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Abstract—Spike-based brain-inspired systems have shown an
immense capability to achieve internal stability, widely referred to
as homeostasis. This ability enrols them as the best candidate for
next-generation computational neuroscience as they bridge the
gap between neuroscience and machine learning. Spiking Neural
Networks (SNN), a third generation Artificial Neural Network
(ANN), which operates using discrete events of spikes, contributes
to a category of biologically-realistic models of neurons to carry
out computations. Spiking Astrocyte-Neuron Networks (SANN)
have a characteristic attribute homologous to brain self-repair.
Although SNNs are more powerful in theory than 2nd generation
ANNs, they are not widely in use as their implementations on
normal hardware are computationally-intensive. On the contrary,
due to the capability of modern hardware such as FPGAs,
which operates in MHz and GHz range, facilitates real-time
and faster-than-real-time simulations of SNNs. In this work,
we overcome the computational overhead of the SNNs using
the benefits of real-time hardware computations, utilizing time-
multiplexing to design a Self-rePairing spiking Astrocyte Neural
NEtwoRk (SPANNER) chip, generic to users’ choice of task,
emphasizing fault-tolerance, targeting safety-critical applications.
We demonstrate the proposed methodology on a SANN system
implemented on Xilinx Artix-7 FPGA. The proposed architecture
has minimal hardware footprints, power dissipation profile and
real-time computational capability, enhancing its usability in
constrained applications.

Keywords—Spiking Neural Networks, Astrocytes, Self-Repair,
Fault Tolerance, Time Multiplexing, FPGA, Bio-inspired Engineer-
ing, Neuromorphic Computing.

I. INTRODUCTION

Self-rePairing spiking Astrocyte Neural NEtwoRk (SPAN-
NER) is a novel chip- based on Field Programmable Gate
Arrays (FPGAs) designed to mimic bio-inspired systems con-
sisting of Spiking Astrocyte Neural Network (SANN) targeting
real-time safety-critical applications. The system works on
accelerated biological time scales and uses the principles of
time-multiplexing to achieve a compact architecture which is
highly scalable to support real-world tasks. This work collab-
orates with the researches in Neuroscience with Electronics in
designing a brain-inspired spiking neural network node generic
to the users choice of application. The work acknowledges the
contribution of a special cell in brain termed the Astrocyte in
regulating neurotransmitters [1] and unsupervised biological
learning methods [2], [3] in establishing fault-tolerance in the
system and hence is a brain-inspired work.

The human brain includes two major cells- Neurons and

Glia. Glia can be of different types including Astrocytes,
Oligodendrocytes, and Microglia. These cells work together
to create electrical activity in the neuron. It is this electrical
activity that underpins the ability of human intelligence. Brain
cells use spikes for communication. A time-series of electrical
signals recorded from individual neurons in the brain is termed
a spike-train. Spike trains are action potentials that occurs
when the membrane potential of a neuron exceeds a threshold
value and rapidly falls. Hence the human nervous system is a
spike-driven system. Spiking Neural Networks (SNN) mimic
spiking mechanisms of neurons as they perform computations
using biologically-realistic models. SNNs aims to reduce the
disparity between neuroscience and Machine Learning (ML)
and are promising as the next generation ML [4], [5].

The SPANNER architecture is built around the question:
Can the damaged brain repair itself? The human brain is
remarkable in its ability to self-repair, for example following
injury or stroke. The human brain is capable of self-repair
resulting from a range of distributed and fine-grained mecha-
nisms which act in synchrony to ensure that the neurons in the
system continue to function in as close to a normal state as
possible. This opens up two concepts in neuroscience. One
deals with brain plasticity, whereas the second investigates
how new brain cells replace damaged ones (Neurogenesis and
Synaptogenesis). Brain plasticity, also called neuro-plasticity
is the brain’s ability to change its own structure and func-
tion for adjusting to new situations within the body or in
the external environment [6], [7]. This work emphasizes the
concept of brain-plasticity using two concepts. Firstly, we
utilize the astrocytes capacity in regulating neurotransmitters
leading to selective transmission of neural information in the
SNN. Secondly, we include unsupervised biological learning
methods in the architecture to produce reliable neural activity
irrespective of failures in the system.

