
This is a repository copy of Electronic structure and finite temperature magnetism of 
yttrium iron garnet.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/168564/

Version: Accepted Version

Article:

Barker, J orcid.org/0000-0003-4843-5516, Pashov, D and Jackson, J (2020) Electronic 
structure and finite temperature magnetism of yttrium iron garnet. Electronic Structure, 2. 
044002. ISSN 2516-1075 

https://doi.org/10.1088/2516-1075/abd097

© 2020 IOP Publishing Ltd. This is an author-created, un-copyedited version of an article 
published in Electronic Structure. IOP Publishing Ltd is not responsible for any errors or 
omissions in this version of the manuscript or any version derived from it. The Version of 
Record is available online at 10.1088/2516-1075/abd097.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Electronic structure and finite temperature magnetism of

yttrium iron garnet

Joseph Barker1,2, Dimitar Pashov3, Jerome Jackson4

1School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
2Bragg Centre for Materials Research, University of Leeds, Leeds LS2 9JT, United Kingdom
3Department of Physics, King’s College London, Strand, London WC2R 2LS, United

Kingdom
4Scientific Computing Department, STFC Daresbury Laboratory, Warrington WA4 4AD,

United Kingdom

E-mail: j.barker@leeds.ac.uk

Abstract. Yttrium iron garnet is a complex ferrimagnetic insulator with 20 magnon modes

which is used extensively in fundamental experimental studies of magnetisation dynamics.

As a transition metal oxide with moderate gap (2.8 eV), yttrium iron garnet requires a

careful treatment of electronic correlation. We have applied quasiparticle self-consistent

GW to provide a fully ab initio description of the electronic structure and resulting

magnetic properties, including the parameterisation of a Heisenberg model for magnetic

exchange interactions. Subsequent spin dynamical modelling with quantum statistics extends

our description to the magnon spectrum and thermodynamic properties such as the Curie

temperature, finding favourable agreement with experimental measurements. This work

provides a snapshot of the state-of-the art in modelling of complex magnetic insulators.
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1. Introduction

Yttrium iron garnet (Y3Fe5O12 - YIG) is a remarkable magnetic insulator [1] because its

ultralow magnetic damping facilitates fundamental investigations of spin-waves, transport and

magnons. YIG has played a key role in advances such as the Bose-Einstein condensation

of magnons [2], magnonics [3], spincaloritronics [4], long distance spin transport in

insulators [5] and superconducting magnetic qubits [6]. Although often treated simply as a

ferromagnet, it is a ferrimagnet with a large unit cell, containing 8 Fe atoms at octahedral sites

magnetically anti-aligned with 12 Fe atoms in tetrahedral environments; both have a formal

3+ charge state [7]. YIG is a popular base for doping as yttrium is easily substituted, partially

or in full, by other rare-earth elements. Doping with Bi is also common, as this increases the

strength of magneto-optical effects. Fe can be substituted by other magnetic atoms such as Co

or non-magnetic elements such as Al and Ga, allowing some tuning of the magnetocrystalline

anisotropy and the magnetisation compensation point.

The basic properties of YIG were studied extensively 50 years ago including

the deduction of Heisenberg exchange interactions from inelastic neutron scattering

measurements, although at that time only three of the twenty magnon modes were

measured [8]. Recently, the complete magnon spectrum has received interest in an effort

to understand the role of the higher energy magnons in thermal spin transport, such as in the

spin Seebeck effect. Contemporary neutron measurements have provided more detail on the

magnon modes [9] and their polarisation [10].

Conspicuously absent in the literature are electronic structure studies of YIG. This

is because YIG, as a ferrimagnetic oxide with moderate band gap, requires treatment of

electronic correlation better than the methods typically used in density functional theory (local

or semi-local exchange correlation functionals such as the LDA), while the 80-atom unit cell

is sufficiently complex that the use of improved methods is technically challenging. While

GGA calculations provide insight into the distribution of spin in YIG [11], most progress

has been made with +U: Nakamoto et al. provide a systematic study of the series of rare-

earth iron garnets [12] and Xie et al. [13] used DFT+U to fit a Heisenberg model using total

energy differences for different spin configurations, with U chosen such that the resulting

Curie temperature of the classical Heisenberg model agreed with the experimentally measured

value. The obtained magnon spectrum was similar to the historic neutron measurements,

although the optical modes were too low in frequency. The U found to give the correct Curie

temperature shows a band gap (1.6 eV) significantly lower than measured in experiments

(2.8 eV) and choosing U to fit TC precludes a truly ab initio calculation of the Heisenberg

exchange. Other work has used DFT+U to parameterise a Heisenberg model for GdIG and

perform finite temperature calculations [14]; the electronic structure of bismuth iron garnet

was examined from the +U perspective by Iori et al. [15]. We are unaware of any GW or

hybrid functional calculation of YIG.

