” https://nvd.nist.gov.

Y. Goldberg and O. Levy, “word2vec explained: deriving
mikolov et al's negative-sampling word-embedding method,”
Proceedings of the arXiv preprint arXiv:1402.3722014.

V. N. Balasubramanian, A. Baker, M. Yanez, S. Chakraborty,
and S. Panchanathan, “Pycp: an open-source conformal predic-
tions toolkit,” in Proceedings of the IFIP International Con-
ference on Atrti cial Intelligence Applications and Innovations
Springer, 2013, pp. 361-370.

NIST, “Software Assurance Reference Dataset Project,” https:
/lsamate.nist.gov/SRD/.

“SAP Dataset,” https://github.com/SAP/
vulnerability-assessment-kb/tree/master/MSR2019.

“Zvd Dataset,” https://github.com/SecretPatch/Dataset.

Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, iGated
graph sequence neural networkX)16.

“TensorFlow.” https://www.tensor ow.org/.

“Scikit-learn: Tools for predictive data analysis,” https://
scikit-learn.org.

“Soot: A framework for analyzing and transforming Java appli-
cations,” http://sable.github.io/soot/.

“ANTLR (ANother Tool for Language Recognition)
Ilwww.antlr.org/.

J https:

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

“Joern(Open-Source Code Querying Engine for C/C++.),” https:
/ljoern.io/. [67]
W. Ertel, “On the de nition of speedup,” irfProceedings of

the International Conference on Parallel Architectures and
Languages Europe Springer, 1994, pp. 289-300. [68
A. Younis, Y. Malaiya, C. Anderson, and |. Ray, “To fearl69
or not to fear that is the question: Code characteristics of a
vulnerable functionwith an existing exploit,” iRroceedings of

the Sixth ACM Conference on Data and Application Securiy©]
and Privacy 2016, pp. 97-104.

S. Ognawala, R. N. Amato, A. Pretschner, and P. Kulkarni,
“Automatically assessing vulnerabilities discovered by com-
positional analysis,” inProceedings of the 1st International [71]
Workshop on Machine Learning and Software Engineering in
Symbiosis2018, pp. 16—25. [72]
T. Mikolov, S. Kombrink, L. Burget, JCernocly, and S. Khu-
danpur, “Extensions of recurrent neural network language
model,” in Proceedings of the 2011 IEEE international con-
ference on acoustics, speech and signal processing (ICASSP)
IEEE, 2011, pp. 5528-5531. [73]
M. Long, H. Zhu, J. Wang, and M. I. Jordan, “Deep transfer
learning with joint adaptation networks,” iroceedings of the
International conference on machine learningPMLR, 2017,
pp. 2208-2217.

S. J. Pan and Q. Yang, “A survey on transfer learning,”
Proceedings of the IEEE Transactions on knowledge and data
engineering vol. 22, no. 10, pp. 1345-1359, 2009. [
L. Torrey and J. Shavlik, “Transfer learning,” iRroceedings

of the Handbook of research on machine learning applications
and trends: algorithms, methods, and techniquel§lI global,
2010, pp. 242-264.

M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg,
I. Titov, and M. Welling, “Modeling relational data with graph
convolutional networks,” inEuropean Semantic Web Confer-
ence Springer, 2018, pp. 593-607.

G. Ye, Z. Tang, H. Wang, D. Fang, J. Fang, S. Huang, add’]
Z. Wang, “Deep program structure modeling through multi-
relational graph-based learning,” iroceedings of the ACM
International Conference on Parallel Architectures and Compi-
lation Techniques2020, pp. 111-123.

L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne f78]
Proceedings of the Journal of machine learning reseavch 9,

no. Nov, pp. 2579-2605, 2008.

D. Hendrycks and K. Gimpel, “Early methods for detect-
ing adversarial images,Proceedings of the arXiv preprint [79]
arXiv:1608.005302016.

S. Kokalj-Filipovic, R. Miller, and G. Vanhoy, “Adversarial ex-
amples in rf deep learning: Detection and physical robustness,”
in Proceedings of the 2019 IEEE Global Conference on Signk}
and Information Processing (GlobalSIP)EEE, 2019, pp. 1-5.

D. Meng and H. Chen, “Magnet: a two-pronged defense against
adversarial examples,” iRroceedings of the 2017 ACM SIGSAC
conference on computer and communications seq@@g7, pp. [81]
135-147.

