
This is a repository copy of Human Comfortability: Integrating Ergonomics and Muscular-
Informed Metrics for Manipulability Analysis During Human-Robot Collaboration.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/168505/

Version: Accepted Version

Article:

Figueredo, LFC, Castro Aguiar, R, Chen, L et al. (3 more authors) (2021) Human 
Comfortability: Integrating Ergonomics and Muscular-Informed Metrics for Manipulability 
Analysis During Human-Robot Collaboration. IEEE Robotics and Automation Letters, 6 (2).
pp. 351-358. ISSN 2377-3766 

https://doi.org/10.1109/LRA.2020.3043173

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2020 1

Human Comfortability: Integrating Ergonomics and

Muscular-Informed Metrics for Manipulability

Analysis during Human-Robot Collaboration
Luis F. C. Figueredo, Rafael Castro Aguiar, Lipeng Chen, Samit Chakrabarty,

Mehmet R. Dogar, Anthony G. Cohn

Abstract—The ability to compute a quality index for manipu-
lation tasks, in different configurations, has been widely used in
robotics. However, it is poorly explored in human manipulation
and physical human-robot collaboration (pHRC). Existing works
that evaluate efficiency of human manipulation often focus only
on heurisitic-based, biomechanics or ergonomics methods/tasks.
Complementarity between these performance features allows for
a better evaluation and more general criteria, applicable across
tasks. This paper addressess this gap by generating a new
metric that combines offline pre-computation of biomechanics,
ergonomics, muscle assessment and joint constraints, and reduc-
ing the online time complexity, enhancing the response query time.
The proposed solution allow us to build a quality distribution in
the human’s workspace which can be quickly tailored to specific
tasks and filtered for design purposes. This method simplifies hu-
man manipulability assessment for both general and task-specific
applications and, in contrast to existing works, is suitable for real-
time and/or resource-limited applications. Numerical evidence
shows the proposed analysis greatly outperforms previous results
in terms of computing time without compromising performance.

Index Terms—Human-Centered Robotics; Human Factors and
Human-in-the-Loop; Physical Human-Robot Interaction

I. INTRODUCTION

Recent advances in robotics technologies are closing the gap

between humans and robots. Nonetheless, robots are still rarely

thought of being physically engaging with humans and efficient

physical human-robot collaboration (pHRC) is one of the key

open challenges in robotics research. When autonomously

interacting with humans, robots need better decision-making
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Figure 1: Outline for precomputed comfort assessment dra-

wing on muscle-activity effort and posture scores. High/low

comfortability points are shown in red/blue colors.

capabilities which are hindered by the lack of a reliable

quantitative assessment of human modeling and behavior [1].

Particularly in collaborative manipulation, the understanding of

human physical capabilities and ergonomics is a cornerstone

to any intelligent system that aims to either predict/analyze

human movement or to leverage human’s response to physical

collaborative actions. For instance, consider the pHRC in

Figs. 1-2 where a robot positions a board for the human to apply

a task-specific force. The robot chooses the pose to optimize

human comfort [2], [3]. In this context, increasing attention

has been given to the control and planning of robot actions

based on either biomechanics aspects (in terms of muscular

activity) or ergonomics (in terms of industrial-standard postural

assessment).

In recent years, a new thrust of robotics research has looked

into biomechanics knowledge to produce insights into human

motion synthesis mechanisms [4], [5]. In particular, muscular-

informed metrics combined with improved simulation tools [6]

and elaborated musculoskeletal models [7] have formed the

basis of novel studies leveraging task-space-oriented approaches

to movement sequence reconstruction and muscular-informed

pHRC. Indeed, predicting muscular performance based on

dynamics and task forces is crucial to extend the field of

robotics to address the challenges involved in elaborate and fluid

pHRC. In this context, Peternel et al. [3], [8] have presented

excellent results focusing on muscular-activity-based fatigue



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2020

Task-Specific ApplicationComfortability Distribution

Pre-Computed Voxalized data-struct

Figure 2: Combined muscular-based and ergonomy-based

distribution applied to a pHRC puncturing task.

estimation and adaptation through robot-tool attitude control.

Using similar muscular-activity assessment, our previous work

[2] presented an optimization-based pHRC planner that uses

human muscle-space to decide on a robot grasp and object

positioning that maximizes muscular comfort (and peripersonal

space). One major drawback of such methods, emphasized in

[2], is the computation time required to explore the task-to-

muscle-space redundant mapping and the task-space itself, i.e.,

the freedom of where to position the shared object.

In contrast to muscular-informed methods, standard er-

gonomics concepts like RULA (rapid upper limb assessment,

see [9]) and REBA (rapid entire body assessment, see [10])

were designed to quickly and easily assess human posture and

have been used in industrial scenarios for decades. Recently,

these methods have also been extended to different robotics

applications, e.g., task-planning [11].