Previous papers [8], [9] discuss how Astrocytes and brain-
plasticity can co-exist to produce a useful application. One
problem faced with the above implementation is scalability.
In this paper, we work on a universal architecture which
is scalable and implementable in reduce hardware resources
achieving real-time computations. The system is run on Field
Programmable Gate Arrays (FPGAs) with a clock speed of
100MHz, establishing homeostasis in milliseconds. In this
work, we define homeostasis as the ability of the neurons
in the system in achieving a constant firing activity irrespec-
tive of faults in the system. The faults we consider include



irregular spiking activity in presynaptic neuron or failures in
the interconnection between the pre and postsynaptic neurons
(synapses). Although the potential of SNNs is widely recog-
nized, their capabilities are not fully exploited due to their
computationally-intensive calculations of differential equa-
tions. Conversely, modern hardware such as FPGAs, which
operates at MHz and GHz range helps in achieving this goal.
Recent research [10], [11] showed that FPGAs can outperform
GPUs in complex tasks using Deep layer Neural Network
(DNN), AI, big data or ML. Also, FPGAs provide superior
energy efficiency compared to GPUs. Compared to Application
Specific Integrated Circuits (ASICs), FPGAs are flexible and
make it easy to implement changes on the same chip. In
this work, we overcome the computational overhead of the
SNNs using the benefits of real-time hardware computations
on FPGAs, utilizing time-multiplexing to design a SPANNER
chip.

Time Multiplexing is a method of reusing a common signal
pathway so that each activity uses the path only for a fraction
of time [12]. In this model, we extract common operations
in a SANN system and share these resource using multiple
signals arriving through this path at specified time intervals.
Sparse nature of neuronal spiking behavior helps to utilize time
multiplexing without much loss of spiking information (dense
nodes may loss spikes during time-slots of other nodes). The
nature of FPGA in achieving high calculation speed enables
real-time interactions with the environment to be easily latched
into the SANN system without loss. The SPANNER chip is
generic to users’ choice of task, emphasizing fault-tolerance,
targeting safety-critical applications and is a promise to next-
generation cognitive or neuromorphic computing applications.

The rest of the paper is organized as follows. Section II
describes the contribution of astrocytes in regulating neural
transmitters, emphasizing its role in selectively propagating
spiking information down the multi-layer neural network.
Section III introduces the role of learning mechanisms in a
SANN system in achieving a constant firing activity in a
system. In Section IV, the design of novel SPANNER Uni-
versal Function Generator derived by using time-multiplexing
and solutions for implementing complex biological processes
using approximations for a hardware efficient scalable design
is discussed. This section incorporates the main contribution of
the work. Experimental results establishing the effectiveness of
the proposed scheme by analyzing the learning/repair abilities
are presented in Section V. Finally, conclusions and future
work are discussed in Section VI.

II. ASTROCYTE-GABA INTERACTIONS

Synapses in the human brain are surrounded by astrocytes,
with each astrocyte encloses over 100000 synapses [13].
This introduces a notion of a tripartite synapse [14], which
consists of presynaptic terminal, a postsynaptic terminal, and
an astrocyte terminal. The role of astrocyte as an active ele-
ment in the brain facilitating neurotransmitter regulation, brain
homeostasis, and normal cognitive function has been acknowl-
edged [15]. Recent evidence shows that interneurons play a
vital role as key regulators in neural network functioning and
can activate Ca2+ signaling in astrocytes [16]. There are two
classes of interneurons: excitatory-utilizes the neurotransmit-
ter glutamine, and inhibitory-uses gamma-aminobutyric acid

Fig. 1: Regulatory phenomena mediated by GABAergic
signaling: (A) Tripartite synapse with a paired interneuron
(B) represents the signaling pathways between a GABA in-
terneuron and the tripartite synapse at a low presynaptic
frequency (C) as presynaptic frequency increases (D) and at the
high presynaptic frequency. The conventional tripartite synapse
consists of a presynaptic terminal, a postsynaptic terminal, and
an astrocyte terminal. Transmission probability of a tripartite
synapse coupled to a GABA inter-neuron follows a Gaussian
distribution. Transmission probability reduces under low or
high presynaptic input.