In this work we will address several of these shortcomings. Using quasiparticle self-

consistent GW [16, 17] (QSGW), we provide an accurate ab initio description of the electronic

structure that is capable of describing both delocalised bands and strongly localised states

(such as the Fe d-electrons in this case) simultaneously. The screened Coulomb interaction

(W ) describes explicitly what is typically modelled by adding the Hubbard U in LDA+U

calculations, without requiring the identification of a local strongly correlated subspace, or of

choosing interaction parameters for that subspace (or double counting correction schemes).

GW gives meaning to band structures in terms of ionisation and absorption energies and

thereby solves the band gap problem typical of local and semi-local methods in density

functional theory. GW is, however, a perturbative method and the results depend upon
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the starting point – conventionally for materials studies with GW this is the LDA or GGA.

Quasiparticle self-consistent GW is a method to achieve an optimal starting point by forming

from theGW self energy a static (but non-local) potential that replaces the original exchange-

correlation potential. This process is iterated until self-consistency, at which point the bands

of the quasiparticlised self energy coincide with the poles of the GW spectral function; the

resulting QSGW electronic structure can differ significantly from the LDA one (or the first

iteration: one-shot G0W 0, which is commonly referred to as GW ). Recent studies by the

team of Kotani, Okumura, Sato and coworkers–who have used QSGW to study in detail

the magnetic susceptibility of the elemental 3d ferromagnets [18] and a series of Heusler

compounds [19]–illustrate powerfully the accuracy of this method. The QSGW potential is

a simpler object than the GW self energy and this facilitates investigating many properties;

here we use the QSGW potential to calculate the transverse spin susceptibility from which,

by inversion, we parameterise a Heisenberg model of the magnetic interactions.

We study this model Hamiltonian using spin dynamics to calculate the magnon spectrum

and thermodynamic properties such as the Curie temperature. For solving the spin model,

we adopt a more sophisticated method than is typically applied to materials studies of this

kind by the use of a quantum thermostat [20]. Classical thermal statistics over populates

high energy modes resulting in incorrect thermodynamics [21]. We show that in this case

good agreement with experiment can only be achieved by using quantum thermal statistics.

Combining QSGW electronic structure calculations with rigorous treatment of the resulting

spin model, this work is a snapshot of the current state-of-the-art of modelling of complex

magnetic materials in terms of the sophistication of the methods and their accuracy.

2. Methods

2.1. Electronic structure

QSGW calculations were performed using the full-potential linearised muffin-tin orbital

(FP-LMTO) code Questaal [22] for the experimental cubic garnet structure with Ia3d
symmetry [23], comprising 80 atoms. The main task in QSGW involves determining the

self energy Σ = iGW , which is implemented numerically using a sum-over-states evaluation

of the ω-dependent single-particle polarisability, χ0, which defines the screened Coulomb

interaction W , followed by the calculation of Σ(ω) using the contour deformation technique;

a description of these methods (including and the treatment of the Coulomb singularity for

G=G′ → 0) is presented in [24]. Once the self energy has been calculated, the static QSGW

potential is represented in the basis of single-particle eigenfunctions ψi (with eigenvalues εi),

V QSGW =
1

2

∑

ij

|ψi〉 {Re[Σ(εi)]ij +Re[Σ(εj)]ij} 〈ψj | (1)

Note that this involves the calculation of the full Σ matrix, including its off-diagonal elements,

as a function of ω.

