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Abstract 

 

Native mass spectrometry (MS) allows the interrogation of structural aspects of macromolecules in the gas 

phase, under the premise of having initially maintained their solution-phase non-covalent interactions intact. 

In the more than 25 years since the first reports, the utility of native MS has become well established in the 

structural biology community. The experimental and technological advances during this time have been rapid, 

resulting in dramatic increases in sensitivity, mass range, resolution, and complexity of possible experiments. 

As experimental methods have improved, there have been accompanying developments in computational 

approaches for analysing and exploiting the profusion of MS data in a structural and biophysical context. In 

this perspective, we consider the computational strategies currently being employed by the community, aspects 

of best practice, and the challenges that remain to be addressed. Our article is based on discussions within the 

European Cooperation in Science and Technology Action on Native Mass Spectrometry and Related Methods 

for Structural Biology (EU COST Action BM1403), which involved participants from across Europe and North 

America. It is intended not as an in-depth review, but instead to provide an accessible introduction to and 

overview of the topic – to inform newcomers to the field and stimulate discussions in the community about 

addressing existing challenges. Our complementary perspective article (also in this issue) focuses on software 

tools available to help researchers tackle some of the challenges enumerated here. 

  



 

Introduction 

 

Native mass spectrometry (MS) involves the transfer of proteins and other macromolecules intact into the gas 

phase with minimal disruption to the non-covalent interactions that are present in their solvated form. This 

then allows a range of experiments to probe the macromolecules’ higher-order structure, including their fold, 

assembly and non-covalent interactions 1-4. Native MS has helped elucidate various aspects of biomolecular 

structure, including the subunit composition, stoichiometry and stability of complexes, as well as the dynamic 

behaviour they display. When combined with ion mobility (IM), where ions are separated based on their 

mobility through an inert buffer gas (kept at constant pressure and temperature) under a weak electric field, 

the size, in the form of a rotationally averaged collision cross section (CCS), of a macromolecule can be probed 

5. By virtue of being inherently dispersive, native IM-MS has a unique capability to characterize individual 

states in heterogeneous and dynamic systems, such as co-populated conformations or assembly states of 

complexes. Thus, native IM-MS has enabled a large number of insights into a diverse array of macromolecular 

systems, encompassing proteins, nucleic acids, carbohydrates and lipids, and combinations thereof 6-8. 

  

Proteins and other macromolecules are typically dynamic, in that they populate a range of interconverting 

structures at equilibrium. Frequently, this heterogeneity is such that macromolecules are better described as 

structural ensembles (of conformations and/or assemblies), defined by the free-energy landscape accessible at 

given conditions. IM-MS is sensitive to some of this complexity, providing sparse data that can be a powerful 

descriptor of molecular states. These data on their own are not sufficient for characterizing molecular structure 

at atomic detail, but they can, in combination with other information, provide insight into the native state and 

surrounding free-energy landscape 9-10.  

 

Native IM-MS is conducted in the absence of bulk solvent, a factor which may induce some structural changes 

in the molecules under analysis. Because the gas-phase structures of large biomolecules are dictated by 

numerous non-covalent interactions – many of which are far from the molecular surface – they typically retain 

the vast majority of their solution-phase character 11-12. However, the removal of solvent and acquisition of 

charges alters the physico-chemical environment of the protein, and leads to some degree of restructuring into 



 

different conformations, particularly for states that are intrinsically disordered or only marginally stable 13. 

This provides an opportunity for experimental exploration of their free-energy landscape, albeit one reflecting 

– and dependent on – the gas-phase interaction strengths of residues involved 14. 

 

The large body of work developing and employing native IM-MS has indicated that a wealth of information is 

obtainable from such experiments, and principles of best experimental practice and standards have emerged15-

17. Yet structural interpretation and translation of the data into structural biology information is often not 

straightforward. Here we give a perspective on the computational frameworks that must be put in place to 

address this challenge, and we describe the current thinking and state-of-the-art of the approaches that are 

being developed. Our article is intended to provide what we believe is a much-needed accessible introduction 

to and overview of the topic – to inform newcomers to the field and stimulate discussions about addressing 

existing challenges. We chart where we believe the field stands in terms of progress in five key computational 

themes (and their interconnections) namely: 1) IM-MS data extraction and analysis, 2) CCS calculation, 3) 

determining charge locations, 4) computational modelling, and 5) gas-phase molecular dynamics (MD) 

(Figure 1). Our thoughts are heavily influenced by the discussions and contributions from the wider native 

IM-MS community, nucleated through the European Cooperation in Science and Technology Action on Native 

Mass Spectrometry and Related Methods for Structural Biology (EU COST Action BM1403), an international 

group focused on developing and applying new biomolecular MS methods to make the characterisation of 

protein structure and dynamics more rapid and routine. We also refer interested readers to our companion 

perspective article, also in this issue, which details specific software that will aid users in extracting the most, 

and most reliable, information from their data. 

