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Lifelong learning of
interpretable image representations

Fei Ye and Adrian G. Bors

Department of Computer Science, University of York, York YO10 5GH, UK

Abstract—Existing machine learning systems are trained to
adapt to a single database and their ability to acquire ad-
ditional information is limited. Catastrophic forgetting occurs
in all deep learning systems when attempting to train them
with additional databases. The information learnt previously is
forgotten and no longer recognized when such a learning systems
is trained using a new database. In this paper, we develop
a new image generation approach defined under the lifelong
learning framework which prevents forgetting. We employ the
mutual information maximization between the latent variable
space and the outputs of the generator network in order to learn
interpretable representations, when learning using the data from
a series of databases sequentially. We also provide the theoretical
framework for the generative replay mechanism, under the
lifelong learning setting. We perform a series of experiments
showing that the proposed approach is able to learn a set of
disjoint data distributions in a sequential manner while also
capturing meaningful data representations across domains.

Index Terms—Lifelong learning, Representation learning, Gen-
erative Adversarial Networks, Mutual information.

I. INTRODUCTION

One inherent advantage of humans and animals is that of

being able to continually acquire new skills, by learning pro-

gressively while aging, without forgetting the previously learnt

knowledge throughout their lifespan [1]. However, artificial

learning systems when learning from the data sampled from

successive databases, have their parameters tuned onto the

probabilistic representation of the latest available database,

while forgetting the previously learnt information. The reason

for this outcome, present in all existing systems requiring

training, is that their objective function is designed to tune

the network parameters by optimizing a match between target

labels and network outputs. Meanwhile, after training for a

new task using backpropagation, the new model would forget

completely the previously learnt knowledge.

Many of the previous approaches, aiming to address catas-

trophic forgetting, often focus on implementing dynamic net-

work systems [2], [3]. Such systems would aim to increase

the number of layers and processing units on each layer

in order to acquire additional information. Other attempts

to address this issue would impose a large penalty in the

objective function that prevents from significantly changing

the network parameters while learning a new task [4]–[7].

However, such approaches are often sensitive to the choice

of data being learnt and lead to significant increases in the

required computational resources. Hanul et al. [8] introduces

a dual architecture consisting of a powerful generator and a

classifier. Adversarial learning is used to train the generator

with the accumulated data produced by the generator after

learning the previously given tasks. Similar works based on

the Generative Adversarial Networks (GAN) [9] framework

are also proposed in [10]–[12]. The inference abilities of

Variational Autoencoders (VAE) have been combined with

the generation capability of GANs in the lifelong VAEGAN

learning [13].

This paper has the following contributions: (1) We propose

a novel GAN based framework for lifelong learning. (2)

We introduce a theoretical probabilistic framework for the

generative replay mechanism used in the context of lifelong

learning. (3) We employ the mutual information maximization

between the latent variables and generator outputs under the

lifelong learning framework, in order to enable a mechanism

for capturing meaningful data representations across domains.

The methodology and theoretical framework for the proposed

lifelong interpretable learning framework is described in Sec-

tion II. Experimental results are provided in Section III and

the conclusions of this study are drawn in Section IV.

II. LIFELONG INTERPRETABLE LEARNING

In this section, we introduce a novel lifelong framework

which besides aiming to generate high quality images also

captures interpretable representations across data domains.

We consider that each data domain characterizes a distinct

database. Let us consider a set of databases, each characterized

by a data distribution, o1 ∼ p(O1),o2 ∼ p(O2), . . . ,oK ∼
p(OK), which are being learnt in a sequential manner. We

consider that oi is an image sampled from the target database

defined by p(Oi), i = 1, . . . ,K. Unlike in the traditional

lifelong learning tasks which aim to make predictions from all

learnt data samples, in this study we seek to define meaningful

data representations that can interpret data characteristics. In

the lifelong learning problem, each data distribution p(O),
where O = {O1,O2, . . . ,OK} is only seen once. The goal of

the proposed algorithm is to learn a model, which is able to

generate all images from the previously seen databases, while

capturing meaningful image representations and characteristics

across domains.978-1-7281-8750-1/20/$31.00 ©2020 IEEE



A. Training the data generator for a single task

After learning a single data distribution, we assess its

generative replay capability. Such generative mechanisms can

be used for learning successively a series of distributions under

the lifelong setting, without the need to see each time the

real data. Let us consider that o represents the observed data

sampled from the target distribution p(O), and {z, c,d} are

three independent random vectors, representing random noise,

continuous latent variables and discrete variables, sampled

from the prior distributions z ∼ N (0, I), c ∼ N (0, I), d ∼
Cat(k, 1/k), where the first two distributions are Gaussian

while the third denotes a categorical distribution which is

specific for discrete variables. We want to train a generator

network G(z, c,d) to approximate the data distribution p(O)
by using adversarial learning. Adversarial learning is defined

by Min-Max optimization:

min
G

max
D∈Φ

[

E
o∼p(O)[D(o)]− E

o
′∼pG(O′)[D(o′)]