A. Loukas, “What graph neural networks cannot learn: depth
vs width,” Proceedings of the arXiv preprint arXiv:1907.03199
2019.

C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li[82]
L. Fei-Fei, A. VYuille, J. Huang, and K. Murphy, “Progressive
neural architecture search,” iRroceedings of the European
Conference on Computer Vision (ECC\2D18, pp. 19-34.

M. T. Ribeiro, S. Singh, and C. Guestrin, ““why should i trus{83]
you?” explaining the predictions of any classi er,” Proceed-

ings of the 22nd ACM SIGKDD international conference on

[74]

16

knowledge discovery and data minjrg016, pp. 1135-1144.

R. Sato, “A survey on the expressive power of graph neural
networks,”Proceedings of the arXiv preprint arXiv:2003.04078
2020.

“Findbugs,” http:// ndbugs.sourpeforge.r]et/.)
C. Cadar and K. Sen, “Symbolic execution for software testing:

three decades latefProceedings of the Communications of the
ACM, vol. 56, no. 2, pp. 82-90, 2013.

D. A. Ramos and D. Engler, “Under-constrained symbolic
execution: Correctness checking for real code,Pimceedings

of the 24thf USENIDg Security SymposiumSENIg Security
15), 2015, pp. 49-64.

K. Wang and Z. Su, “Learning blended, precise semantic
program embeddings,” iRroceedings of the PLDR020.

Y. Li, S. Wang, T. N. Nguyen, and S. Van Nguyen, “Improving
bug detection via context-based code representation learning
and attention-based neural networkiBfbceedings of the ACM
on Programming Languagewsol. 3, no. OOPSLA, pp. 1-30,
2019.

Z. Wang and M. O'Boyle, “Machine learning in compiler
optimization,” Proceedings of the IEEEvol. 106, no. 11, pp.
1879-1901, 2018.

P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine
learning for input fuzzing,” inProceedings of the 2017 32nd
IEEE/ACM International Conference on Automated Software
Engineering (ASE) |EEE, 2017, pp. 50-59.

75] Y. Chen, D. Mu, J. Xu, Z. Sun, W. Shen, X. Xing, L. Lu,

and B. Mao, “Ptrix: Ef cient hardware-assisted fuzzing for cots
binary,” in Proceedings of the 2019 ACM Asia Conference on
Computer and Communications Securi®19, pp. 633-645.

76] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep

learning code fragments for code clone detection,Pinceed-
ings of the 2016 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE)EEE, 2016, pp. 87—
98.

T. Unruh, B. Shastry, M. Skoruppa, F. Maggi, K. Rieck, J.-
P. Seifert, and F. Yamaguchi, “Leveraging awed tutorials for
seeding large-scale web vulnerability discovery,Pinceedings

of the 11thf USENIXg Workshop on Offensive Technologies
(fWOOTy 17), 2017.

K. Heo, H. Oh, and K. Yi, “Machine-learning-guided selectively
unsound static analysis,” iRroceedings of the 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE)
IEEE, 2017, pp. 519-529.

S. A. Gorski lll and W. Enck, “Arf: identifying re-delegation
vulnerabilities in android system services,” Rroceedings of
the 12th Conference on Security and Privacy in Wireless and
Mobile Networks 2019, pp. 151-161.

0] Z.Huang, D. Lie, G. Tan, and T. Jaeger, “Using safety properties

to generate vulnerability patches,” Proceedings of the 2019
IEEE Symposium on Security and Privacy (SPIEEE, 2019,
pp. 539-554.

A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen,
“Combining deep learning with information retrieval to localize
buggy les for bug reports (n),” ifProceedings of the 2015 30th
IEEE/ACM International Conference on Automated Software
Engineering (ASE) IEEE, 2015, pp. 476-481.

S. Wang, T. Liu, and L. Tan, “Automatically learning semantic
features for defect prediction,” ifProceedings of the 2016
IEEE/ACM 38th International Conference on Software Engi-
neering (ICSE) IEEE, 2016, pp. 297-308.

X. Shu, D. Yao, N. Ramakrishnan, and T. Jaeger, “Long-span
program behavior modeling and attack detectidrfceedings

of the ACM Transactions on Privacy and Security (TQPS)
vol. 20, no. 4, pp. 1-28, 2017.