 

 

 

  



 

Computational considerations in converting native IM-MS data into information 

 

The first step in using IM-MS data is to extract the raw data into a format from which it is possible to determine 

the key physical properties of the ions under investigation.  At the most basic level, this comprises the mass, 

charge and mobility. All of these properties do not have single values but rather populate distributions, 

reflecting at least in part the heterogeneity of the system at hand (Table 1). The values and distributions these 

physical properties take represent the core information that can be obtained from native IM-MS experiments, 

and can then used to infer meaningful structural, dynamical and functional insights into the proteins under 

study.    

 

While instrument manufacturers’ software typically allows the transformation of the measured mass-to-charge 

(m/z) spectrum onto a mass axis via the assignment of charge states, the frequent complexity of native MS data 

can make this process difficult. Charge-state assignment can be ambiguous for high charge states (where the 

difference between z and z+1 is small relative to z)18 , and residual adducts are typical for large macromolecules 

19. Moreover, the samples under analysis themselves frequently contain multiple components, and can 

sometimes be extremely heterogeneous20-22. Another challenge is that peaks can be poorly resolved, due to the 

gentle nature of the ionization process employed. To overcome these challenges, both researchers and 

instrument vendors have developed software and algorithms tailored specifically to native MS data in order to 

aid users in their analysis (see our companion article for a comprehensive catalogue of available tools). 

Nevertheless, the limiting factor to obtaining high quality information remains with the data, and over-fitting 

is a risk that always needs to be considered. 

 

While calibration of the m/z axis is straightforward, in order to transform the mobility information (typically 

acquired in the form of an arrival time distribution, ATD) into a CCS axis, a further calibration procedure is 

typically required 15. In the overwhelming majority of cases, this is achieved using reference standards 

appropriate to the target analyte 23. This process is sensitive to the conditions under which the experiments are 

performed, and care must be taken to minimise biases associated with the choice of solution and sampling 

conditions, instrument settings, selection of standards, and the calibration procedures 15. The information 



 

encoded in the CCS (and in CCS distributions, CCSDs) is often used to infer structural properties of a given 

analyte and can inform computational modelling and (in principle) molecular dynamics (MD) simulations. It 

also enables direct comparisons of molecular states without additional calibration and computational modelling 

– as systematic biases cancel when making relative measurements. Nonetheless in all these uses, an important 

(but underexplored) consideration is the appropriate incorporation of uncertainties associated with the native 

IM-MS measurement and its transformation into CCS.  

 

The ATDs and corresponding CCSDs can differ considerably in profile and width, reflecting (after accounting 

for instrument-dependent resolving power and other effects 24) the conformational heterogeneity of the analyte 

25-26. The width of these distributions can be exploited directly, or deconvolved into multiple Gaussian 

contributions in the case of feature-rich peak shapes 27. IM-MS experiments can be data-rich, but objective 

deconvolution of complex ATDs into information of value remains challenging. The difficulty arises in having 

to decide on the number of conformational families present in the data, and the selection of appropriate width 

for each Gaussian. Higher resolution IM instrumentation and/or use of tandem IM-MS approaches might 

enable the separation and resolution of overlapping populations, at least for certain types of samples 28-31. 



 

Calculating CCSs from structures and models 

 

The translation of CCS data obtained during native IM-MS experiments into structural information involves 

several challenges, including determining how best to obtain the CCS values of the relevant reference structure 

of the computational model (generation of structures and models is outside the scope of this review). For 

instance, the user may wish to compare their experimental CCS to available atomic coordinates or to use the 

CCS to distinguish between various structural hypotheses. A number of approaches exist and selection of the 

most appropriate method depends on a multitude of factors including the chemical nature of the system under 

investigation, its shape and intrinsic dynamics, and experimental conditions such as the IM buffer gas 5. A 

practical consideration is a trade-off between computational expediency and accuracy in CCS estimations: 

building a large number of models lets one screen a wider structural space, while performing higher accuracy 

calculations necessitates screening a smaller range of structures. 

