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ABSTRACT

Background: Homologous recombination deficiency (HRD) measured using a 

genomic signature for loss of heterozygosity (LOH) predicts benefit from rucaparib 

in ovarian cancer. We hypothesized that some oesophagogastric cancers will have 

high-LOH which would be prognostic in patients treated with platinum chemotherapy.

Methods: Diagnostic biopsy DNA from patients treated in the REAL3 trial was 

sequenced using the Foundation Medicine T5 next-generation sequencing (NGS) 

assay. An algorithm quantified the percentage of interrogable genome with LOH. 

Multidimensional optimization was performed to identify a cut-off dichotomizing the 

population into LOH-high and low groups associated with differential survival outcomes.

Results: Of 158 available samples, 117 were successfully sequenced; LOH was 

derived for 74 of these. A cut-off of 21% genomic LOH defined an LOH-high subgroup 

(n=10, 14% of population) who had median overall survival (OS) of 18.3 months (m) 

versus 11m for the LOH-low group (HR 0.55 95% CI 0.19-0.97, p= 0.10). Progression 

free survival (PFS) for LOH-high and LOH-low groups was 10.7m and 7.3m (HR 0.61 

(95% CI 0.21 – 1.09, p=0.09). Sensitivity analysis censoring operated patients (n=4), 

demonstrated OS of 18.3m vs. 10.2m (HR 0.43, 95% CI (0.20-0.92), p=0.02; PFS was 

10.5m vs. 7.2m (HR 0.55, (95% CI 0.26-1.17), p=0.09 for LOH-high and LOH-low.

Conclusion: HRD assessment using an algorithmically derived LOH signature 

on a standard NGS panel identifies oesophagogastric cancer patients with high LOH 

who have prolonged survival when treated with platinum chemotherapy. Validation 

work will determine the signature’s predictive value in patients treated with a PARP 

inhibitor and with platinum chemotherapy.
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INTRODUCTION

Homologous recombination (HR) is a complex 

process requiring the coordinated function of a number of 

genes products in order to repair double-stranded breaks 

in DNA [1]. This process is frequently deranged in cancer, 

where the classic example of homologous recombination 

deficiency (HRD) is provided by BRCA1/2 mutated 

tumours [2, 3]. Targeting HRD in BRCA mutant tumours 

using a synthetically lethal approach with poly ADP ribose 

polymerase (PARP) inhibitors has resulted in beneficial 

effects for patients in ovarian, breast and prostate cancer [4–

7]. However, HRD may also be present in tumours without 

BRCA mutations; similar to BRCA mutant tumours these 

cancers are often platinum sensitive and may also respond 

to other DNA damage targeting drugs [7–10]. Such BRCA 

wild-type HRD tumours have high levels of “genomic 

scarring”, which arises from the use of error prone DNA 

repair pathways when homologous recombination is 

compromised. One method for quantifying the amount 

of genomic scarring is to assess the extent of loss of 

heterozygosity (LOH; loss of one copy of a chromosomal 

region) across the tumour genome. Determination of HRD 

using LOH may have clinical implications; in the ARIEL2 

Part 1 (NCT01891344) trial of previously treated ovarian 

cancer, BRCA wild-type patients with high levels of LOH 

(LOH-high) treated with the PARP inhibitor rucaparib were 

more likely to respond to rucaparib therapy and had longer 

progression free survival compared to rucaparib-treated 

patients who were not LOH-high [7, 11].

Oesophagogastric cancer is a platinum sensitive 

disease in which several genomic and proteomic 

biomarkers associated with DNA repair defects have 

been identified. These include ATM loss, The Cancer 

Genome Atlas (TCGA) chromosomally unstable (CIN) 

subtype and a putative BRCA mutational signature 

[12–16]. Therefore we hypothesized that genomic 

LOH (as a measure of HRD) might be associated with 

prognosis in oesophagogastric cancer patients treated 

with platinum based chemotherapy. In order to examine 

this hypothesis we assessed genomic LOH in tumour 

samples from patients treated with epirubicin, oxaliplatin 

and capecitabine plus or minus panitumumab (EOX±P) 

in the REAL3 (Randomised Trial of EOX with or 

without Panitumumab in Advanced or Locally Advanced 

Oesophagogastric Cancer 3) Trial, (NCT00824785), and 

correlated LOH with survival in this patient cohort.