Muscular-activity-based and ergonomy-based metrics both

have strengths and limitations. Ergonomic concepts are well-

posed for high-level rapid task-planning, yet they fail to address

the impact and magnitude of larger forces and dynamic con-

straints in pHRC, which are better captured through muscular-

based performance metrics. Muscular-informed metrics, on

the other hand, fail to address the influence of static postural

factors, repeatability of actions, experts’ experience (embodied

in ergonomic methods) but, most importantly, they have not

been tested in industrial applications. Overall, there is a clear

trade-off between ergonomic and muscular-informed metrics,

but surprisingly there are no studies that investigate both

methods. The existing literature employs either ergonomics or

muscle activity metrics depending on the required task.

Contributions: In this paper, integrated ergonomic and

muscular-informed manipulability metrics are given for the first

time. To this aim, we adopt an approach fundamentally different

from existing pHRC literature by building a human-specific

manipulability data structure covering their workspace. The

proposed approach takes robotics concepts of reachability [12]

and manipulability distribution—which build on voxelized 3D

or 6D grids with velocity/force manipulability index [13]—and

extends them to muscular-based and ergonomics metrics. The

outline strategy for individual metrics and to build a metric-

specific manipulability distribution is shown in Fig. 1. This

allows us to independently capture muscular-activity effort

(required to either accelerate or produce task-forces) and

postural ergonomics, integrating both in real-time, according

to design objectives as shown in Fig. 2. This novel resulting

metric is hereby termed a comfortability index.

Combining ergonomics and muscular-activity response to dif-

ferent conditions in terms of comfortability enables the designer

to quickly filter performance for a given task condition. The

precomputed data structure considerably simplifies assessment

for both general and task-specific applications and, in contrast

to existing works, is suitable for real-time and/or resource-

limited applications. It is also extended to include self-collision

information shaping the resulting distribution. Redundancy is

also implicitly captured.

An additional contribution is the muscular-activity analysis,

which follows a task-to-muscle-space optimization mapping

that translates task-wrenches to muscular activity. In this work,

we make use of the linearity of this map, only in terms of

magnitude to build a data structure of muscular-informed

manipulability (MiM) within the workspace. The precomputed

data enables MiM information to be quired two to three orders

of magnitude faster than standard approaches.

Finally, an implicit contribution is to enrich musculoskeletal

model-based methods applicability. These methods, though

advantageous, are still not commonly employed in industry, in

favor of typical ergonomic measures. Combining both strategies

introduces MiM to industrial and pHRC domains—replacing

fully ergonomics metrics to one that increasingly relies on

muscular-activity as the designer acquires confidence in model-

based methods.

These contributions are presented as follows: Section II

presents existing concepts in the literature concerning muscle-

activity effort and postural ergonomics. These are the cor-

nerstones for muscular-informed manipulability and the er-

gonomics index introduced in Section III. Both metrics are

integrated into the human comfortability index, in Section

IV, which is used to build the comfortability distribution and

the task-specific comfortability analysis. Section V reports

simulations and pHRC experiment results used to validate the

approach and to illustrate its effectiveness. Lastly, Section VI

presents conclusions and future-plans.

II. PRELIMINARIES: HUMAN-INFORMED PERFORMANCE

CRITERIA

This section provides a model-based muscle-activity as

well as ergonomics–based REBA. These concepts shape the

backbone of the comfortability analysis and are crucial for

autonomously reasoning over ergonomics and biomechanics.

A. Muscle-Activity Effort: Task- to Muscle-Space Mapping

To reason over human biomechanics, we begin by recalling

that similar to a robot manipulator, human limbs can be

represented by kinematic chains, as shown in Fig. 1 (bottom

left). In this context, task-space wrenches, f ∈ R
6, can be

locally mapped to joint-space torques, τ ∈ R
7, through the

geometric Jacobian J , at configuration q, that is,

τ = JT (q)f , (1)

The above expression, ubiquitous in robotics, describes the map

from task- to joint-space variables. Nonetheless, actuation in

human kinesiology occurs in the muscle-space where muscle-

tendon forces are transmitted to joint-torques. The transmission
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(which can be seen as a mapping) in turn depends on a

musculoskeletal model that defines muscular parameters [14],

such as length, moment-arm (to joints) and how activation

levels are mapped to joint-torques, as follows

Γ (q) ζ = τ , (2a)

F
m
(q)α = ζ, (2b)

where ζ ∈ R
η is the vector of exerted muscle-tendon forces

for a η-muscles system, while Γ ∈ R
7×η is a matrix-

transformation that locally maps muscle forces to joint torques.