]

(1)

where we use the Earth mover distance optimisation as in

the Wasserstein GAN model [14], [15], instead of the Jensen-

Shannon divergence [9], for measuring the distance between

the true data p(O) and the probability of the generated data

o
′ ∼ pG(O

′). Φ denotes a set of 1-Lipschitz functions. We

further consider using the gradient penalty proposed in [16]

in order to enforce the Lipschitz constraint, resulting in:

min
G

max
D∈Φ

[

E
o∼p(O)[D(o)]− E

o
′∼pG(O)[D(o′)]

]

+ λEõ∼Põ

[

(‖∇õD (õ)‖2 − 1)
2
]

.
(2)

While this objective function is used for learning a single

task, in the following we show how generative replay mecha-

nisms can be used for training the model with multiple tasks,

each learned from data sampled from a different database,

oi ∼ p(Oi), i = 1, . . . , k.

B. The theoretic framework for the generative replay mecha-

nism in the context of lifelong learning

In this section, we provide the theoretic analysis for the

generative replay mechanism used for the lifelong learning in

artificial systems.

Definition 1. Let us consider that p(O) =
∏k

i=1 p(Oi) repre-

sents the true joint data distribution in which each individual

dataset p(Oi) is assumed to be independent from the others.

Definition 2. Let us consider that p(Ôk) represents the output

fake data distribution produced by the generator network

Gωk
(c,d, z), after training with the data corresponding to

the k-th task, where ωk represents the network’s parameters.

During the k-th task learning, we consider that only p(Ok−1)
and p(Ôk−1) are available under the lifelong training setting :

p(Ôk|Ôk−1,Ok) = 1−min(‖W (p(Ôk), p(Ôk−1,Ok))‖, 1)
(3)

where W (·) is the Wasserstein distance, representing the

Earth mover distance optimization [14], [15]. The expression

from (3) represents the probability of Ôk when observing

simultaneously Ôk−1 and Ôk, and :

p(Ôk|Ôk−1,Ok) = 1 → W (p(Ôk), p(Ôk−1,Ok)) = 0. (4)

Theorem 1. The information characterizing p(Ôk) depends

on all previously learned distributions.

Proof. From the fact that p(Ôk−1) is independent from

p(Ok), we derive for the marginal probability p(Ôk) through

mathematical induction:

p(Ôk) =

∫ ∫

p(Ôk|Ôk−1,Ok)p(Ôk−1)p(Ok)dÔk−1dOk

=

∫

. . .

∫

p(Ô1)
∏k−2

i=0
p(Ôk−i|Ôk−1−i,Ok−i)

∏k−2

i=0
p(Ok−i)dÔk−1 . . . dÔ1dOk . . . dO2

(5)

where this equation is integrated over all the previously learnt

data samples from all databases Oi i = 1, . . . , k.

Lemma 1. If the learnt distribution p(Ôi) is an exact ap-

proximation to the target distribution when learning every

task, then the latest learnt distribution p(Ôi) is an exact

probabilistic approximation to the true joint distribution of data
∏k

i=1 p(Oi).

Proof. If we consider that all previously learnt distributions

are exact representations of their target distributions, we have
∏k

i=1 p(Ôk−i|Ôk−i−1,Ok−i) = 1 and W (p(Ô1), p(O1)) =
0 → p(Ô1) = p(O1). Then the conditional probability can be

rewritten as :

p(Ôk|
⋃k−1

i=1
Ôi,Ok) = 1 → W (p(Ôk),

∏k

i=1
p(Oi)) = 0,

(6)

and the Min-Max optimization becomes :

min
G

max
D∈Φ

[

E
o∼p(Ôk−1,Ok)

[D(o)]− Eo
′∼PG

[D(o′)]
]

+ λEô∼Pô
[(‖∇ôD(ô)‖2 − 1)2].

(7)

Lemma 2. The necessary and sufficient condition to have a

good representation for all databases is to approximate well

each database during the lifelong learning.