Details of the REAL3 trial have been previously 

described [17]. In brief, eligible patients had a diagnosis 

of locally advanced or metastatic oesophagogastric cancer 

and were treated with EOX (epirubicin, oxaliplatin and 

capecitabine) plus or minus panitumumab (a fully human 

monoclonal IgG2 anti-EGFR antibody). Patients treated 

with EOX-panitumumab had inferior overall survival 

compared with patients treated with EOX (HR 1.37, 95% 

CI 1.07-1.76; p=0.013).

RESULTS

Out of a total of 553 REAL3 patients 158 formalin-

fixed paraffin embedded (FFPE) tissue blocks with high 

tumour content (>30%) were available; these were sent 

for NGS analysis to Foundation Medicine (FM). There 

was no significant difference in clinicopathological 

characteristics, progression free survival or overall 

survival between patients who underwent sequencing for 

LOH assessment and those without (see Supplementary 

Data). Of the 158 samples, one duplicate sample from 

the same patient was excluded. This left 157 samples 

which were processed for NGS (see CONSORT figure, 

Supplementary Data). The sample storage time for 

selected archival samples was a median of 5 years (range 

4-9 years) and the quality of FFPE tissue blocks varied 

widely across the processed batch. Following review of 

tumor nuclei enumeration at FM, 5 samples were deemed 

to have too low tumour content and were excluded from 

further analysis. We observed attrition during NGS 

processing due to tissue quality in 35 samples (23%) 

and were able to sequence 117 samples successfully. 

The LOH inference was successfully performed for 74 

of the sequenced samples (63%) or 47% of the original 

biomarker analysis population. This is because inference 

of LOH is based on copy number estimation which 

requires adequately deep and relatively even coverage 

across the genome. In contrast to mutation calling, the 

sample quality requirements for copy number detection 

are higher. Since the REAL3 samples had not been fixed 

with NGS in mind, not all samples met the higher quality 

standards for LOH inference but were sufficient for 

mutation calling.

There was no difference in the proportion of samples 

which were successfully sequenced from each tumour site; 

however junctional and oesophageal tumours were more 

likely to have LOH successfully inferred than stomach 

cancer (73% and 66% vs 50% respectively). Table 1  

summarizes the number of samples sequenced and the 

proportion of samples which had LOH derived according 

to anatomical site.

The median percentage of genomic LOH inferred 

for all tumours was 11.9% (n=74) (Figure 1). According to 

anatomical site, the median percentage of LOH was 10.6% 

for stomach (n=18), 11.4% oesophagus (n=27) and 14.8% 

(n=29) for gastroesophageal junction tumours. These 

differences were not statistically significant (p>0.05). The 

median and mean % LOH according to anatomical site are 

shown in Figure 2.

Using the optimization of survival benefit as 

described in the methods section, the optimal survival 

benefit for LOH-high vs. LOH-low patients was found to 

be in patients with ≥ 21% genomic LOH. Using an LOH 
level of ≥ 21% to define the LOH-high group, 10 out of 
74 patients (14%) were classified as LOH-high. At this 

cut off, the median overall survival (OS) was 18.3 months 
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for the LOH-high subgroup compared to 11 months for 

the LOH-low subgroup. Using a Cox proportional hazards 

model, we derived the OS hazard ratio to be 0.55 (95% CI 

0.19-0.97), p= 0.10. At the same LOH cut off, progression 

free survival (PFS) was 10.7 months for the LOH-high 

group compared to 7.3 months for the LOH-low group. 