In other words, Γ acts as the muscle-space Jacobian where

each γij ∈ R element contained in Γ depicts the moment-arm

between the ith muscle and the jth joint. Hence, the ith muscle

contributes to the torque generated at the jth joint through

the moment-arm about the joint, that is, τj =
∑η

i γijζi, .
F

m
= diag

(

fmax
1,m, . . . , f

max
η,m

)

∈ R
η×η is a diagonal matrix

of maximum isometric muscle forces which gives way to a

normalized muscle-activity α ∈ R
η ,

α ∈ M
η, with M={αi ∈ R | 0≤αi≤1}. (3)

The matrices F
m

and Γ are posture dependent, which

reflects human variability to generate joint torques at different

configurations q. They are defined in [7] with a η=50 muscle

segments model. This highly redundant muscle-space leads

to an indeterminacy, where an infinite number of solutions

satisfy (2). Thus, to estimate α, we exploit the kinesiology

observation that humans resolve this redundancy in a consistent

and optimal manner [15]. Optimality, in this case, refers to

minimizing energy expenditure in terms of (3), i.e.,

α̂ = arg min
α∈Mη

{

αTα
}

s.t.Γ (q)F
m
(q)α = JT (q)f ,

(4)

In addition to exerted task-space forces, it is also interesting

to characterize the dynamic effects of task-space accelera-

tions. As noticed by [5], [16], from the dynamic model,

M (q) q̈+c (q, q̇)+g (q) = τ (where c and g are respectively

the centrifugal and Coriolis, and gravity torques, and M is the

inertia matrix), the second order approximation for acceleration

is ẍ ∼= J (q) q̈. Hence, the task-space acceleration to joint-

torques is given by τ ∝ M (q)J+ (q) ẍ, where J+ is the

pseudo-inverse matrix. Note M is positive and J+ has the same

input and output singular vectors as JT , hence the influence of

the accelerations will be similar to task-space forces in (1). That

is, an acceleration or a task-space force applied in the same

direction yields similar joint-torques in terms of positiveness,

yet with different weights.

B. Ergonomic Measure: REBA

To capture ergonomics, this work relies on the rapid entire

body assessment technique, namely REBA [10]. This postural

analysis draws a quantitative measure for ergonomics from

experiments and experts evaluation—ergonomists, physiothera-

pists, among others.

Ergonomics is quantified by a scoring system over two

groups: trunk, neck and legs and a second for the upper and

lower arms and wrists. A score is assigned to each body part

according to a set of 144 possible posture combinations. The

lower the better in terms of ergonomics. Fig. 1 illustrates

possible scores for the neck, trunk and upper limb. Additional

penalties are given due to large load/forces (first group) and

awkward/unsafe grasp (second group). An overall score (from 1
to 12) is computed, and a final penalty is added w.r.t. demanding

activities—these activities are static (a pose held for longer

than 1 minute), repetitive (more than 4 repetitions per minute),

and/or abrupt.

It is important to emphasize the complementarity of both

assessments. While postural ergonomics fail to capture high

impact and task-to-muscle-space force transmission, they

successfully measure different aspects of comfort/ergonomics

that are either neglected or hard to characterize through biome-

chanics alone. Indeed, REBA being an inherently heuristic

method provides rougher estimates on biomechanical aspects

in exchange for a more comprehensive estimation of different

human aspects, such as neurophysiology and psychosomatic

factors. For instance, biomechanics model alone fails to address

human perceived comfort, preferences, or the influence of

complex or repetitive actions to muscular comfort and their

influence over central fatigue.1 These features are embodied

in postural ergonomic metrics from several health studies and

experts’ evaluation.

In a similar fashion, a biomechanics mapping from task-

to-muscle-space leads to configurations with lower muscle-

activity and yet they may not be ergonomic (for instance,

extending one’s arm close to singularity to resist a pushing

action may lead to lower torques yet it is not ergonomic).

Furthermore, REBA includes additional body parts which are

hard to characterize in terms of muscular-activity due to many

issues, e.g., dimensionality and elaborate correlation.

One of our novel contributions is to capture the benefits and

trade-offs from both ergonomy-based and muscular-activity-

based metrics.

III. MUSCULAR AND ERGONOMIC MANIPULABILITIES

A. Muscular-Informed Manipulability Measure

In this subsection, we design a muscular-informed manipu-

lability measure from the muscular transmission rate to task-

forces. More specifically, from a quantitative assessment of

the task-space force generation capability w.r.t. the muscle-

tendon maximum forces from the biomechanical model. Such

an analysis is similar to how manipulability maps the force

capability for a robot manipulator w.r.t. its joint-torque limits. In

robotics, this can be quickly computed from the manipulability

ellipsoid—spanned by the singular vectors of the Jacobian.

Manipulability measures are drawn from the ellipsoid volume

[17], the transmission rate (magnitude) along axis [18], the

minimum singular value [19], or the condition number between

minimum and maximum transmission rates (see [19] for

advantages and drawbacks of each). Yet, in contrast to robotics,

human muscular-activation ((3)) is not defined over a vector-

space and, thus, does not admit an SVD spanning nor a pre-

image analysis over the unit-norm (since the space in (3) has

no norm).