(GABA) and/or glycine as their neurotransmitter. The balance
between the firing of excitatory and inhibitory interneurons
is critical in the maintenance of normal sensory function. In
this work, we now consider the signaling pathways between a
tripartite synapse and a GABA interneuron terminal as shown
in Fig. 1-A.



Let assume that the presynaptic spiking frequency (fpre)
is same as that of the GABA neuron frequency [16]. At
low presynaptic firing activity GABA binds to GABA-A
receptors on the presynaptic terminal and to GABA-B recep-
tors on the astrocyte. Low input spike rate produces low 2-
Arachidonoylglycerol (2-AG), a type of endocannabinoid and
retrograde messenger. This leads to degradation of inositol 1,
4, 5- trisphosphate (IP3) within the astrocyte as per equation
(1).

d(IP3)

dt
=

IP ∗

3 − IP3

τIP3

+ γIP3
AG (1)

Where IP3 is the quantity within the astrocyte’s cytoplasm,
IP ∗

3 is the baseline of IP3 when the cell is in a steady
state and receiving no input, τIP3

and γIP3
is the decay and

production rate of IP3 respectively. Because of an insufficient
amount of IP3 is released to open calcium stores in the
astrocyte at low fpre and therefore there is no gliotransmitter
release from the astrocyte. Also, because GABA is biding to
GABA-A receptors at the presynaptic terminal under low fpre,
this phenomenon dominates and causes an inhibitory effect
represented a low transmission probability (PR) value. This is
depicted in Fig. 1-B.

If fpre is increased further, a point is reached whereby a
sufficient amount of IP3 exist within the astrocyte cytoplasm
to trigger the opening of the calcium store, leading to the
production of calcium spikes and the opening of group I
metabotropic Glutamate Receptors (mGluR). This signaling
results in an increase of synaptic transmission probability
through indirect signaling, which overrides the inhibitory effect
as shown in Fig. 1-C.

However, if fpre continuous to increase, the IP3 within
the astrocyte increase and achieves saturation, whereby the cal-
cium oscillations stop leading to the ceasing of gliotransmitter
released by the astrocyte and the PR falls rapidly. This process
is depicted in Fig. 1-D.

Based on the above three observation, we represent trans-
mission probability using a Gaussian function as presented in
equation (2). This can be viewed as the capability of the system
to selectively pass information from one neuron to another in
a multi-layered network [1].

PR = exp

(

(fpre − fs)
2

2σ2

)

(2)

Where fpre is the frequency of presynaptic neuron spikes, fs
is the center frequency and σ is the width of the Gaussian
passband.

III. LEARNING IN SANN

Figure 2 shows a two-layer network with 3 presynaptic
neurons for the output neuron NO. Each pre-post neural cou-
pling has multiple synaptic pathways (8 in our experiments) of
different path delays. The design of multiple pathways permits
fault-tolerance and is a mechanism to build postsynaptic po-
tential. The GABA-astrocyte interaction regulates transmission
probability of each input to neuron NO as illustrated in Fig. 2.

Fig. 2: Basic unit for fault-tolerant learning mediated by
an astrocyte. Neurons N1, N2 and N3 resides in layer 1 and
NO resides in layer 2 of the SANN. Astrocyte A∗ regulates
the transmission probability of inputs received by NO from
N1, N2 and N3. There are 8 parallel paths between each of
presynaptic and the postsynaptic neuron. A∗ modulates PR to
pass the selected pattern to the neuron NO. Based on the input
pattern, the output neuron NO learns to achieve the required
spike rate.