Using a Cox proportional hazards model, the PFS HR 

was 0.61 (95% CI 0.21 – 1.09), p=0.09. Figures 3 and 4 

illustrate the overall survival and progression free survival 

curves in LOH-high and LOH-low subgroups. In the 

sensitivity analysis in which operated patients (n=4) were 

censored at the time of potentially curative surgery OS of 

18.3m vs. 10.2m (HR 0.43, 95% CI (0.20-0.92), p=0.02) 

for LOH-high vs. LOH-low patients and and PFS was 

10.5m vs. 7.2m (HR 0.55, (95% CI 0.26-1.17), p=0.09) in 

the same subgroups (Figure 5, Figure 6).

MANOVA of these clinicopathological variables 

potentially associated with progression free and overall 

survival showed that of these parameters only disease 

extent have a statistically significant impact on both 

progression free and overall survival (Table 2). Extended 

confounding analysis and groupwise statistical testing 

established that the distributions of these clinical and 

prognostic parameters are not different between the LOH-

high and LOH-low groups (Table 3). The prognostic 

factors identified through MANOVA therefore confound 

the survival outcome of both groups equally and any 

additional findings can be attributed to the difference in 

LOH levels.

HRD can also be caused by variants in genes of the 

HR pathway that render the protein function impaired. 

Categories of variants that are deleterious to protein 

function include protein truncating mutations, splice 

site mutations, homozygous deletions and large protein 

truncating rearrangements. The Foundation Medicine T5 

NGS assay has been validated to detect these classes of 

variants. In the REAL3 samples sequenced here, several 

deleterious mutations in genes of the HR pathway were 

detected and are detailed in Table 4 : BRCA2 (n=1), ATM 

(n=6), ATR (n=1), CHK2 (n=1). Additionally, 101 of 117 

(86%) samples had mutations in the TP53 gene. There 

was no significant difference in %LOH, OS, and PFS 

between the TP53 mutated and wildtype populations, other 

mutant populations were considered too small to analyse 

separately.

DISCUSSION

In this analysis we identify a group of 

oesophagogastric cancer patients treated in the REAL3 

Figure 1: Distribution of genomic LOH across the samples analysed.

Table 1: Number of samples sequenced and LOH derived by anatomical site

Overall Stomach Oesophagus GOJ

Samples submitted 157 46 56 55

Samples sequenced 117 (75%) 36 (78%) 41 (73%) 40 (73%)

Samples with LOH 

derived
74 (47%) 18 (50%) 27 (66%) 29 (73%)
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trial who have high levels of genomic LOH measured 

using an algorithmic approach to DNA sequencing data 

performed on tissue obtained from routine diagnostic 

biopsies. Using a cut-off of 21% genomic LOH to define 

LOH-high, we demonstrate that patients with higher levels 

of LOH have a trend towards longer overall survival than 

Figure 2: Genomic loss of heterozygosity by tumour site.

Figure 3: Overall survival in LOH-high and LOH-low groups.
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those who are not LOH-high. When a small number of 

patients who underwent potentially curative surgery were 

censored in a sensitivity analysis, these findings reached 

statistical significance (HR 0.43, 95% CI (0.20-0.92), 

p=0.02) These findings are of interest for two reasons. 

Firstly, although the predictive power of the biomarker 

Figure 4: Progression free survival in LOH-high and LOH-low groups.

Figure 5: Overall survival in LOH-high and LOH-low groups with operated patients censored at time of potentially 
curative surgery.
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cannot be determined in the absence of a control group, 

high LOH may identify patients who are more likely to 

benefit from platinum based chemotherapy. Secondly, as 

LOH-high patients with ovarian cancer benefit from PARP 

inhibition more than LOH–low patients, it is possible that 

high LOH could be a biomarker predictive of sensitivity 

to PARP inhibitors in oesophagogastric cancer patients. 

While these hypotheses require prospective validation, 

they could lead to more effective biomarker selected 

therapies for oesophagogastric cancer, a disease which 

currently has a dismal prognosis [18, 19].