1Central nervous system (CNS) fatigue is a phenomenon associated with
CNS (mainly brain and spinal cord) neurochemical response to prolonged
or repetitive exercises and cannot be explained by peripheral factors (e.g.,
mechanical and cellular changes) that affect muscle function.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2020

In this context, instead of mapping M
η → R

η to analyze

the corresponding manipulability ellipsoid—which has little

physical meaning in muscle-space (see Remark 1)—we evaluate

the bounds on the maximum task-space force capabilities along

predetermined directions identified by unitary {−1, 0,+1}3

forces and torques in task-space. To compute these bounds, we

take advantage of the linearity of (4) w.r.t. to task-space forces.

In other words, by normalizing the task-force—i.e., f = fωα

where
∥

∥f
∥

∥ = 1 and ωα = ‖f‖ ∈ R≥0—we can analyze the

muscular effort w.r.t. to a unitary vector in that direction, that

is, given (2), we have

Γ (q)F
m
(q)α = JT (q)f .

Hence, the maximum task-space force along the unitary

direction f is given by

ωα ,
1

max {α}
(5)

which physically corresponds to achieving one of the muscle-

segments force limit. Hence, this is the muscle-space limitation

to apply forces in the task-space direction f at a given q

configuration. And, ωα is the resulting maximum task-force

magnitude. The resulting measure ωα ∈ R≥0, in this sense,

acts as a muscular-informed transmission rate (MiTR) from

muscle-space capabilities to task-space forces along f .

From (5), a muscle-informed manipulability feasibility region

can therefore be defined over a vector ωα of muscular-based

transmission rates checked along a set of n−forces F ∈ R
6×n

as shown in Fig. 3. In this work, we define the muscular-

informed manipulability (MiM) index as the least muscular-

based force generation capability among the set of forces F ,

that is,

ωmin
α , min {ωα} . (6)

This manipulability index works similarly to the singular value

for robot manipulators [20], but signifies the worst MiTR in

the direction most difficult to apply forces, i.e., the closeness

to the muscular limit.

Remark 1. The optimization (4) defines a constraint norm for α

that satisfies the set definition (3). This ensures positiveness in

contrast to an induced norm over Rη often used for performance

characterization metrics, i.e., E , α̂
T
α̂,

E = τT
(

ΓF 2
mΓ

T
)−1

τ = fTJ
(

ΓF 2
mΓ

T
)−1

JTf . (7)

This solution is ill-conditioned as it neglects α positiveness,

i.e., it assumes the possibility of negative activation of mus-

cles, which is physiologically unfeasible. The manipulability

ellipsoid or measures from (7) similarly do not reflect the

biomechanics capabilities as shown in Fig. 3. Indeed, the result-

ing ellipsoid will always overestimate the actual biomechanics

capabilities which may lead to undesired higher muscular load.

Normalized Muscular-Informed Manipulability

To make both muscular-informed and ergonomics measures

compatible,2 we analyze (5)-(6) w.r.t. the most positive point

in the workspace. Hence, we refer to muscular-informed

2Notice that both metrics (5)-(6) are unbounded, that is, ωα, ω
min
α

∈ R≥0,
which make them harder to scale with ergonomics conditions.

z

657892413

x

y

Manipulability ellipsoid from

induced norm over Rm
Manip. feasibility region

Figure 3: Comparison between task-space bounded 3D forces

from biomechanics assessment (4)-(5) (red surface) with

ellipsoid from the induced norm over Rm (7) (outer ellipsoid).

transmission rate (MiTR) and muscular-informed manipu-

lability (MiM) as the normalized values

ωα ,
ωα

max{Ωα}
, (8)

ωmin
α ,

ωmin
α

max{Ωmin
α }

. (9)

where Ωα and Ωmin
α are respectively the set of all ωα and ωmin

α

within the workspace. Hence, max{Ωα} and max{Ωmin
α } are

the human specific maximum MiTR and MiM. Section IV-B

demonstrates how to compute the sets Ωα and Ωmin
α .

B. Ergonomics Quality Index

The REBA formulation outputs a stepwise linear score

function (re∈N
+) inversely proportional to ergonomic sat-

isfaction from 1 (satisfactory working posture) to 15 (high

risk of injury). Nonetheless, assessment of the REBA score is

nonlinear in the terms of ergonomists’ recommended actions

[10], which are often divided into acceptable (re=1) or low-

risk (re={2, 3}) postures which may or not require corrections,

medium risk postures (often outside the ergonomic range of

motion) if re ∈ [4−7], and high (re ∈ [8−10]) and very

high risk (re ∈ [11 − 15]) postures that require imminent

or immediate corrections to reduce risk of injury. In this

sense, an ergonomy-based index should not map REBA scores

linearly. Take, for instance, a deviation of REBA from ∆re = 3.