 

In its most simplistic form, the CCS can be viewed as the rotationally averaged projected area (“shadow”) of 

an object 32, plus a layer having a thickness related to the gas radius and its polarizability 5. For any convex 

object, the projected area is equal to a quarter of its surface area 33. This simple analytical relationship is useful 

when considering protein structure at an extremely coarse-grained level 34. However, when considering protein 

structure at higher resolution, it is however clear that they are not convex, but feature cavities and protrusions 

that can lead to multiple collisions or occlude portions of the protein surface from collisions with the buffer 

gas 35. On a finer scale, the surface roughness due to the amino acids that decorate the exterior influence the 

drag a protein experiences during the IM-MS experiment and severs the relation between surface area and 

projected area. Furthermore, the charge on the protein is inherently non-zero in ion mobility and is expected 

to impact on CCSs, modulated by the dipole moment and polarizability volume of the gas. The exact 

distribution of charge can in principle affect the mobility 36, but appears to have a minor effect on the CCSs of 

proteins 37-38. For moderate charge states (i.e. the low amount of charge per unit mass typical in native mass 

spectra), the CCS appears to be relatively constant in He, but less so in N2 
37-38. How this phenomenon manifests 

itself for proteins of all sizes and shapes, and for other types of macromolecules, is currently not known, but 

neglecting these effects is unlikely to be the major source of bias; more important perhaps are the perturbations 



 

the charges make to the structure (see below). Nevertheless, given the increasingly sophisticated questions that 

IM-MS is being used to answer, and the higher performance IM-MS instruments that have become available 

39-40, considerable scope remains to ensure that local charges and interaction potentials are effectively 

accommodated in CCS calculations.  

 

Different computational approaches (and implementations thereof) for estimating CCSs from structures exist, 

at differing levels of complexity and computational cost (see our companion paper, and others 5, 15). The 

simplest and fastest approach is to consider a protein in terms of its area when projected from different 

viewpoints. Here the gas atoms are represented by hard spheres that are ‘fired’ through the sampling volume, 

and the projected area is calculated from the fraction of trajectories that collide with the protein. A bit more 

advanced, the exact hard spheres scattering model computes the angle of deflection of the gas to calculate the 

corresponding deflection (momentum transfer) for the ion. Both approaches ignore electrostatic interactions, 

and they ignore London dispersion forces acting at long range. 

 

In the methods at the other end of the complexity spectrum however (several methods are found between these 

extremes), the short- and long-range interactions of the protein with the gas molecules are modelled explicitly, 

accounting for both the physico-chemical properties (polarizability, charge, Van der Waals interactions, and 

potentially internal degrees of freedom) of the gas and of the atoms in the protein, requiring numerical 

integration of gas-particle trajectories with numerous iterations for each such trajectory. While this more 

rigorous and explicit consideration of the physical processes underpinning the IM separation might provide 

more accurate CCSs for atomistic structure models, it does not readily lend itself to coarse-grained structural 

representations, whereas it is readily achievable to calculate the projected area of e.g. SAXS-derived bead 

models or iso-surfaces from electron microscopy 26, 41. Consequently, the nature of the structure model can 

effectively narrow the repertoire of applicable methods for CCS calculation. 

 

The difference in computational cost between these two extremes currently spans several orders of magnitude, 

with the most complex approaches taking hours to converge when applied to macromolecules. This renders 

them intractable for assessing the hundreds of thousands of models needed to explore adequately the roto-

translational space associated with structure modelling, or the thousands of frames from MD simulations.  As 



 

a result, it is often only feasible to use simpler approaches, potentially compromising on the accuracy of the 

CCS estimation. However, in order to deduce ion shapes from IM-MS, what matters is not so much the 

accuracy of the absolute calculated values but rather how accurately they can be matched to experiment. For 

example, for large and globular proteins the simplest projection approximation method can be generally 

parameterised (i.e. scaled, or calibrated) to reproduce the results from the most computationally costly 

trajectory method with a relative error within 1% 26, and experimental drift-tube helium CCS values to within 

3% RMSD 42. In general, appropriate parameterization of the CCS calculation is as important as the underlying 

physical model that is being used 15, and one must pay attention to the type and size of system for which a 

given parameterization was developed, as well as to the type of experiment it was designed to match. For 

example, no simple parameterization has been thoroughly validated for proteins that are grossly convex, 

intrinsically disordered, or in extreme charge states. For smaller systems, the relative effect of surface 

interactions will be proportionally greater than for very large ones. For highly concave structures, a simple 

projection approach will not take into account “parachute” effects on ion friction. In all these cases, or 

whenever in doubt, more expensive methods are necessary for good accuracy 43-44.   



 

Modelling protein structures using IM-MS data 

  

Computational methods are needed to exploit native IM-MS data for validating or modelling three-dimensional 

protein structures. A typical workflow involves distinct steps: converting the experimental data acquired into 

modelling restraints, building models that sample the conformational space of individual proteins or protein 

assemblies, and evaluating the models in light of the data. Currently, there are two strategies for building 

models using MS and other related structural datasets. The first strategy filters models generated by 

computational methods based on their “goodness-of-fit” to the experimental datasets 45-48. The second strategy 

samples models by directly integrating the experimentally derived restraints with an appropriate scoring 

functiona into the computational workflow – i.e. using the restraint to optimise dynamically the model building 

49-50. 