Platinum based chemotherapy is a standard first line 

treatment for patients with advanced oesophagogastric 

cancer [20–23]. To date, no biomarker is available to 

select which oesophagogastric cancer patients might 

benefit from chemotherapy. Many studies have evaluated 

germline polymorphisms associated with response to 

platinum and fluoropyrimidine chemotherapy, but none 

have demonstrated definitive or practice changing results 

[24–26]. Microsatellite instability may be a biomarker 

of chemosensitivity for gastric cancer patients treated 

with perioperative chemotherapy; however this is rare in 

proximal tumours and in the the metastatic setting [27, 15]. 

Therefore, with the exception of HER2 overexpression 

and trastuzumab treatment, useful biomarkers to stratify 

patients with oesophagogastric cancer for standard therapy 

Figure 6: Progression free survival in LOH-high and LOH-low groups with operated patients censored at time of 
potentially curative surgery.

Table 2: Multivariate analysis of factors associated with survival in REAL3

Variable p value

MANOVA

Overall survival

p value

MANOVA

Progression free survival

Age (<=65 (44), >65 (29)) 0.83 0.64

Gender (M (7),F (67)) 0.18 0.35

Tumour Site (O, S, OGJ) 0.61 0.98

Disease extent (locally advanced (7), metastatic (67)) 0.04 0.01

WHO PS 0 (28), >0 (33), unknown (3) 0.23 0.25

Histological subtype (Intestinal (61), diffuse (7), Mixed (5), 

Unknown (1))
0.13 0.03

Treatment (EOX (38), EOX-P (36)) 0.37 0.67



Oncotarget36660www.oncotarget.com

are lacking [28]. We suggest further evaluation of the 

LOH-high biomarker in clinical trials in patients with 

oesophagogastric cancer in order to validate our findings.

The genomic and transcriptomic landscape of 

oesophagogastric cancer has been intensively explored 

recently. The recently published oesophageal TCGA data 

suggests that oesophageal adenocarcinoma is molecularly 

almost indistinguishable from chromosomally unstable 

gastric cancer [15]. These cancers are characterized 

by gross genomic instability and frequent large scale 

chromosomal events such as kataegis and chromothripsis 

which can lead to defects in homologous recombination 

and acquisition of genomic scar [29]. Gastric cancer has 

previously been identified as having a comparatively high 

level of genomic scarring measured using not only LOH, 

but also quantified using other metrics such as telomeric 

allelic imbalances (NtAI) and large scale transitions 

(LST), both of which predict platinum sensitivity 

in triple negative breast cancer [10, 30, 31]. Thus, 

although the presence of the HRD tumour phenotype 

and its association with platinum sensitivity has been 

established by multiple different methodologies across 

several cancer types including gastric cancer, we are the 

first to demonstrate potentially better survival with the 

HRD phenotype in oesophagogastric cancer treated with 

platinum chemotherapy and do so in a well annotated 

phase III randomized trial population. Based on patterns 

of presentation, it is likely that most of our samples were 

collected from the primary tumour, however as this 

information was not collected systematically, we cannot 

comment on the relationship between LOH, primary 

tumours and metastases.

Recent seminal work has demonstrated that 

chromosomal instability drives metastasis independently 

of aneuploidy and has described increased levels 

chromosomal instability in a cohort of matched primary 

tumour and brain metastases, in addition to a series 

of matched breast cancer primaries and metastases 

[32]. Therefore it is possible that our work, which was 

conducted on primary tumours, could underestimate the 

level of LOH in gastroesophageal cancer metastasis. This 

also in turn provides a potential explanation for divergent 

responses of primary and metastatic sites to platinum 

chemotherapy.