V QSGW can be rotated in to the local basis, which has finite real-space range, allowing

the interpolation of Σ to q points other than those for which the self energy is explicitly

calculated; this is important because the single-particle part of a QSGW calculation typically

requires a denser sampling of the Brillouin zone (to accurately describe the kinetic energy)

than is necessary to describe the q-dependence of the self energy. Converged results are

obtained for single-particle k meshes with 83 points, while the QSGW self energy is evaluated

at 43 q points (differences in the QSGW gap between 33 and 43 points are < 1 meV).
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The FP-LMTO setup is defined by almost touching augmentation spheres (R=2.15, 1.95
a.u. for Fea and Fed, 2.65 a.u for Y and 1.55 a.u. for O) and (2-κ) smoothed Hankel functions

up to ℓmax=2. Augmentation up to ℓamax=3 is used, and this is also the limit used for

truncation of wave function products (the product basis contains combinations of products of

augmentation functions and interstitial plane wave parts) used in the GW calculation. High

lying local orbitals corresponding to the Fe 4d state are included. Smoothed Hankel basis

definitions are chosen to yield spatially well localised functions which makes the interpolation

of Σ more reliable: −2.0 Ryd is used for Hankel function energies, with smoothing radii

chosen by an automatic procedure (see [22]); we estimate the precision of this configuration to

be ∼ 10 meV in calculated band gaps, evaluated at the LDA level, decreasing to ∼ 100 meV in

QSGW due to some loss of precision in describing empty states. The QSGW calculations are

based on the collinear ferrimagnetic LDA ground state solution. All calculations are scalar-

relativistic, ie the spin-orbit interaction is ignored.

The QSGW calculation was attempted in 2018 and was found to be nearly infeasible

on the available hardware due to excessive memory, IO and computational requirements.

Algorithmic improvements in the evaluation of χ0 and Σ avoided all but a small fraction of the

IO. Together with a more flexible memory management these allowed efficient parallelisation

across multiple levels of processes and threads, utilising a number of multi-GPU accelerated

nodes. The effort culminated with the ability to obtain the single cycle self energy in under 10

minutes on an Nvidia DGX-1 node with 8×V100 cards. Typically convergence of the QSGW

potential to RMS change 1×10−5 is achieved in < 15 iterations. Due to queuing system

restrictions the present results were performed on 16 Marconi100 nodes totalling 64 Nvidia

V100 GPUs, reaching peak performance of 425 TFLOPs.

2.2. Heisenberg exchange parameters

Our description of magnetic interactions is based on the non-interacting transverse spin

susceptibility, χ0+−(q, ω), which is calculated similarly to the charge susceptibility used

in the main GW calculation, following the formalism developed by Kotani and van

Schilfgaarde [25], which was shown to give an extremely accurate description of the

magnetism in the materials NiO and MnO, which are essentially similar to YIG. We define

an extended Heisenberg model using the inverse of the static transverse spin susceptibility

calculated from both the LDA and QSGW band structures. We limit our attention to isotropic

interactions between Fe sites.

The main feature of the non-interacting transverse susceptibility is Stoner excitations;

the spin wave spectrum manifests itself only in the full, interacting susceptibility. In

reference [25], some reasonable approximations were made in order to calculate the full

susceptibility via [χ+−(q)]−1 = [χ0+−(q)]−1 − I . However, the full susceptibility is not

required for the evaluation of a Heisenberg model.

The transverse spin susceptibility is simplified by defining a normalised magnetisation

function that is nonzero only within the augmentation sphere of each specific site (the volume

Ri) that describes the ℓ=0 component of the spin density: mi(r) ∝ m(r)/
∫

Ri
m(r)dr,

χ̃0+−

ij (q, ω) =

∫

Ri

∫

Rj

mi(r)χ
0+−(r, r′, q, ω)mj(r

′) d3rd3r′ (2)

using this quantity the Heisenberg parameters follow directly:

J0
ij(q) = [χ̃0+−(q, ω=0)]−1

ij (3)