 

For modelling analysis, it is important to use appropriate “building blocks”. In general, the individual subunits 

and or complexes can be represented as atomic coordinates (e.g. crystal structures, homology models), as 

coarse-grained models (e.g. spheroids), or as density maps. Furthermore, it can be important to consider 

multiple alternative starting structures to ensure that the space is suitably explored 51. This is pertinent for 

proteins or complexes that are particularly flexible or are characterised by intrinsically dynamic regions, and 

where maybe only one particularly stable or abundant structure has been characterized previously e.g. by X-

ray crystallography. In such cases, developing robust methods for building alternative starting structures for 

downstream model building becomes a critical aspect of the computational workflow. 

 

An important aspect of any modelling pipeline is the consideration of the uncertainty introduced at each step 

of the analysis. First, one must consider ambiguity in the data caused by the limited resolving power of the 

instruments, the conformational heterogeneity of the protein (which manifests itself as a CCSD broader than 

the instrumentation limit), and the possibility of low-quality data which can compromise the discriminatory 

ability of the CCS measurements 52-53.  

 
a A modelling restraint is defined as an assembly/protein feature (e.g. volume, shape, flexibility) quantified with respect to the data 
used to generate it. It represents the ‘force’ that glues the individual subunits and forms configurations consistent with the input data. 
The scoring function sums up all restraints and may be thought as the force field that enables to make up the assembly. 

 



 

 

There may also be large discrepancies between the experimentally measured and theoretically calculated CCS 

values if proteins undergo a significant degree of structural change upon transfer to the gas phase, and these 

discrepancies bring challenges for modelling. Side chains that are solvent-exposed in solution take advantage 

of the low permittivity of vacuum to collapse onto the surface by forming new interactions 54-56. In the case of 

protein ions that are intrinsically malleable, e.g. hollow structures, those with hinges, or low charge states of 

intrinsically disordered proteins, these additional (non-native) non-covalent interactions can lead to 

unstimulated compaction of the overall protein structure 51, 56-61
. Gas-phase induced unfolding happens when 

the native intramolecular interactions are too weak compared to the repulsion between like charges, and is 

more likely to occur for high charge states (and at higher activation energies). Gas-phase structural changes 

require some energy barriers to be overcome, which in turn depends on the native interactions, on the charge 

state adopted during electrospray, on the internal energy uptake, and on the time spent in the mass spectrometer. 

Despite notable advances made 62-63, gas-phase structural changes remain hard to fully predict, and thus 

contribute to the uncertainty of the CCS calculation.  

 

Uncertainty from computations that aim to match experimental data to structural models comprises 

contributions from the choice of representations 64-65, the completeness of the information available, the use of 

the appropriate scoring function, and the biases of individual sampling algorithms (e.g. if they don’t accurately 

capture the data). Finally, measurable errors may be introduced by the post-processing step which typically 

scores models based on how well they match the input datasets, which may include clustering approaches for 

generating an ensemble of computational models. A final challenge comes in weighting the merits, and biases, 

of individual methods based on their ability to contribute to accurate models. As such, the final output of a 

combined experimental and modelling effort is best represented by an ensemble of structures that encapsulates 

the convolution of both the inherent conformational heterogeneity of the protein and the various sources of 

uncertainty in the IM-MS pipeline 48, 64. Benchmarking studies have provided some ways of efficiently 

integrating the different methods by taking into account the relative uncertainty of the different methods 66-67, 

such that it is becoming increasingly possible to bring together the individual techniques in a single workflow 

68.  



 

Combining molecular dynamics with native IM-MS 

 

The integration of native IM-MS experiments with molecular dynamics (MD) simulations is highly desirable, 

as the two methods are complementary with respect to the resolution of structural information they provide, 

and the timescales that they operate on 9. In the first instance, solvent-free MD plays an important role in 

understanding the fundamentals of MS and for interpreting MS data 12, 56. For example, the effects of solvent, 

temperature and charge on protein structure have been studied in this way, and there are numerous examples 

of system-specific investigations where MD has been used together with MS 9. The most widespread MD 

methods have been developed mainly for condensed-phase calculations, which presents specific challenges 

when applying them to simulations in vacuum. For example, electrostatic interactions are significant over 

much longer distances in the absence of solvent which, if taken into account, slows down the calculations 

considerably, thus limiting the sampling and simulation timescales. Moreover, the commonly used force fields 

are designed to match the solution phase, and hence the effective polarization at the solution interface might 

not reflect gas-phase conditions. The magnitude of this inaccuracy is currently unquantified, however 

employing polarizable force fields could be a means to mitigate such errors at an additional computational cost 

56. 