PARP inhibitors have a well-defined role in ovarian 

cancer, the value of PARP inhibition in oesophagogastric 

cancer is less clear. The Phase III randomized phase III 

GOLD trial failed to demonstrate a statistically significant 

overall survival advantage for olaparib treated patients in 

intention to treat trial population (median OS 8.8 months 

vs. 6.9 months (HR = 0.79, P =.0262), although this 

may be in part due to a statistical correction for multiple 

primary endpoints [33]. Notably, patients who were 

ATM negative and treated with olaparib demonstrated 

substantially improved response rates compared to ATM 

negative patients treated with paclitaxel alone (ORR 4.24, 

p=0.0309), therefore PARP inhibitors may still be effective 

in the correct biomarker selected oesophagogastric 

cancer population [34]. Our biomarker may identify 

a complementary group of gastroesophageal cancer 

patients who are ATM positive, yet who could benefit 

from a DNA damage targeting therapeutic approach. The 

potential value of a DNA damaging targeting approach 

in oesophageal cancers is also demonstrated by a recent 

large whole genome sequencing study of oesophageal 

adenocarcinoma which identified three intrinsic genomic 

signatures, one of which was putatively sensitive to PARP 

inhibition; however functional and clinical validation of 

this finding is awaited [16].

One limitation of our study is the small proportion 

of tumours from the total trial population which were 

successfully sequenced; prior biomarker studies on the 

same population had exhausted much of the available 

tissue [35]. In particular, the modest number of patients 

included in survival analyses and the imbalance between 

LOH-high and low-groups could hinder comparisons 

Table 3: Association between variables associated with OS and LOH

Variable LOH-low

n= 64

LOH-high

n= 10

p value

Age (% <65 years) 61% (39) 50% (5) 0.87 (Gosset t-test)

Gender (% F) 8% (5) 20% (2) 1 (Fisher)

Tumour site O, S, GOJ
37.5% (24), 25% (16), 37.5% 

(24)
30% (3), 20% (2), 50% (5) 1 (Fisher)

Disease extent (% 

metastatic)
91% (58) 90% (9) 1 (Fisher)

WHO PS (0,1,2, unknown)
39% (25), 50% (32), 6% (4), 

5% (3)
30% (3), 70% (7), 0% 1 (Fisher)

Histological subtype 

(%intestinal)
80% (51) 100% (10) 1 (Fisher)

Treatment (EOX, EOX-P) 53% (34), 47% (30) 40% (4), 60% (6) 1 (Fisher)
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between the groups and inclusion of LOH status into the 

multivariate model. However, as there was no significant 

difference between the survival of patients included in this 

study and the original trial, we do not think this introduced 

significant bias. We also did not find any confounding 

effects from other clinicopathological variables. Finally, 

a further limitation of our work is the lack of a control 

group, as all patients in our study received platinum 

chemotherapy; the predictive versus prognostic value of 

the LOH signature will need to be evaluated in further 

research. We think that there is sufficient indirect evidence 

to support our hypothesis, which is that of genomic 

LOH (a measure of HRD), could be associated with 

clinical benefit from platinum based chemotherapy in 

oesophagogastric cancer.

In conclusion, in this study we present our results 

from deriving a genomic signature for high LOH in 

oesophagogastric cancer patients treated with platinum 

Table 4: Overview of HR pathway mutations detected

Gene Total number (%) samples Number of samples 

with known deleterious 

mutation

Number of samples with 

mutation of unknown 

significance

ATM 13 (11%) 6 7

ATR 8 (7%) 1 7

ATRX 5 (4%) 2 3

BARD1 6 (5%) 6

BLM 12 (10%) 12

BRCA1 3 (3%) 3

BRCA2 13 (11%) 1 12

BRIP1 7 (6%) 1 6

CHEK1 3 (3%) 3

CHEK2 4 (3%) 1 3

FANCA 9 (8%) 9

FANCC 3 (3%) 3

FANCD2 11 (9%) 11

FANCE 6 (5%) 6

FANCF 3 (3%) 3

FANCG 1 (1%) 1

FANCI 6 (5%) 6

FANCL 4 (3%) 4

FANCM 9 (8%) 9

MRE11A 2 (2%) 2

NBN 9 (8%) 9

PALB2 6 (5%) 6

RAD50 3 (3%) 3

RAD51 1 (1%) 1

RAD51C 2 (2%) 2

RAD51D 0 0

RAD52 4 (3%) 4

RAD54L 2 (2%) 2

Abbreviations: HR, homologous recombination.
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based chemotherapy in the REAL3 trial, which we found 