Let us assume that the neuron NO has three presynaptic
neurons N1, N2, N3. Each input is encoded by a binary
representation of spike train. For example 1 = 35Hz and
0 = 25Hz. We would like to detect a pattern of spike
train of frequency 35HZ, 25Hz and 35HZ (equivalent to
pattern 101)respectively from the presynaptic neurons. GABA-
astrocyte coupling controls transmission probability of each
connection between a pair of pre-post synaptic neuron (total
3 ∗ 8 interconnection). A minimum transmission probability
PR0 is required to permit a spike to reach the input of
neuron. Let us consider the connection between N1 and NO.
The transmission probability of each of the eight paths are
calculated as per equation (2), with fs = 35Hz, and if any of
these paths has a transmission probability of PR0 or greater,
the spikes arriving through N1 has the required spike rate. This
calculation is repeated for other branches of neurons connected
to NO for their respective center frequency. If all the branches
pass the test, the pattern is detected and the current equivalent
to the spike inputs are fed to the neuron NO. From the received
inputs, the neuron NO, and it learns to achieve a constant firing
activity of 35MHz.

To generate a constant firing activity for the SANN, we use
a learning algorithm. In this approach, STDP [2], [3], together
with BCM learning rule [17], [18] are combined to develop



the BCM-STDP rule. STDP uses the time difference between
presynaptic and postsynaptic spikes to adjust the synaptic
weights as is described by, Equation (3)

δw(∆t) =

{

+A0.exp(
∆t
τ+

), ∆t ≤ 0

−A0.exp(−
∆t
τ
−

), ∆t > 0
(3)

Where δw(∆t) is the weight update, ∆t is the time
difference between presynaptic and postsynaptic spike events,
A0 is the height of STDP learning window controlling the
maximum levels of weight potentiation and depression, τ+ and
τ− control the decay rate of weight updating. In addition, the
BCM learning rule modulates the height of the STDP plasticity
window as a function of the neuron actual firing rate according
to Equation (4).

A0 =
A

1 + expa(f−f0)
−A0 (4)

Where f and f0 are the actual and target firing rate of the
postsynaptic neuron, respectively, A is the maximum height of
plasticity window and A− is the maximum height of plasticity
window for depression. The parameter a is constant which
controls the opening/closing speed of plasticity window and is
found experimentally to be 0.1.

IV. DESIGN OF SPANNER UNIVERSAL SYSTEM-ON CHIP

The universal SPANNER system-on Chip, built on the
hardware consist of 3 layers - the input layer, the hidden layer,
and the output layer. The astrocyte-GABA interaction permits
flow of information between the neurons of two adjacent layers
as descibed in Section II. Based on the inputs received, the
neurons in each layer learns to achieve a constant spiking
activity as described in Section III. The term ’universal’ is used
here to emphasize the fact that any ‘n’ input boolean function
expressed in Sum of Product (SOP) form is implementable
using an ‘n’ input SPANNER chip. The details of how to build
a function using SPANNER architecture is described below.

A. Complete Architecture

An ‘n’ input SPANNER architecture consists of three layers
of neurons as shown in Fig. 3. Neurons in the input layer
reflect the number of inputs to the system. The neurons in
the hidden layer perform the boolean operation of products of
input signals. Considering ‘n’ inputs we have 2n combinations
and hence 2n hidden layer neurons. For each combination of
input, the corresponding spike trains need to be permitted to
flow to the corresponding hidden layer neuron. Hence for each
hidden layer patterns there exist an Astrocyte. This implies that
a hidden layer consists of 2n Astrocytes in total. Output layer
of the network consists of ’k’ neurons, each represents the
number of functions to be generated. Output layer consists of
’k’ number of astrocyte to connect the spike trains of hidden
layer neurons with its respective functions.