From 10 to 13, there is little change in ergonomist assessment

(unergonomic posture that should be fixed), whereas from

re = 1 to 4 it indicates a major change in ergonomy

condition (from satisfactory to a posture likely to be outside

the ergonomic range of motion). To capture such experts’

assessment, rather than a linear decreasing functional, we

designed an ergonomic functional over a normalized REBA

score, i.e., re ,
re−1

max(re)−1 ∈ [0, 1], as

ωe ,
(

1 + re · e
re
)−2

. (10)

This leads to an ergonomics index (ErI) {ωe ∈ R|ωe ∈ [0, 1]}
which better addresses REBA significance. For instance, in

the above example, a change from re = 1 to 4 produces a

deviation of ∆ωe = 0.38, while from re = 10 to 13 leads to

ωe varying from 0.20 to 0.11, i.e., ∆ωe = 0.09.

C. Extended analysis: Collision Penalization

When addressing manipulability over the human workspace,

self-collision plays an important part which is often neglected
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in the human-informed movement performance [5], [15] and

control and planning [2], [11], [21] literature. Regardless of

the muscular-to-force generation capability, our assumption

is that humans restrain their actions when close to head or

body. This closeness can be translated to penalties shaping the

comfortability space.

The penalization is adapted from [13] based on the nearest

points on the surface of the body part (p) and the arm (ph).

The distance from the human arm is hence defined by d =
‖∆p‖, where ∆p = p − ph. A collision penalty function

ρ : R3 → R≥0 designed to modify the manipulability measure

should ρ→ 1 if the arm is sufficiently away and goes to zero

as ph → p. Adapting from [13, and 15 therein], we choose

ρ =
(

1 + e(−σ∆p)∆p−ς
)−1

, (11)

for which ς > 0 satisfies a desired decay rate and σ > 0

is defined as σ , − 1
dd

log
(

1−ρd

ρd
dςd

)

with ρd < 1 being the

desired penalty at a prescribed self-collision distance dd > 0.3

Now, depending on the body part, we are only interested in

penalizing comfortability if exerted forces/accelerations have

components deployed in their direction. Hence, the penalty

function is rewritten as

ρs =

{

ρ, if fT∆p̄ > 0,

1, otherwise,
(12)

where ∆p̄ ∈ R
6 is an augmented vector with a zero 3D vector

to remove the influence of task-space torques—as collision

avoidance is only applied to translation.

Obstacle Avoidance: In addition to self-collision, in the

case where fixed obstacles are available in a scenario, e.g.,

a structured manufacturing plant, we can include obstacle

avoidance penalties manipulability distributions. Obstacle pe-

nalization (ρo) can be assessed in a similar fashion to (12) and

even included in the data structure construction. Additionally,

obstacle penalization can also be included in a later step—as

an update/reshaping of the comfortability map.

Notice that closeness to the desired object in a physical

interaction context should not be penalized.

IV. HUMAN COMFORTABILITY ANALYSIS

A. Human Comfortability Index

Drawing from muscle-activity and ergonomic measures (9)-

(10), a novel comfortability index is introduced following a

framework similar to the compatibility index from Chiu [18]

with additional penalization due to self-collision and obstacle

avoidance, that is,

̟ , ρoρs

(

καω
min
α + κeωe

)

. (13)

Casting comfortability in terms of muscular-activity and

ergonomics compatibility helps researchers evaluate human

adaptability, optimize performance, and design collaborative

robot actions. In this sense, the weights κα and κe are designed

to capture the benefits and trade-offs from each performance

index. For instance, giving more emphasis to ergonomics in

3In this work, we are considering different values for the head and trunk.

repetitive light hand-over tasks while focusing on muscular-

activity in case of a forceful interaction—for an example on

how to design the gains, see Section V.

Notice the comfortability quality metric (13) implicitly

considers human muscle- and joint-space redundancies since

both ωmin
α and ωe penalize kinematic configurations leading to

uncomfortable conditions and (4) optimizes over the biome-

chanics assumption of minimizing energy expenditure.

B. Human Comfortability Analysis

This section builds up a comfortability distribution in the

workspace. The proposed approach, similar to robotics concepts

of reachability and manipulability analysis [13], builds on a

3D or 6D voxelized data structure Ψ holding comfortability

information in each voxel ψ.

A workspace representation and the resulting comfortability

distribution are unique to individual’s characteristics. The

design involves scaling kinematics and musculoskeletal models

to match a specific human’s anthropometry features and provide

user-specific kinematic and muscle-tendon (e.g., muscle-tendon

lengths, moment arms, lines of action) parameters [7]. In

this sense, comfortability accounts for differences between

individuals features, as body sizes. While the influence in

ergonomics is purely kinematic, muscular-based performance

would result in slight differences in performance for the same

task and joint-space configuration.