 

Another challenge stems from considering how charge is distributed on a macromolecule. While the locations 

of charges do not appear critical for CCS calculations on large molecules, they remain an integral part of the 

physical model and help determine the system dynamics at the atomic level, thereby greatly influencing the 

accuracy of the simulations. This, of course, reflects the fact that the location of charges to a large extent 

‘drives’ the structural dynamics, and vice versa. For macromolecules, charging in electrospray takes place via 

the protonation of basic sites, and deprotonation of acidic sitesb – with the notes that additional sites become 

available during electrospray due to their high gas-phase basicity or acidity 69, that Zwitterionic states are 

frequently stable in the gas phase 62, 70, and that, depending on solution conditions, charged buffer components 

can act as charge carriers. Experimentally pinpointing the location of charges is extremely difficult however, 

 
b Note that ‘basic/acidic sites’ is here used according to the Brønsted–Lowry definition, that is, their ability to accept or donate a 
proton. As such, aspartate and glutamate residues are basic sites, as they are corresponding bases to aspartic acid and glutamic acid, 
whereas they are typically considered to be acidic residues in biochemistry, regardless of protonation state. 



 

and one cannot assume that protonation states simply carry over from solution to the gas phase. Depending on 

the conditions under which the electrospray process generates charged particles, particularly the 

presence/absence of protic solvent and the time frame of ionization, the removal of solvent greatly affects the 

energetics of both the protonated and deprotonated form. However, because of a certain amount of kinetic 

trapping, the site might still carry some “memory” of its protonation state in solution over the experimental 

time scales 71. 

 

The number of possible charge isomers grows rapidly with the number of (de)protonatable sites, meaning that 

a complete consideration of isomers is usually not feasible. In lieu of complete enumeration, Monte-Carlo 

approaches, where protons are moved randomly between basic sites to generate new charge isomers, have been 

developed to address this issue 58, 72. While the details in how the energies are evaluated and in how the charge 

isomers are sampled differ between the different approaches, they all compute energy as the sum of the proton 

affinities for all protonated sites and the electrostatic interactions between charged sites and their surroundings 

(including other charged sites). The interplay between charge and conformation means that even if the lowest-

energy charge isomer can be identified for a crystal structure, relaxation of sidechain conformations, as well 

as on higher structural levels, might shift the energy considerably 72. Therefore, care must be taken to not let 

the rich structural detail in a crystal structure, obtained under considerably different conditions, bias the 

calculations towards “incorrect” charge isomers. 

 

Hybrid MD and Monte-Carlo approaches have been developed for the combined search of conformer and 

charge-isomer space in the gas phase. These indicate that side chains have a propensity to fold onto the protein 

surface with consequent structure contraction and formation of new hydrogen bonds and salt bridges 70, a 

prediction for which experimental evidence is emerging 73. These structural rearrangements promote self-

solvation and are compatible with maintenance of a native-like fold. An interesting feature in the emerging 

picture of folded protein ions in the gas phase is the capability to compensate for the energetic penalty of 

charge separation in vacuo with favourable, conformation-specific intramolecular interactions, in line with 

growing experimental and theoretical evidence 74-75. Persistence of zwitterionic states in protein structures 

provides a rationale for conformational stability in the gas phase and conformational effects on charge-state 

distributions and is a feature that simulation methods should accommodate. 



 

 

In addition to the combinatorial challenges in choosing a “correct” charge isomer, there may be several co-

existing charge isomers, and protons could in principle transfer between sites in the gas phase (the “mobile 

proton model” 76), following or promoting structural transitions 77. As classical MD typically disallows the 

breakage or cleavage of chemical bonds, protonation dynamics cannot readily be incorporated into such 

simulations. Recently there has been progress in accommodating proton mobility, with simulations being 

stopped at regular intervals, and charges being transferred at random towards charge isomers of lower energy 

62-63, 78-79. Current implementations of this approach are however not truly thermodynamic, in the sense that 

they do not adhere to Boltzmann statistics, and consequently, they might be error-prone in quantifying how 

probable the different charge isomers are. Nevertheless, this represents an important step towards 

accommodating the important role of charges in gas-phase MD, and future integration with popular MD 

software will be instrumental for the community. Combined quantum mechanics/molecular dynamics 

(QM/MM) would be a more accurate way to account for proton transfer 80; although computationally much 

more costly than force field MD, it may prove valuable to IM-MS modelling in the future. 

 

The transition from solution to the gas phase can also incur changes in the structure of the protein. Though 

these are often small in amplitude 81, they can significantly alter the contacts made between amino acids 56. 