Of course a similar definition can be written down for J , as the inverse of the full

susceptibility: evaluated at the spin wave energies ωSW (q), the inverse of χ+−(q, ωSW )
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corresponds to the renormalised J [26], which reproduces the spin wave spectrum by

construction but has a less transparent connection to the Heisenberg model than does the

bare, static interaction. Nevertheless, in the case that I is local, which is reasonable for

well localised moments, then the spin-wave dispersion given by the static limit of the full

susceptibility, ∝ J(q, ω=0) − J(0, ω=0) is the same as that of the bare susceptibility, and

in the following we investigate only the bare J0, sidestepping the evaluation of the full

susceptibility (for background, see Antropov’s discussion [27]). We simplify the notation

to J and adopt the following definition of spin Hamiltonian

H = −
1

2

∑

ij

JijSi · Sj (4)

where Si is a classical spin vector of unit length. Very often, the magnetic force theorem

(of Liechtenstein, Katsnelson, Antropov and Gubanov [28]) is used and important recent

extensions of this theory to methods for treating strong Coulomb correlation in real materials

include QSGW by Yoon et al. [29], which allows a detailed decomposition of the exchange

couplings into states of different character, and dynamical mean-field theory by Kvashnin

and coworkers [30], which allows the treatment of materials where the electronic structure

is significantly multi-determinantal. The magnetic force theorem is related to the inverse

susceptibility by Taylor expanding in the small quantity (χ0+−(q)−χ0+−(0))/χ0+−(0) [25];

it remains not obvious which method is to be preferred since the force theorem has the

advantage of being derivable in terms of energy changes under infinitesimal spin rotations.

Susceptibility calculations are performed on a mesh of 64 q-points.

2.3. Atomistic spin dynamics

To perform thermodynamic calculations based on equation (4) we simulate dynamics using

the Landau-Lifshitz equation of motion

∂Si

∂t
= −γ (Si ×Hi + ηSi × (Si ×Hi)) (5)

where γ = gµB/h̄ is the gyromagnetic ratio and η is a damping constant. The local field felt

by each atomic moment is

Hi = ξi −
1

µi

∂H

∂Si
(6)

where the ξi are the stochastic processes of a Langevin thermostat. As a classical model,

the thermostat is conventionally defined to give classical (Rayleigh-Jeans) statistics and ξi
are white noise processes satisfying the fluctuation-dissipation relations 〈ξiα(t)〉 = 0 and

〈ξiα(t)ξjβ(t
′)〉 = 2ηkBTδijδαβδ(t − t′)/γ, where α, β ∈ {x, y, z}. However, the use

of classical statistics is poorly justified, because the highest magnon modes in YIG (and

many magnetic materials) are around h̄ω/kB ≈ 1000 K. Classical results are known not

to reproduce fundamental low temperature results such as Bloch’s law [21]. Recently,

attempts have been made to address this by rescaling the magnon density of states either

as a renormalisation of the temperature [31] based on an assumed dispersion or as a slightly

complex post process once the dispersion has been calculated [32]. Here, we use a simple but

general approach of a thermostat which obeys the quantum fluctuation-dissipation theorem

for magnons

〈ξiα(t)〉 = 0; 〈ξiαξjβ〉ω =
2ηδijδαβ

γ

(

h̄ω

eh̄ω/kBT − 1

)

(7)
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which produces Planck statistics and gives quantitatively correct thermodynamic calcula-

tions [20, 33]. Processes satisfying the frequency spectrum of Eq. (7) are simulated in real

time from a set of coupled stochastic differential equations (details are given in references [34]

and [20]). Briefly, the spin dynamics are integrated using the Heun method and the thermostat

with fourth-order Runge-Kutta both with time step ∆t = 0.1 fs. The thermostat is "warmed

up" for 0.1 ns to colour the thermostat noise correctly before starting the spin dynamics. The

thermodynamics are calculated from an over-damped calculation with η = 0.1 integrating for

0.2 ns and discarding the first 0.01 ns of data where the spin system is relaxing to thermal equi-

librium. The simulated total magnetisation is calculated as m(T ) = 〈
∑

i µiSi〉T /
∑

i µiS
0
i ,

where S0
i is the ground state of spin i and 〈· · ·〉T denotes a thermodynamic average and the

susceptibility is χ(T ) =
(

〈m2〉 − 〈m〉2
)

/kBT . We use supercells of 163 for thermodynam-

ics. For the spectrum calculation we do an initial over-damped equilibration as before to

populate the modes and then integrate for 0.1 ns with η = 0.0002 to gather the data. This

gives an effective Gilbert like damping of 1×10−4 close to the experimental values of YIG

and ensuring small linewidths. We use 403 unit cells for spectra where our q-space resolution

is defined by the size of our supercell. The spectral function we calculate is

S
αβ(q, ω) =

∑

d

∑

ij

e−iq·(r−r
′)