Given an individual’s anthropometry features, the human

comfort quality distribution in workspace can be designed

in two different ways. Either task- or joint-space can be

discretized and the resulting configurations analyzed to update

the corresponding voxel ψ. In this work, the comfortability

representation in workspace is built by randomly sampling

a large set of joint-configurations. Each sample is thereafter

analyzed in terms of its task-space pose by computing the

forward kinematics model and categorized in the corresponding

voxel ψ. Values for MiM and ErI are computed and stored.

After analyzing all samples, we compute the set Ωmin
α of all

ωmin
α values and add the normalized MiM measure ωmin

α to

each sample. Finally, we compute the resulting comfortability

index ̟ from (13) given specific gains κα, κe and penalties

ρo and ρs. For each voxel, we select the configuration with

higher comfortability index ̟. This leads to an upper-bound

representation of comfortability that resolves human kinematic

redundancy in a consistent manner—optimizing comfortabil-

ity—satisfying biomechanics assumption that redundancy acts

to minimize the energy expenditure. This assumption, known as

the kinematic minimum effort assumption, is extended herein

to also address ergonomics and collision penalties. With this

structure, penalties due to different obstacles can also be quickly

updated and thereafter shape the comfortability index without

having to reconstruct the dataset distribution.

C. Task-specific Comfortability Analysis

In many practical applications, we are instead in-

terested in finding a task-specific comfortability index

(TS-comfortability), e.g., to analyze a pushing or throwing

scenario. For applications where we know the acceleration
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directions or forces involved, we can simplify the manipulability

analysis from Subsection IV-B. In this case, comfortability

information stored in each voxel ψ evaluates the muscular-

informed transmission rate ωα for the specific force f or

acceleration direction—instead of the more general muscular-

informed manipulability index ωmin
α —together with the er-

gonomic index ωe, as previously. From the resulting dataset,

we compute the set Ωα of all stored ωα values and add the

normalized MiTR ωα to each sample. Finally, we compute the

resulting task-specific comfortability index ̟:

̟ , ρoρs
(

καωα + κeωe

)

. (14)

given specific gains κα, κe and penalties ρo and ρs.

Fig. 4 presents one example of a human comfortability

distribution and a TS-comfortability considering a standard

musculoskeletal model from [7] available in [6].

D. Task-specific Comfortability Implementation

To reduce the computational complexity of building a

novel comfortability analysis for different task-specific ap-

plications, we propose a solution that explores an augmented

comfortability analysis (designed offline) that can be quickly

shaped towards a TS-comfortability for a specific force f or

acceleration. To this aim, instead of analyzing the MiM as

in (6), the augmented comfortability analysis should store, at

each voxel ψ, a vector ωα of all muscular-based transmission

rates along the set of n−forces F ∈ R
6×n.

Hence, we can compute for each voxel ψ an approximated

MiTR for the task-specific force f through a weighted linear

combination of the ι muscular-based transmission rates ωα

corresponding to the ι-closest forces—in terms of their scalar

projection over f . The projection angles themselves are used

as weights for the linear combination of selected values in ωα

which produces the resulting MiTR ωα for the task-specific

force f . Applying the same procedure for each voxel leads to

an approximated task-specific comfortability assessment which

can be computed as in (14).

The resulting TS-comfortability has the same ergonomic

features, yet slightly different muscular-based capabilities to (5).

The TS-comfortability can be used to quickly and efficiently

approximate the expected comfortability of the specific pose

in space w.r.t. to task-specific force. Conservativeness of this

analysis is explored in Subsection V-A.

V. APPLICATIONS AND QUANTITATIVE ASSESSMENT

A. Muscular-informed quantitative assessment

This example analyzes the computational advantages and con-

servativeness of exploring a precomputed muscular-informed

manipulability (MiM) datastructure in contrast to global

optimizers (GOs). To this aim, we implemented 1000 different

task-space forces and explored the capability of solvers

based on GOs4 (GO1 and GO2) without precomputation and

MiM-based to find a configuration q that minimizes the

muscular-activity effort ‖α‖ for each force. This scenario

4Both global optimizers rely on multistart SQP-solvers, yet GO1 integrates
a scatter-search-based surrogate [22] with additional trial points.
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Figure 4: The 3D visualization of the 6D distribution consider-

ing κα=κe=0.5, and orientation with maximum comfortability

per voxel, is shown in (a). In (b), we show different cuts

through the distribution, similarly to (c) which shows the

TS-comfortability for a upwards task-force (e.g., lifting).

was devised for a muscular-based planner in [2] to improve

pHRC response, yet one of the main constraints of the method

relates to its time-complexity. Herein, we analyze the efficiency

of the TS-comfortability implementation (Subsection IV-D

with κα=1, κe=0) with the workspace voxelized into 10k

datapoints—compared to GO1 and GO2.

For each task-space force, we computed the optimal ‖α‖
(and corresponding q) from both GOs and from the ℓ-best

results queried from MiM; i.e., we computed and selected

the best ‖α‖ from the ℓ queried joint-configurations. Results,

in Table I, illustrate that MiM leads to solutions up to two-

orders of magnitude faster, without compromising muscular

performance.5 The overall time includes the reshaping of datas-

truct which takes 0.033± .003. Results also show correlation

between joint deviation and muscular effort.