We now describe how to implement boolean functions
using SPANNER architecture. Let us consider a system with 3
inputs S1, S2 and S3. This example corresponds to an obstacle
detection network, where S1, S2, S3 represents the sensor

Fig. 3: Complete Architecture for fault-tolerant learning
SNN mediated by an astrocyte. Neurons NIi, (0 < i ≤ N)
resides in input layer, neurons NHj , (0 < j ≤ 2N ) resides in
hidden layer and NOm(0 < m ≤ K) resides in output layer
of the SANN. There are 2N astrocyte regulating transmission
between input layer and hidden layer. A∗Hj is interpreted as
astrocyte j of hidden layer. There are K astrocyte regulating
transmission between hidden layer and output layer. A∗Om is
interpreted as astrocyte m of hidden layer. Astrocytes modu-
lates transmission probability between the layers to permit the
selected pattern to the next layer. Based on the input pattern,
the post-synaptic neurons learns to achieve the required spike
rate.

distinguishing presence (1) or absence of an obstacle (0) to
a robot from directions forward, right and left respectively.
The function F corresponds to a decision to move forward,
R corresponds to move to the right and L corresponds the
decision to move left. The functions to be generated are
F = S1, R = S1S2S3 + S1S2S3 are L = S1S2S3. Let
us encode the system with the spike frequency of 25Hz
to represent a logic 0 and 35Hz to represent a logic 1.
Since there are three inputs to the system, we require 8 (23)
hidden layer neurons and the same number of astrocytes in
the network hidden layer. Now consider a pair of neurons
NI1 of the input layer and NH1 of the hidden layer. There
are 8 parallel paths (synapses) between this pair of neurons
as discussed in Section III. Now consider all input neurons
connected to NH1. The astrocyte-GABA interactions between
these inputs neurons and hidden layer neuron NH1, (A∗H1)
monitors all spikes arriving at NH1 and selectively enables
spike flow only if the pattern is matched. Since the circuit to
be configured is in SOP form, the pattern to be detected in
NH1 is ‘000’ (25Hz, 25Hz and 25Hz: No obstacle in any
direction). Spike propagation to NH1 is permitted is any of
the 8 interconnections between each pair of pre-post synaptic
neuron has a transmission probability higher than PR0 (a
predetermined threshold). Similarly, every other hidden layer
neuron detects respective patterns (presence/absence of obsta-
cle in various directions) based on its corresponding astrocyte-
GABA interaction.

Each hidden layer neuron receives different density of
spikes through 8 different synapses. A completely healthy



Fig. 4: Basic unit for fault-tolerant learning mediated by an astrocyte. Neurons N1, corresponds to a pre-synaptic neuron
and NO represents a post-synaptic neuron in the SANN system. Astrocyte A∗ regulates the transmission probability of inputs
received by NO from N1. The basic unit contains only a single path between the presynaptic and postsynaptic neuron. A∗

modulates PR so as to permit the selected pattern to the neuron NO. If the pattern is matched, the spikes are permitted to flow
to the next execution unit, otherwise spike flow is blocked using a multiplexer. Based on the input pattern, the output neuron
NO learns to achieve the required spike rate.

interconnection means all 8 inputs between a pair of neurons
are non-faulty. This may not be the case in practice. Due to
failures in the system (Noise from sensors or interconnection
failures in hardware implementations), even if patterns are
correct, the hidden layer neuron may receive different spike
rates. The next stage of learning enables the hidden layer
neurons to achieve a constant activity irrespective of variations
in the presynaptic inputs. We assume that at least one healthy
interconnection exists between a pair of neurons. When a
pattern is matched, (at least one interconnection exists between
input layer neurons (NI1, NI2, NI3) and NO1). Based on
the received spikes, the synaptic interconnections of neuron
NH1 is updated using Equations (3) and (4) to achieve a
constant activity of 45Hz (predetermined choice of frequency).
when all the hidden layer patterns have been recognized,
the Astrocyte in the output layer connects the pattern to the
respective function. Here the purpose of the Astrocyte-GABA
interconnection is to selectively permit hidden layer signals
to the output layer neuron. The Astrocyte corresponding to
function F (A∗O1) permits spike flow to NO1 if frequency
of hidden layer neuron NH1, NH2, NH3 and NH4 are
all 45Hz. Similarly (A∗O2) permits spike flow if NH5,
NH6 and NH8 are 45Hz and (A∗O3) permits spike flow
if NH7 is 45Hz. If the patterns are matched, the output
layer neurons fire to the predetermined frequency of 10Hz
using learning mechanism. The final decision of the obstacle
detection system can be given priorities using inhibitory inter-
neurons [19] to take final decision of movement of the robot
(Forward > Right > Left).