∫

∞

−∞

dt
〈

sαi,d(r, t)s
β
j,d(r

′, t′)
〉

T
(8)

where 〈· · ·〉T is a correlation function at temperature T , sα(r, t) = WαβSβ(r, t) transforms

a spin to the reference frame of its ground state, d labels each position in the unit cell. This

differs from the neutron scattering cross section by avoiding the magnetic structure factor,

thus allowing us to calculate all modes in a reduced zone scheme. As a supercell method, our

q-space resolution is limited by the number of unit cell repeats in the supercell. Equation (8)

is essentially the transverse spin susceptibility χ+−

ij (q, ω), but derived from the spin model,

instead from 0 K band theory which is used to calculate χ̃0+− (defining J), and includes

the effect of temperature and magnon-magnon interactions. In principle this allows the

calculation of properties such as the temperature dependence of: magnon lifetimes, magnon

frequencies [35] and spin wave stiffness [36]. In ferrimagnets the low-q dispersion can also

change with temperature, for example becoming linear close to a magnetisation compensation

point [37].

3. Results and Discussion

3.1. Electronic density of states

The LDA and QSGW densities of states are shown in Fig. 1, where the contributions from

octahedral and tetrahedral Fe sites are distinguished. Because the Fe d-shells are half filled,

fluctuations in the d occupancy are unimportant and it is appropriate to describe the electronic

structure using single-particle methods, such as both the LDA and the quasiparticlised QSGW

potential; their general description of YIG as a ferrimagnetic band insulator is broadly similar.

QSGW principally corrects an underestimate in LDA of the exchange splitting on Fe sites,

which drives an opening of the band gap, but also causes other changes throughout the valance

and conduction bands.

The band gap in the LDA description (0.45 eV) increases in QSGW to 3.4 eV. This is

larger than the experimental gap (2.8 to 3.15 eV [38, 39, 40]) as is typical in QSGW and

attributable to approximating the full susceptibility by the independent particle random phase

approximation (RPA) one; this underestimates screening and yields a slightly too Hartree-

Fock-like description. Including many-body contributions to the screening via the Bethe-
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Figure 1. Left (a) density of states of YIG calculated using spin-polarised LDA or QSGW.

The partial density of states for octahedral Fe sites is shaded solid grey, that for tetrahedral Fe

sites is coloured red and the total n(E) is shown by the outline. (b) the corresponding majority

(purple) and minority spin (grey) bands in the vicinity of the gap, plotted along the main BZ

directions. Zero of the energy range is set to the valance band maximum.

Salpeter equation (BSE) effectively remedies this, but our BSE implementation does not yet

scale to structures of this size.

As in the (more complicated) case of magnetite [41], Fe in the octahedral coordination

(the Fea sites) shows a large crystal field splitting and eg and t2g bands are separated by a gap

in both LDA and QSGW; the splitting at tetrahedral sites is smaller and the bands overlap.

Compared to LDA, the crystal field splittings are reduced in QSGW from ∼ 2 eV to ∼ 1 eV.

Concomitant with the increased exchange splitting, QSGW shows an increase in the

Fe magnetic moments, resulting in µa = 4.17µB and µd = 3.93µB (see table 1). This is

naturally lower than the free ion value for Fe3+ (S=5/2∼5µB), because of bonding and

hybridisation in the crystal, and agrees very well with neutron diffraction measurements

(although some uncertainty exists because small distortion to a R3̄ symmetry structure occurs

under specific applied fields [42]). We find that QSGW generally yields moments in transition

metal oxides that agree closely with experiment.

The magnitude of the total magnetisation of the unit cell calculated from first principles

is identically 20µB in both LDA and QSGW; the part of the magnetisation not accounted for

by Fe is found principally at O sites (µ∼0.07µB) which align with Fed, since the Fe-O bond

is shorter at the tetrahedral sites. The remainder resides in the interstitial; yttrium, which

occupies the c positions in the garnet crystal, plays no role in the magnetism.