Muscle Act. Joint config. Overall
Effort ‖α‖ (a.u.) deviation (deg) Time (s)

GO1 1 − 42.5± 9.067
GO2 1.029± .159 15.9± 10.3 11.6± 1.894
MiM (ℓ1) 1.182± .265 48.65± 24.2 0.043± .003
MiM (ℓ30) 1.109± .197 23.4± 12.5 0.804± .017

Table I: Muscular-informed manipulability (MiM) compared

to global optimizers in terms of average execution time, joint

deviation and activity effort normalized by GO1.

B. Task Performance Evaluation

To further facilitate the design problem, we propose a simple

methodology to capture task-requirements in terms of the

benefits and trade-offs from muscular-informed and ergonomics

indexes and compute weights κα and κe. For instance, a task

involving larger forces/accelerations tend to be better captured

by MiTR (higher κα), whereas slow execution and/or repetitive

tasks with light loads are better captured through ergonomics.

To aid the design problem, we compute the weights κα, κe as

follows:
{

κα = 1
3 (Ts + Ti + (1− Tr)) ,

κe = (1− κα) ,

where Ts∈{0, 0.25, 0.5, 0.75, 1} refers to the task-speed re-

quirements—from steady, Ts=0 (e.g., holding arm upwards)

5To better highlight the compromise in muscular performance ‖α‖, the
average from using random joints configurations is 4.41± 1.47.
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to slow, regular (e.g., cutting), fast and swift execution, Ts=1
(e.g., throwing a football). Similarly, Ti varies according to the

task-intensity (acceleration/forces) and it is normalized from 0

to the maximum wrenches at maximum voluntary contraction

(e.g., from experimental trials, we found 40 N for puncturing).

Hence, we define Ti=0 for negligible forces with a linear

growth to the maximum Ti=1. Finally, we defined Tr as a

binary variable to assess repeatability of a task in terms of

REBA (and RULA) ergonomics, i.e., if a task is repeated more

than 4× per minute. Notice the values for Ts, Ti, and Tr have

been proposed based on heuristics and experience, yet they can

be greatly improved with learning techniques and individual

scalability.

To evaluate the efficiency of the manipulability representa-

tions for pHRC, we simulated the following scenarios.

1) Human-Robot Comfort-Based Handover: where Baxter

grasps and positions a bottle/cup on a table for a human to

grasp. We use TS-comfortability to plan where to best position

the bottle for human grasp in terms of comfortability, assuming

a fixed position for the human and all possible power grasps

around the bottle and normal to the palm. We simulated 100
scenarios with random values for the table placement, size,

height and bottle height and weights (m). For design, we

assumed half tasks were repetitive, e.g., a robot repeatably

handing a bottle, and Ts=0.5, Ti=m/30.

2) Physical Human-Robot Cutting: depicts a collaborative

application where the human uses a cutting tool to cut a board

held by the two-arm robotic system. The goal is to plan the

robot grasp that maximizes TS-comfortability while satisfying

kinematic and force constraints. For the 50 simulations, we

varied the robot to human position, the cutting force and tool

weight. We designed Tr=0, Ts=0.5, Ti=‖f‖/40, where f is

the cutting force.

Results: for both tasks are shown in Table II depicting the

average TS-comfortability ̟, MiTR ωα and REBA values

(lower the better) together with the computation time for the

planner using the precomputed task-comfortability information.

Table II also shows the comparison with three global-optimizer

based planners—GO1 Comf (max. (14)), Muscle-Only (8) and

Ergo-only6 (min. REBA re). Values are normalized by the

results from the GO1 Comf based planner.

As expected, an individual muscular-only based planner

performs poorly when it comes to ergonomics. Similarly, an

ergonomics-only based optimization leads to higher demands

on muscular-activity. In contrast, both global-optimizer and pre-

computed ̟ data based planners efficiently capture both aspects

during pHRC tasks. This leads to improved TS-comfortability

̟ results without compromising individual muscular-activity

or ergonomics—which is one of the main motivations of this

work.

Also, notice the usage of comfortability information leads

to results close to GO1 with considerable improvement in

assessment time. For instance, taking the grasp-informed

6Ergonomics is optimized with a surrogate functions over the discrete values
with additional multistart points to better address the stepwise REBA function,
yet the use of a differentiable adaptation of REBA values, see e.g., [11], can
lead to improved results in terms of time (same order of magnitude as the
ones from the proposed method).

tabletop handover task, due to the efficient data structures an

̟-based ordered set of human grasps with corresponding robot

configurations can be retrieved 300× faster when compared

to GO1 Comf. For the pHRC cutting, human configurations

are retrieved in less than 1 s with most time spent on the

generation of stable IK solutions for grasping.