Proof. By considering argumentum ad absurdum rhetoric,

if
∏k−2

i=1 p(Ôk−i|Ôk−i−1,Ok−i) 6= 1, then p(Ôk) may not

be a good approximation to
∏k

i=1 p(Oi). However, from

Definition 2, we have p(Ôk|Ôk−1,Ok) = 1. After learning the

corresponding probabilistic representation p(Ôi), this relies on

the previously learnt distributions p(Ôi−1) while also learning

the new true distribution p(Oi), we have :

∏k−2

i=0
p(Ôk−i|Ôk−i−1,Ok−i) = 1 and p(Ô1) = p(O1) (8)

in order to approximate
∏k

i=1 p(Oi) exactly. This contradicts

the initial assumption stated above. Equation (8) indicates that

given
∏k−2

i=0 p(Ôk−i|Ôk−i−1,Ok−i) = 1 we have through

p(Ôk) a probabilistic representation of all given databases.



Fig. 1. The structure of the proposed lilfelong learning through the mutual information maximization model.

C. Learning data representations by mutual information max-

imization

In information theory, mutual information (MI) measures

the amount of information shared by one random variable

when observing another variable. In the proposed approach,

we want to learn simultaneously discrete and continuous

interpretable representations.

Let us consider firstly learning the data representation for

one task from a given database. Let u = (d, c) represent

the joint latent variable for discrete and continuous latent

variables. The learning goal of the proposed approach is to

maximize the mutual information between the joint latent

variables u and the distribution generated by G(c,u). The

mutual information is defined by :

I(u,G(z,u)) = H(u)−H(u|G(z,u)) (9)

where H(u|G(z,u)) is the conditional entropy, which mea-

sures the uncertainty of estimating u when observing G(z,u)
and H(u) represents the entropy of the latent variables. By

maximizing I(u,G(z,u)) we can reduce this uncertainty and

therefore preserve the latent information during the generation

process. Similar MI objectives have been adopted in the

research studies from [17]–[20]. However, it is challenging to

optimize the mutual information directly, given that it depends

on inferring the true posterior p(u|o). In order to address

this challenge, we define an auxiliary distribution S(u|o) to

approximate the true posterior p(u|o), and then we derive a

lower bound on the mutual information, called LMI :

I(u,G(z,u)) =

∫ ∫

G(z,u)p(u|o) log
p(u|o)

S(u|o)
dodu+

∫ ∫

G(z,u)p(u|o) logS(u|o)dodu+H(u) =

= E
o∼G(z,u)[DKL[p(u|o)||S(u|o)]]+

E
o∼G(z,u)[Eu∼p(u,o)[logS(u|o)]] +H(u) >

> E
o∼G(z,u)[Eu∼p(u,o) [logS(u|o)]] +H(u) = LMI

(10)

where we consider that the KL divergence is positive or at

least equal to 0. In this study, we treat H(u) as a constant for

simplicity. The auxiliary distribution S(u|o) is implemented

by using a neural network with two output layers, one for

producing continuous variables and the other for calculating

discrete variables.

Theorem 2. The inference model S(u|o) can be used in

the context of the generative reply mechanism for learning

representations from multiple domains.

Lemma 3. If the generator approximates exactly its target dis-

tribution after learning every task, the inference model S(u|o)
can learn from the data associated with the corresponding

modes from all previously learnt probabilistic representations

of the given data distributions.

Proof. From Lemma 1, we know that p(Ôk) =
∏k

i=1 p(Oi).
Considering from Definition 2 that p(Ôk) characterizes the

distribution of the output of Gωk
(c,d, z), where ωk represents

the network parameters, the inference model actually learns

the probabilistic data representations from
∏k

i=1 p(Oi) by

using the mutual information maximization, during the lifelong

learning process.

The diagram for the proposed lifelong learning through mu-

tual information maximization model is presented in Figure 1.

III. EXPERIMENTAL RESULTS

In the following we provide the experiments showing how

the proposed model can learn interpretable representations

across the domains of several databases, under the lifelong

learning setting. We implement the generator, discriminator,

and inference by using deep convolution neural networks

(CNN). We use Tensorflow and learning through stochastic

optimization using Adam [21] with a learning rate of 0.0001

for all models.

A. The lifelong learning from MNIST to MNIST-Fashion

In this section, we evaluate the performance of the proposed

approach when firstly learning MNIST database [22], contain-

ing images of handwritten digits, and then MNIST-Fashion



(a) Proposed lifelong learning approach.

(b) Conventional training without any generative reply.

Fig. 2. Generation results when firstly learning MNIST database followed by
the MNIST-Fashion.

database [23], which contains images of clothing items. These

two databases, contain only greylevel images and have the

same number of classes and data samples, while displaying

completely different information. The generated images fol-

lowing the lifelong MNIST to MNIST-Fashion learning are

presented in Figure 2a, while the images generated without

the generative reply are shown in Figure 2b. We observe that

the proposed lifelong learning approach can generate images

characteristic to both data domains, unlike in the classical

approach, where we do not have a generative reply mechanism.