3.2. Exchange interactions and magnon spectrum

Fig. 2 shows the isotropic Heisenberg exchange interactions as a function of separation

obtained from the LDA and QSGW susceptibilities. The larger band gap in QSGW

reduces the magnitude of the nearest neighbour superexchange interaction, as is well known.

Compared to the LDA model, the interactions in QSGW are shorter ranged and rapidly

become negligible. Our model does not exactly agree with parameters fitted to neutron

scattering spectra (the most recent work by Princep et al. [9] reports the large nearest

neighbour interaction to be −42 meV [9], in the convention of Eq. (4), while we obtain

−26.6 meV); we note that there is some variation of fitted Js and we compare instead the

spin wave spectra directly.
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property LDA QSGW experiment

magnetic moment - Fea (µB) µa 3.62 4.17 4.01 (R3) [43]

4.11 (Ia3d) [43]

magnetic moment - Fed (µB) µd 3.48 3.93 3.95 (R3) [43]

5.37 (Ia3d) [43]

saturation magnetisation (Gauss) 4πMs 2459 2470 [44], 3000+ [45]

magnon splitting (meV) ∆Em 44 23 33 [10]

spin wave stiffness (×10
−41Jm2) D 152 99 83 – 109 [46]

Table 1. Summary of low-temperature magnetic properties of YIG. Calculated magnetic

moments are integrated within the respective muffin-tin radii. We believe that the different

moments obtained for the two phases in Ref. [43] relate to sensitivity in their fitting procedure

and consider their value for Fed in the Ia3d structure to be unrealistic.
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Figure 2. Left: Comparison of LDA and QSGW calculated Heisenberg exchange constants.

Right: Magnon spectral function S xy(q, ω) − S yx(q, ω) along high symmetry lines in

the BCC primitive cell. Calculated from spin dynamics with T = 10 K, η = 2×10−4.

Red and blue modes have anti-clockwise and clockwise polarisations respectively. Black dots

are experimental data from Ref. [8], this measurement is insensitive to the polarisation of the

magnon modes.

In studies of YIG it is common to calculate the spectral function S xy(q, ω) −
S yx(q, ω), which shows the polarisation of the magnons, and we show in Fig. 2 for the LDA

and QSGW calculations along two lines of symmetry. Both spectra are similar in overall

appearance to each another and to neutron scattering measurements with only some minor

differences in the optical modes. However the energy range the spectrum is spread across is

very different in both cases.

Concerning the QSGW spectrum, the acoustic spectrum (red modes) is very similar to

experiments. The bandwidth of the lowest mode is well reproduced and the energy of the flat

bands is also similar to experiments. But the optical (blue) modes are much lower in energy,

even though they are qualitatively similar to experimental measurements. The magnon gap

between the parabolic acoustic and optical modes is too small by roughly 80%. Overall the

QSGW spectrum looks very similar to the previous LDA+U calculations [13]. Here, the

purely LDA calculations show optical magnon modes much higher than have been measured

and the magnon bandwidth of the lowest mode is too large. The magnon gap in the LDA

calculation is also larger than the experimental value.
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method TC (K)

LDA QSGW

classical MFA 753 508

classical RPA 465 325

classical ASD 530 320

quantum ASD 830 535

experiment [49] 559

Table 2. Summary of Curie temperature calculations.
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Figure 3. Results of the QSGW derived spin model: (a) susceptibility and (b) magnetisation as

a function of temperature calculated from spin dynamics with classical (orange) and quantum

(blue) thermal statistics. Experimental data in green is from reference [49].

YIG is often treated as a simple ferromagnet for analytical calculations and the spin

wave stiffness, D, parameterises the dispersion as h̄ω = Dq2. This is only valid in the long

wavelength (low q) limit. In YIG the dispersion is quadratic in the region aq < 1 [47, 1]

(also meaning Bloch’s law should be obeyed only to about 40 K). We extract the spin wave

stiffness by fitting the quadratic dispersion to the spectrum in this range, finding a value of

99×10−41 Jm2 for the QSGW calculation. This is very similar to experimental values which

vary in the range 83×10−41 Jm2 to 109×10−41 Jm2 depending on the experimental method

used [46]. The LDA spin wave stiffness is much higher, 152×10−41 Jm2 as can be seen

clearly in the spectrum of Fig. 2. The QSGW description of the acoustic mode in particular is

in very good agreement with neutron scattering studies unlike that of the LDA.