to be prognostic for survival in this patient population. The 

results of the current study can be considered preliminary, 

and analysis of a larger cohort is necessary in order to 

provide further validation on the hypothesized clinical 

significance of LOH. Specifically, we acknowledge 

that the small size of our data set made it impossible to 

separate the data into a training data set and one to test the 

LOH cutoff prospectively. We plan to do this in the phase 

II randomized PLATFORM trial (NCT02678182) which 

is currently running in the United Kingdom and which 

will have recruited almost one thousand patients when 

fully accrued. As immuno-oncology therapy moves to 

the fore, tumours with high levels of genomic scar which 

elicit robust immune responses may also be candidates 

for immune checkpoint therapy, and it is possible that 

combining PARP inhibition and checkpoint inhibitor 

therapy could provide long term benefits for selected 

patients [36, 37].

MATERIALS AND METHODS

From the REAL3 cohort (n=553) pre-treatment 

tumour biopsies (tissue blocks) with high tumour content 

(>30%) were selected by a pathologist. All patients 

included in this analysis had given informed consent for 

translational research. The REAL3 trial was conducted 

under national and local ethical approvals.

The Foundation Medicine T5 next-generation 

sequencing assay (Foundation Medicine, Cambridge, MA, 

USA) was used to calculate the percentage of genomic 

LOH in pretreatment biopsies, a minimum DNA input 

of 200ng is recommended for the assay [38]. This assay 

interrogates 287 cancer-related genes for mutations 

and 3543 single-nucleotide polymorphisms (SNPs) 

across the whole genome. An algorithm was developed 

to quantify the percentage of interrogable genome with 

LOH. Briefly, minor-allele frequencies of the examined 

SNPs and copy number profile across the 22 autosomal 

chromosomes were used to identify segments with LOH 

across the interrogable genome. Excluded from this 

percentage were events that were unlikely to be caused 

by HRD mechanisms, such as whole chromosome or 

chromosome-arm loss. The percentage of genomic LOH 

for each sample was calculated as the sum of the lengths 

of included LOH segments divided by the length of the 

interrogated genome.

The primary endpoint of the study was to determine 

a cut-off for LOH which separated patients into two groups 

(LOH-high and LOH-low) which were associated with 

distinct survival outcomes. To set a cutoff for separating 

samples high in genomic LOH from those low in genomic 

LOH, we performed a multi-dimensional optimization 

of parameters across all possible LOH cutoffs across the 

range of observed LOH values [39]. Across the range of 

genomic LOH 3% to 26% and in increments of 1% we 

calculated the following values; hazard ratio (HR) between 

LOH high and low populations using a Cox proportional 

hazards regression model; the likelihood ratio p-value of 

said hazard ratio; median overall and progression free 

survival (OS, PFS) in the LOH high and low groups and 

the size of the LOH-high vs. low populations captured by 

that cutoff. We selected the smallest HR with the smallest 

p-value and required sensitivity and specificity to be 

larger than 50% for both OS and PFS. From the subset 

of LOH cutoffs that meet these criteria, we chose the one 

that captured the largest patient population within these 

criteria.

Multivariate analysis of variance (MANOVA) 

was used to identify variables that could potentially 

confound any findings related to survival. The investigated 

potentially confounding variables were: age, gender, 

tumour site, disease extent, WHO performance status, 

histological subtype, and treatment group. To control 

for the effects of potentially confounding variables we 

performed an extended confounding analysis and applied 

groupwise statistical tests to the parameters above in 

the two groups, LOH-high and LOH-low. In order to 

homogenise the patient population we performed a 

sensitivity analysis in which patients who underwent 

potentially curative surgery after chemotherapy were 

censored for progression free and overall survival at the 

time of surgery.

Abbreviations

HRD: homologous recombination deficiency; LOH: 

loss of heterozygosity; MANOVA: multivariate analysis 

of variance; OS: overall survivall; PFS: progression free 

survival; USA: United States of America.
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