C. Human-Robot Experiments

Finally, we conducted a series of pHRC experiments to

evaluate the efficiency of capturing and predicting possibly

human actions by rapid queries on the TS-comfortability

distribution. To this aim, five participants7 were asked to push

a tool as hard as possible against a board held by the Baxter,

simulating an elaborate peg-in-hole assembly, as shown in

Fig. 5. Given the nature of the task, we captured the interaction

between MiM and ErI with design parameters Ts=0.5, Ti=1
and Tr=0. We measured the difference between the predicted

and real values for the participant’s muscle-, joint- and task-

space configurations.8 Fig. 5 illustrates one trial with possible

poses to execute the task along the plane parallel to the

prescribed force, as presented in the form of TS-comfortability

in side and top views.

Table III illustrates effectiveness of the proposed method.

It leads to improved predictions and more consistent results

when compared to purely muscular-informed or ergonomics

assessment.9 From predicted joint configurations, we also

computed the predicted REBA score and the MiTR as shown

in Table IV. Notably, a muscular-only approach focuses on

maximizing MiTR in exchange of poor ergonomics, while the

opposite happens with ergonomics-only. In practical applica-

tions, a combination of both better resembles human actions

leading to a more accurate quality index for manipulation.

Indeed, the average REBA and MiTR values computed from

the experiments (3.2± 0.67 and 189.27± 44.99, respectively)

were closer to TS-comfortability.

Figure 5: The human-robot collaborative experiment is shown

on the left, while figures on the right depict sections of the

TS-comfortability distribution around the plane of the board.

7Experiments were approved by University of Leeds’ ethics committee (ID:
MEEC 17-034) as per the Declaration of Helsinki. Participants profile: 24-37
years old, four males and one female (one left-hand dominant).

8Sensors were placed on 9 different anatomical positions covering main
actuators (pectoralis m., ant. & post. delt., latiss. d., biceps b., lat. & med.
triceps, and flexor & ext. carpi rad) for the corresponding motor task.

9The RMSE of the recorded muscles and estimated muscle-activity (from
measured joints) is .090± .023, that is only about 6% lower than the predicted
muscle-activity from TS- comfortability.
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Tabletop Handover
Time

pHRC Cutting
Time

Comf. ̟ MiTR ωα REBA re Comf. ̟ MiTR ωα REBA re

GO1- Comf 1 1 1 218.7± 43 1 1 1 353.7± 92

Muscle-Only .88± .10 .93± .11 1.23± .28 150.7± 51 .87± .32 .98± .46 1.49± .37 256.8± 108

Ergo-Only .81± .18 .61± .27 1.06± .25 9.6± 0.26 .72± .25 .56± .28 .98± .27 21.1± .18

Comf. data .93± .13 .85± .24 1.07± .25 0.673± .05 .98± .23 1.02± .48 1.31± .22 7.16± 5.3

Table II: Average TS-comfortability and specific muscular-informed transmission rate (MiTR) and ergonomic (REBA) values

for two different human-robot collaborative tasks (normalized with global optimizer GO1- Comf results).

Ergonomics-only Muscular-Only TS- comfortability
α

RMSE
.125± .026 .113± .030 .096± .028

‖q
e
‖ 54.46± 15.14 51.20± 16.4 43.70± 14.8

‖p
e
‖ 10.45± 7.58 8.50± 4.07 6.65± 3.69

Table III: Root-mean-square error from predicted normalized

muscle-activity for 9 muscles and average joint-error norm

‖qe‖ (in deg) and positioning ‖pe‖ (in cm) compared to real

experiments from 5 users performing 3 trials each.

Ergonomics-only Muscular-Only TS- comfortability
REBA 2.67± .49 3.87± .64 2.93± .46
MiTR 168.05± 26.50 221.57± 36.08 194.89± 26.11

Table IV: Average REBA score (lower the better) and MiTR

from predicted joint-configuration for all trials.

VI. CONCLUSION

We proposed a new method for predicting human comfort

that combines two metrics: a muscle-activation-based metric

and an ergonomy-based metric. This method brings together

the advantages of the two metrics. We also proposed a

voxelized data structure to precompute this metric, since online

optimization can be too expensive for real-time operation.

Our experiments show that our combined metric can simulta-

neously optimize both ergonomy-based and muscle-activation-

based comfort. They also show that interpolation using the

voxelized data structure does not produce degraded comfort

when compared with online optimization, while the latter is

computationally extremely expensive. Experiments with real

human subjects show that when presented with forceful robot-

collaboration operations, they choose configurations that are

consistent with our method’s predictions.

Future directions for this work include integrating this metric

into real-time planning and control of continuous human-robot

collaboration tasks, and exploring the framework’s inherent

modularity to incorporate task-specific metrics, such as fatigue

estimation, visibility and peripersonal-space comfort [2].
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