3.3. Finite temperature magnetisation

Our treatment of finite temperature magnetisation involves extending zero-temperature

electronic structure calculations with atomistic spin dynamics (ASD). Table 2 lists different

approximations to the critical temperature of YIG, obtained using the LDA and QSGW

exchange parameters. Mean field approximation (MFA) and Tyablikov’s random phase

approximation (RPA) [48] assume classical statistics and depend only on J(q). The

atomistic spin dynamics critical temperatures are identified by the divergence of the magnetic

susceptibility (Figure 3(a)). In a quantised spin models and also in our classical spin model

with quantum statistics, the Curie temperature depends on both the exchange and the size of

the magnetic moments (or the spin S).

The classical mean-field estimates of the Curie temperature are significantly larger than
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the respective classical RPA estimates. The RPA yields an estimate close to the result of

classical spin dynamics, which we consider an essentially exact solution of the classical

problem, but this result is drastically smaller than the experimental TC. The use of quantum

statistics increases the TC estimate considerably, by close to a factor of 2 (see supplementary

information in Ref. [20] for S dependence of TC). The semi-quantum critical temperature

estimates are in much better accord with experiment, especially for QSGW.

The form of the QSGW magnetisation curve is shown in Fig.3(b) for both classical and

semi-quantum statistics together with experimental data. The importance of semi-quantum

statistics for the low-temperature magnetisation is obvious; unlike the QSGW-classical model,

the QSGW-quantum approach provides a very good description of the magnetisation curve,

deviating only at high T , and underestimating TC.

We attribute the accuracy of the QSGW critical temperature to the excellent description

of the acoustic magnon mode by the GSQW exchange constants, this is also reflected in the

close agreement of the QSGW spin wave stiffness with experiment. At higher temperatures

the magnetisation deviates from experimental measurements because the QSGW optical

magnon modes are lower in energy than measured experimentally; because Planck statistics

are heavily weighted to lower frequencies the the differences in optical frequencies don’t have

too large an effect on the magnetisation.

The improvement in simulated m(T ) using a quantum thermostat is not surprising: the

magnon Debye temperature in YIG is close to 1000 K (as is true of many magnetic materials),

which means that the use of classical (Rayleigh-Jeans) statistics is not valid (h̄ω ≪ kBT is not

a good approximation), even up to the Curie point. Our method uses a quantum thermostat in

classical spin dynamics and avoids the considerable expense and difficulty of solving the fully

quantum problem (e.g. the sign problem in quantum Monte Carlo). In contrast, calculating

the magnetisation with classical statistics fails to reproduce a Bloch’s law type curve at low

temperature, fails to reproduce the Curie temperature and so is deficient both qualitatively as

well as quantitatively.

The magnon spectrum should be the primary quantity to assess the quality of Jij
parameterisations because it is from this that the thermodynamics naturally follow through

the correct thermal occupation of spin waves, and because it is fundamentally this quantity

which the ab initio formulae (those based on perturbation such as these calculations or those

using the magnetic force theorem) for magnetic exchange describe.

4. Conclusions

We have demonstrated parameter free multi-scale modelling of YIG from first principles.

The dispersion, spin wave stiffness and magnetic moments are well parameterised and the

Curie temperature is accurately predicted. This demonstrates simultaneous agreement of low

and high temperature properties. Even though the optical magnon splitting is smaller than

in experiments, this is for a well understood reason (the systematic overestimate of gaps in

QSGW). We demonstrate the capability of QSGW to provide a completely parameter free,

first principles description of the electronic and magnetic properties of complex materials

with reliably high accuracy. Our results for the critical temperature highlight the need to

use quantum statistics for calculating thermodynamics and for assessing J principally in

terms of the spin wave spectrum. QSGW also allows accurate calculations including f -

shells [50], opening the possibility to calculate other members of the rare-earth garnet family

in the future. Accurate, predictive first principles modelling can play an important role here,

for example in parameterising materials such as gadolinium iron garnet which is extremely
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difficult to measure with neutron scattering (due to Gd having the largest neutron scattering

cross-section).
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