B. TDM based Reduced Architecture on Hardware

In this paper, we use a Leaky Integrate-and-Fire (LIF)
neuron model [20], due to its simplicity as they require
low computing resources and minimal tuning parameters. The
neurons are arranged in layers, where a basic spanner unit
consist of two neurons and a single interconnection between
them as shown in Fig. 4. This unit is then time multiplexed to
generate the complete architecture in Fig. 5. The representation
of a LIF neuron is described in Equation (5).

τmem

dv

dt
= −v(t) +Rmem.Itotal (5)

Where τmem, Rmem, v and Itotal are the time constant, mem-
brane resistance, membrane potential and current injected to
the neuron respectively. On reaching the threshold voltage, the
membrane potential is brought back and held at 0V following
a nominal refractory period (3 clock cycles). The expression
is evaluated using Euler method of integration with a fixed
time step. Now we explain how, the complete architecture
is brought to a reduced form for hardware implementation
using the concepts of time multiplexing and optimization. The
current generated by ‘ith’ synapse of presynaptic neuron ‘j’ (
Sji) is given by equation (6).

Iinjji = η.(Wji) (6)

Where (Wji is the synaptic weight of Sji, η is a constant used
to modulate the synaptic weights. Based on the value of PR
(determined by the astrocyte), the flow of current to the neuron
is regulated as described in equation (7).

Iji(t) =

{

Iinjji , rand ≤ PR

0, otherwise
(7)

Where Iinji(t) is the amount of current generated at time
t by the synapse Sji.

′rand′ is a random function used to
model the probabilistic synapse. Ij,i(t) is a current released
by the synapse on a successful probabilistic event described
as in equation (7). The total current injected to a post-
synaptic neuron (if a pattern is detected by GABA-Astrocyte
interaction) is given by equation (8).

Itotal =

p
∑

j=1

q
∑

i=1

Iinjj,i(t) (8)

Where ‘p’ is the number of presynaptic neurons (also the
width of a pattern), ‘q’ is the number of paths between a pair
of pre-post synaptic neuron (8 in our experiments). Based
on the input pattern, post-synaptic neuron learns to achieve
the required spike rate. Learning is achieved using STDP
and BCM rules, using equations (4) (3). If output frequency
deviates from the required output frequency (fo), the weights
of synapses are updated by a certain amount. For hardware
implementation, equation (4) is approximated using a straight
line and equation (3) by powers of 2 (shift operations).



Fig. 5: Time Multiplexed SPANNER Architecture. Neurons NI1, NI2 and NI3 resides in the input layer, the inputs are time
multiplexed to the system, thus reflecting a presence of a single input neuron. and NH resides in hidden layer of the SANN. This
neuron is time multiplexed to perform the functionality of 8 hidden layer neurons in the complete architecture. Astrocyte A∗

regulates the transmission probability of inputs received by NH from the input layer. The pattern to be checked by the astrocyte
changes periodically to incorporate detection of all patterns. The system uses memory elements to store responses in various
time-multiplexed stages.

Transmission probability represented by a Gaussian filter in
equation (2) is approximated to a rectangular bandpass filter.

We observe that for every pair of neurons there exist
8 parallel paths for the spike propagation. The operations
performed in this passage include delay by a predetermined
time, astrocyte determining if this route has the specified
pattern frequency and updating the synaptic weight of this in-
terconnection using STDP rule following the relation between
the postsynaptic neuron and presynaptic neuron spike times.
For every 8 interconnection, the same operation is performed,
similarly, for every pair of pre-post synaptic neurons, the
above-mentioned operation is repeated. Also, for every pattern
identification (postsynaptic neuron), the same operation is
performed. Hence we use the above procedures as a basic unit
to be multiplexed for detecting a particular pattern from the
inputs, this is depicted in Fig. 4.