This, together with the need to consider electrostatic interactions over long distances, means that MD might 

struggle to explore experimentally relevant parts of the conformational landscape 56, 61. Experimental data from 

solution-phase methods are frequently used to restrain the MD simulations, facilitating the transition from the 

starting structure to the conformations that pertain to the question at hand. In principle, experimentally derived 

CCSs could be used in similar fashion, but the considerable overhead required for continuously calculating the 

CCS during the simulation, and comparing with a given reference value has so far limited the use of CCS-

based restraints 9. Instead, other, more computationally expedient quantities, such as the radius of gyration or 

solvent accessible surface area (SASA), have been used as proxies for the CCS 44, 82-83. Recent speed increases 

in CCS calculations might enable explicit CCS restraints, strengthening the link between simulation and 

experiments, especially for systems where non-globular structures or conformational transitions might 

complicate the relationship between proxies and CCSs. 

  



 

Summary and outlook 

 

Native IM-MS has the potential to significantly impact structural biology, analogous to the revolution that MS 

has enabled in proteomics. It is also clear that native MS-derived information benefits from being combined 

with results obtained from other, orthogonal techniques. These can be other MS-based approaches, such as 

chemical cross-linking, hydrogen-deuterium exchange, and covalent-labelling (footprinting) approaches, or 

other structural biology techniques altogether. The resulting “hybrid” strategies enable more accurate and 

confident structure modelling, particularly in the absence of high-resolution atomistic structures, and extend 

the validity of these models by sampling heterogeneous conformational and assembly space. However, in order 

to maximise the potential of native IM-MS, computational strategies that facilitate the translation of the raw 

data it produces into structural models with associated dynamics, as well as providing a deep understanding of 

the processes that occur between the protein in solution and its detection in the mass spectrometer, will be 

instrumental. 

 

We imagine an era of structural proteomics where macromolecular structures can be computed in a high-

throughput manner by exploiting native IM-MS data. Here, we have reviewed the key challenges to achieve 

this aim (Box 1). The high pace of activity in the field augurs well for these issues being resolved in the not-

too-distant future. These efforts will benefit from the complementary perspectives of the structural MS 

community, who bring insight into gas-phase effects derived from decades of study on small molecules, and 

computational structural biologists, who are aware of the priorities and sensitivities in modelling and MD. 

Success in this endeavour will ultimately enable deeper and more quantitative insights from harnessing MS 

data into understanding the structure, dynamics and interactions of biomolecules, impacting on our 

understanding of biological (mal)function as well.   



 

Acknowledgements 

We thank the EU COST Action BM1403 and members of WG1 (Native IM-MS) and WG4 (Computational 

Methods); and Dr Catherine Lichten for assistance in compiling this manuscript.  

  



 

References 

1. Calabrese, A. N.; Radford, S. E., Mass spectrometry-enabled structural biology of membrane proteins. 
Methods 2018, 147, 187-205. 

2. Konermann, L.; Vahidi, S.; Sowole, M. A., Mass spectrometry methods for studying structure and 

dynamics of biological macromolecules. Anal Chem 2014, 86 (1), 213-32. 
3. Lossl, P.; van de Waterbeemd, M.; Heck, A. J., The diverse and expanding role of mass spectrometry 

in structural and molecular biology. EMBO J 2016, 35 (24), 2634-2657. 

4. Mehmood, S.; Allison, T. M.; Robinson, C. V., Mass spectrometry of protein complexes: from origins 
to applications. Annu Rev Phys Chem 2015, 66, 453-74. 

5. Gabelica, V.; Marklund, E., Fundamentals of ion mobility spectrometry. Curr Opin Chem Biol 2018, 

42, 51-59. 

6. Ben-Nissan, G.; Sharon, M., The application of ion-mobility mass spectrometry for structure/function 
investigation of protein complexes. Curr Opin Chem Biol 2018, 42, 25-33. 

7. Lanucara, F.; Holman, S. W.; Gray, C. J.; Eyers, C. E., The power of ion mobility-mass spectrometry 

for structural characterization and the study of conformational dynamics. Nat Chem 2014, 6 (4), 281-94. 
8. Stuchfield, D.; Barran, P., Unique insights to intrinsically disordered proteins provided by ion mobility 

mass spectrometry. Curr Opin Chem Biol 2018, 42, 177-185. 

9. Marklund, E. G.; Benesch, J. L., Weighing-up protein dynamics: the combination of native mass 

spectrometry and molecular dynamics simulations. Curr Opin Struct Biol 2019, 54, 50-58. 
10. Wyttenbach, T.; Pierson, N. A.; Clemmer, D. E.; Bowers, M. T., Ion mobility analysis of molecular 

dynamics. Annu Rev Phys Chem 2014, 65, 175-96. 