Fig. 3. Generated results when varying the discrete variable d along columns
and the continuous variables c along rows.

(a) c1 in MNIST-Fashion (b) c1 in MNIST

(c) c2 in MNIST (d) c2 in MNIST

Fig. 4. Exploring the latent space for MNIST and Fashion and databases,
under the MNIST to Fashion lifelong learning, where we change a single
latent variables from -1.0 to 1.0 while fixing the others.

(a) The proposed lifelong approach.

(b) Classical approach.

Fig. 5. Generation results after the lifelong learning from CelebA to 3D-
Chairs databases.

(a) Gender

(b) Makeup

(c) Face orientation

Fig. 6. Results when manipulating characteristics in images of faces from
the CelebA dataset, under the CelebA to 3D-chairs lifelong learning.

B. Disentangled representations under the lifelong learning

using the mutual information maximization

In the following we examine the disentanglement ability of

the proposed lifelong learning using the mutual information

maximization within the latent space of the generated images.

We fix the continuous latent variables and change the discrete

variable from 0 to 9. The generated images are shown in

Figure 3, where each column is produced considering the same

discrete variable while the images from each row correspond to

a different continuous variable. We observe that this model is

able to capture the discriminating attributes from both MNIST

and MNIST-Fashion databases without any mixing between

the data from the two databases. We then fix other variables

and change two continuous latent variables, c1 and c2 from

-1 to 1 and the results are shown in Figures 4a-d. From these

results we can observe that the proposed approach can capture

independently various clothing styles from MNIST-Fashion

and the writing styles of the digits from MNIST. Meanwhile,

when changing one of the continuous variable, the resulting

images would interpolate between a digit and a shoe, as it can



(a) Chair backrest

(b) Materials

(c) Orientation by changing the azimuth

Fig. 7. Results when manipulating characteristics in the 3D-chairs images
under the CelebA to 3D-chairs lifelong.

be observed from Figures 4c and 4d.

C. The lifelong learning from CelebA to 3D-chairs databases

In this section, we evaluate the performance of the proposed

approach on CelebA [24], and 3D-chairs [25] databases,

containing face images of well known persons (celebrities)

and 3-D chairs, respectively. We train the proposed model

under the CelebA to 3D-chairs lifelong learning based on the

mutual information maximization. The results are presented

in Figure 5a, where it is shown that the proposed approach

can generate images from the domains of both databases. In

Figure 5b, we show the results when considering the classical

approach without using the generative replay mechanism.

From these images it can be observed that this model forgets

quickly the images from the previously learned tasks, such as

the images of faces characteristic to CelebA database.

In another experiment we modify a single continuous latent

variable between -1 and 1, while fixing all others during

the generation process. The results for the face images from

CelebA, shown in Figures 6a, 6b and 6c, demonstrate that

the proposed lifelong learning approach is able to discover

disentangled representations characteristic of gender, makeup

change and face orientation change, respectively. Meanwhile,

the results for the 3D-chairs are shown in Figures 7a, 7b

and 7c where we show how the proposed model learns

disentangled representations characteristic of chair backrest,

material type and for changing the azimuth in the chairs’

orientation, respectively.

D. Numerical evaluations

In this section, we use the Fréchet Inception Distance (FID)

[26] in order to evaluate the quality of the generated image

results under the lifelong learning. We train the proposed life-

long learning model under the CelebA to 3D-Chair learning.

FID is evaluated on both CelebA and 3D-Chair images, and the

numerical results are provided in the bar-plot from Figure 8,

where we compare the proposed model with other lifelong

learning approaches, such as LGAN [27] and LGM [28]. These

results indicate that the proposed model generates images of

similar quality when compared to those generated by LGAN.

Moreover, unlike LGAN, the proposed model is able to learn

disentangled representation across domains under the lifelong

learning. Meanwhile, the proposed model is able to produce

higher-quality generative replay images than LGM.

The proposed LGAN LGM
Methods
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Evaluation results

Fig. 8. FID results for the generated images after the CelebA to 3D-chair
lifelong learning.

IV. CONCLUSIONS

We propose a new approach for lifelong learning

interpretable representations across data domains using the

mutual information maximization criterion. In this approach

we employ the generative replay mechanism in order to

prevent forgetting the previously learnt knowledge. In order

to learn interpretable representations, we maximize the

mutual information between the latent representation and the

generator’s outputs. The theoretical analysis shows that by

using a powerful generator for the data replay, the inference

model can learn data representations across multiple domains.

The experiments performed achieve data interpolations across

different data domains. In further research work we are

considering expanding the lifelong learning model to learning

multiple databases while also improving the quality of the

generated images.
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