The spanner architecture implemented in hardware consists
of 3 input layer neuron, 8 hidden layer neuron and 3 output
layer neuron. For implementing any 3 input function, the basic
spanner unit is multiplexed three times. The values corre-
sponding to each stage of multiplexing are stored in memory,
particularly we store values of spike frequencies and synaptic
weights. This is reused for further stages. The complete time
multiplexed spanner architecture is shown in Fig. 5. In every
three clock cycles, every input neuron (presynaptic neuron) is
given a chance to propagate its spike through the basic unit.
But for each of its turn, they are propagated with a different
predetermined delay, to mimic the 8 parallel delayed paths
in the complete architecture. Hence in a total of 24 (3*8),
clock cycles are required to process all the input neurons
corresponding to a hidden layer neuron. Then the next hidden
layer neuron is processed, which permits a different pattern.
This process is repeated for every hidden layer neuron. Hence
in total, the unit requires 192 clock cycles (3 ∗ 8 ∗ 8) to
propagate evaluate spikes of all combinations of input-hidden
layer neuron. The system requires 1920000 clock cycles to

achieve a constant firing activity. The device operates at a clock
speed of 10MHz, which implies a 200ms to make a decision
(generate a constant activity), which can be considered as real-
time or faster than real-time for real-world applications. We
target an application of mapping proximity sensors to wheels
of a robot, similar to [8]. For safety-critical missions, the
proposed scheme provides fault-tolerance and high scalability
compared to [8].

Note that the sparse nature of spike trains helps to utilize
time multiplexing without much loss of spiking information.
Also, the nature of FPGA in achieving high calculation speed
enables real-time interactions from the environment to be
easily latched into the SANN system with minimal loss of
spiking information thereby achieving a faster control response
which is real-time and responsive.

V. EXPERIMENTAL RESULTS

A. Functional equivalence between the two model

The proposed architecture of enhanced learning SANN is
implemented in Xilinx Vivado 2018.1. The system is bench-
marked against a fault-free SANN architecture implemented
on the FPGA. We deliberately induced faults in the system to
establish the concept of fault recovery. In presence of faults of
various grades, the proposed system could successfully estab-
lish fault-free behavior using the proposed neuronal learning
concept. The results are in agreement showing that the FPGA
based approximation produces results comparable with the
complete architecture in hardware and Matlab based software
implementations.

B. Real-time Computations

The functions discussed in Section IV is designed using the
complete architecture and reduced time-multiplexed architec-
ture. The plot in Fig. 6 shows the response for the obstacle in
the right direction. As expected both the complete (blue) and



Fig. 6: Real time computation capabilities of SPANNER Architecture. Similar test conditions are applied to the complete
architecture and the time-multiplexed spanner. The response is collected for the function R described in section IV. Both the
complete architecture (blue) and the time-multiplexed architecture (red) produces real time response.

TABLE I: Hardware overhead of components of SPANNER
Architecture

Components Slice Slice Reg LUT BRAM DSP

LIF neurons 7 38 78 0 7
A0 Generator 140 32 470 0 16

Moving Average calculator 11 21 21 2 0
PR 5 1 21 0 0

synapses 12 425 1138 0 16

the reduced (red) architecture produces real-time responses.
The complete architecture achieves constant activity at 1ms,
whereas the time-multiplexed architecture requires 200ms
to achieve the same response. The reduced architecture takes
more time to achieve a constant activity, which is due to the
trade-off for hardware resources.