11. Hilton, G. R.; Benesch, J. L., Two decades of studying non-covalent biomolecular assemblies by 
means of electrospray ionization mass spectrometry. J R Soc Interface 2012, 9 (70), 801-16. 

12. Meyer, T.; Gabelica, V.; Grubmuller, H.; Orozco, M., Proteins in the gas phase. Wires Comput Mol 

Sci 2013, 3 (4), 408-425. 
13. Clemmer, D. E.; Russell, D. H.; Williams, E. R., Characterizing the Conformationome: Toward a 

Structural Understanding of the Proteome. Acc Chem Res 2017, 50 (3), 556-560. 

14. Chandler, S. A.; Benesch, J. L. P., Mass spectrometry beyond the native state. Curr. Opin. Chem. Biol. 

2018, 42, 130-137. 
15. Gabelica, V.; Shvartsburg, A. A.; Afonso, C.; Barran, P.; Benesch, J. L. P.; Bleiholder, C.; Bowers, 

M. T.; Bilbao, A.; Bush, M. F.; Campbell, J. L.; Campuzano, I. D. G.; Causon, T.; Clowers, B. H.; Creaser, C. 

S.; De Pauw, E.; Far, J.; Fernandez-Lima, F.; Fjeldsted, J. C.; Giles, K.; Groessl, M.; Hogan, C. J., Jr.; Hann, 
S.; Kim, H. I.; Kurulugama, R. T.; May, J. C.; McLean, J. A.; Pagel, K.; Richardson, K.; Ridgeway, M. E.; 

Rosu, F.; Sobott, F.; Thalassinos, K.; Valentine, S. J.; Wyttenbach, T., Recommendations for reporting ion 

mobility Mass Spectrometry measurements. Mass Spectrom Rev 2019, 38 (3), 291-320. 
16. Kondrat, F. D.; Struwe, W. B.; Benesch, J. L., Native mass spectrometry: towards high-throughput 

structural proteomics. Methods Mol Biol 2015, 1261, 349-71. 

17. Schachner, L. F.; Ives, A. N.; McGee, J. P.; Melani, R. D.; Kafader, J. O.; Compton, P. D.; Patrie, S. 

M.; Kelleher, N. L., Standard Proteoforms and Their Complexes for Native Mass Spectrometry. J Am Soc 
Mass Spectrom 2019, 30 (7), 1190-1198. 

18. McKay, A. R.; Ruotolo, B. T.; Ilag, L. L.; Robinson, C. V., Mass measurements of increased accuracy 

resolve heterogeneous populations of intact ribosomes. J Am Chem Soc 2006, 128 (35), 11433-42. 
19. Benesch, J. L.; Ruotolo, B. T.; Simmons, D. A.; Robinson, C. V., Protein complexes in the gas phase: 

technology for structural genomics and proteomics. Chem Rev 2007, 107 (8), 3544-67. 

20. Ben-Nissan, G.; Belov, M. E.; Morgenstern, D.; Levin, Y.; Dym, O.; Arkind, G.; Lipson, C.; Makarov, 

A. A.; Sharon, M., Triple-Stage Mass Spectrometry Unravels the Heterogeneity of an Endogenous Protein 
Complex. Anal Chem 2017, 89 (8), 4708-4715. 

21. Stengel, F.; Baldwin, A. J.; Painter, A. J.; Jaya, N.; Basha, E.; Kay, L. E.; Vierling, E.; Robinson, C. 

V.; Benesch, J. L., Quaternary dynamics and plasticity underlie small heat shock protein chaperone function. 
Proc Natl Acad Sci U S A 2010, 107 (5), 2007-12. 

22. Wang, G.; de Jong, R. N.; van den Bremer, E. T. J.; Parren, P.; Heck, A. J. R., Enhancing Accuracy in 

Molecular Weight Determination of Highly Heterogeneously Glycosylated Proteins by Native Tandem Mass 
Spectrometry. Anal Chem 2017, 89 (9), 4793-4797. 



 

23. Bush, M. F.; Hall, Z.; Giles, K.; Hoyes, J.; Robinson, C. V.; Ruotolo, B. T., Collision Cross Sections 
of Proteins and Their Complexes: A Calibration Framework and Database for Gas-Phase Structural Biology. 

Anal. Chem. 2010, 82 (22), 9557-9565. 

24. Kune, C.; Far, J.; De Pauw, E., Accurate Drift Time Determination by Traveling Wave Ion Mobility 

Spectrometry: The Concept of the Diffusion Calibration. Anal Chem 2016, 88 (23), 11639-11646. 
25. Marchand, A.; Livet, S.; Rosu, F.; Gabelica, V., Drift Tube Ion Mobility: How to Reconstruct Collision 

Cross Section Distributions from Arrival Time Distributions? Anal. Chem. 2017, 89 (23), 12674-12681. 