C. Hardware and Power Footprints

The proposed SPANNER is implemented on the Xilinx
Artix-7 FPGA board. Recovery of firing rates in the proposed
methodology, implemented on the FPGA is monitored using
the Integrated Logic Analyzer (ILA). Power estimation of the
circuits was carried out using Xilinx Power Estimation and
Analysis Tools and delay estimation using Timing Closure
& Design Analysis. Table II reports the hardware resources
required for implementing a single unit of various components.
Table I depicts the footprint of the complete architecture and
time-multiplexed SPANNER architecture. There is a notable
reduction in hardware footprints for the reduced implemen-
tation. The proposed reduced architecture is scalable to any
number of inputs, the trade-off would be the real-time response
rate of the system. The complete architecture was synthesized
using Xilinx design tools but was large for realization in Xilinx
Artix-7 or larger FPGAs such as Virtex-7. We have previously
incorporated the concept of complete spanner architecture
in a reduced form using a hybrid network (combination of
spiking network and digital circuits) [8]. On the contrary,
this work represents a complete spike-driven system (not a
hybrid system). Estimated total on-chip power dissipation and

the maximum operating frequency of the overall proposed
architectures are 1.2W and 60MHz respectively. As evident
from these reports, the proposed fault-tolerant learning mech-
anism in a SANN can be incorporated with reduced hardware
overhead and power consumption, establishing its usability
in constraint applications. The proposed system implemented
on an FPGA achieves an acceleration of 104 compared to
the software simulation, which guarantees the viability of
this approach for real-time fault-tolerant implementations. For
a complete architecture, hardware utilization increases with
the number of inputs. The proposed TDM based SPANNER
architecture is generic and universal for any number of inputs.
The increase in hardware in proposed architecture is only in
the memory requirement. We also suggest the use of cascaded
SPANNER reduced architecture for building larger circuits.

VI. CONCLUSIONS

In this paper, we discussed how interactions between
Astrocytes and GABA neuron can be utilized in implement-
ing a fault tolerant system incorporating spike-based learn-
ing mechanisms. The SPANNER architecture combines the
ability of GABA-astrocyte interactions in selectively transmit-
ting pieces of information down a multi-layer network. The
concept is implementable with reduced hardware resource,
power dissipation and propagation delay leading to a SANN
system scalable to a deep-layer neural network architecture.
The SANN system is adaptive to the changes in the system
and does not require any dedicated units for fault detection
and correction (a fault-tolerant system). Even if some of the
inputs are faulty, the system could regenerate the task by
adjusting the synaptic weights of the fault-free interconnects.
Secondly, the proposed idea is demonstrated on an FPGA
system with a real-time computation (104 times faster than
biological timescale(1ms)). One reason is its ability to work in
an accelerated biological timescale (clock speed of 10MHz).
The system could effectively establish a constant activity with
a minimum of 1 interconnection (healthy synapse) between
a pair of presynaptic and a postsynaptic neuron. Finally, the



TABLE II: Hardware overhead of 3-input complete SPANNER Architecture and Time-multiplexed SPANNER Architecture
(output layer neurons are not considered)

Methodology Complete Architecture Reduced Architecture

Components Number of Units Slice Slice Reg LUT BRAM DSP Number of Units Slice Slice Reg LUT BRAM DSP

LIF neurons 77 28 418 858 0 77 2 14 76 156 0 14
A0 Generator 8 1120 256 3760 0 128 1 140 32 470 0 16

Moving Average calculator 32 352 168 168 16 0 2 22 42 42 4 0
PR 32 160 32 672 0 0 1 5 1 21 0 0

synapses 32 384 13628 36416 0 128 1 12 425 1138 0 16

reduced architecture is compared with a complete architecture
in terms of area power and computational capacities. Future
work will deal with the development of SPANNER architecture
to effectively distinguish faults from sensor noise. The work is
also open to applications targeting fault-tolerance, where safety
is an important constraint. The work address fault-tolerance in
electronic devices, and sensor failures in capturing environ-
mental data, by combining bio-inspired fault-tolerance princi-
ples. The project aims at developing a bio-inspired SPANNER
chip, for in order to achieve fault-resilient functional circuit
designs. We particularly target applications of the proposed
hardware SANN systems in safety-critical robotic missions for
implementing a real-time responsive system establishing the
fault-resilience.
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