26. Marklund, E. G.; Degiacomi, M. T.; Robinson, C. V.; Baldwin, A. J.; Benesch, J. L., Collision cross 
sections for structural proteomics. Structure 2015, 23 (4), 791-9. 

27. Sivalingam, G. N.; Cryar, A.; Williams, M. A.; Gooptu, B.; Thalassinos, K., Deconvolution of ion 

mobility mass spectrometry arrival time distributions using a genetic algorithm approach: Application to 
alpha(1)-antitrypsin peptide binding. International Journal of Mass Spectrometry 2018, 426, 29-37. 

28. Allen, S. J.; Eaton, R. M.; Bush, M. F., Analysis of Native-Like Ions Using Structures for Lossless Ion 

Manipulations. Anal. Chem. 2016, 88 (18), 9118-9126. 

29. Merenbloom, S. I.; Glaskin, R. S.; Henson, Z. B.; Clemmer, D. E., High-Resolution Ion Cyclotron 
Mobility Spectrometry. Anal. Chem. 2009, 81 (4), 1482-1487. 

30. Shepherd, D. A.; Marty, M. T.; Giles, K.; Baldwin, A. J.; Benesch, J. L. P., Combining tandem mass 

spectrometry with ion mobility separation to determine the architecture of polydisperse proteins. International 
Journal of Mass Spectrometry 2015, 377, 663-671. 

31. Zhong, Y. Y.; Hyung, S. J.; Ruotolo, B. T., Characterizing the resolution and accuracy of a second-

generation traveling-wave ion mobility separator for biomolecular ions. Analyst 2011, 136 (17), 3534-3541. 

32. Mack, E., Average cross-sectional areas of molecules by gaseous diffusion methods. J. Am. Chem. 
Soc. 1925, 47, 2468-2482. 

33. Vouk, V., Projected Area of Convex Bodies. Nature 1948, 162 (4113), 330-331. 

34. Hewitt, D.; Marklund, E.; Scott, D. J.; Robinson, C. V.; Borysik, A. J., A Hydrodynamic Comparison 
of Solution and Gas Phase Proteins and Their Complexes. J. Phys. Chem. B 2014, 118 (29), 8489-8495. 

35. Marklund, E. G., Molecular self-occlusion as a means for accelerating collision cross-section 

calculations. International Journal of Mass Spectrometry 2015, 386, 54-55. 
36. Young, M. N.; Bleiholder, C., Molecular Structures and Momentum Transfer Cross Sections: The 

Influence of the Analyte Charge Distribution. J Am Soc Mass Spectrom 2017, 28 (4), 619-627. 

37. Canzani, D.; Laszlo, K. J.; Bush, M. F., Ion Mobility of Proteins in Nitrogen Gas: Effects of Charge 

State, Charge Distribution, and Structure. J Phys Chem A 2018, 122 (25), 5625-5634. 
38. Shrivastav, V.; Nahin, M.; Hogan, C. J.; Larriba-Andaluz, C., Benchmark Comparison for a Multi-

Processing Ion Mobility Calculator in the Free Molecular Regime. J Am Soc Mass Spectrom 2017, 28 (8), 

1540-1551. 
39. Benigni, P.; Marin, R.; Molano-Arevalo, J. C.; Garabedian, A.; Wolff, J. J.; Ridgeway, M. E.; Park, 

M. A.; Fernandez-Lima, F., Towards the analysis of high molecular weight proteins and protein complexes 

using TIMS-MS. Int J Ion Mobil Spec 2016, 19 (2-3), 95-104. 
40. Eldrid, C.; Ujma, J.; Kalfas, S.; Tomczyk, N.; Giles, K.; Morris, M.; Thalassinos, K., Gas Phase 

Stability of Protein Ions in a Cyclic Ion Mobility Spectrometry Traveling Wave Device. Anal. Chem. 2019, 91 

(12), 7554-7561. 

41. Degiacomi, M. T.; Benesch, J. L., EM intersectionIM: software for relating ion mobility mass 
spectrometry and electron microscopy data. Analyst 2016, 141 (1), 70-5. 

42. Benesch, J. L.; Ruotolo, B. T., Mass spectrometry: come of age for structural and dynamical biology. 

Curr Opin Struct Biol 2011, 21 (5), 641-9. 
43. Bleiholder, C.; Wyttenbach, T.; Bowers, M. T., A novel projection approximation algorithm for the 

fast and accurate computation of molecular collision cross sections (I). Method. International Journal of Mass 

Spectrometry 2011, 308 (1), 1-10. 

44. Kulesza, A.; Marklund, E. G.; MacAleese, L.; Chirot, F.; Dugourd, P., Bringing Molecular Dynamics 
and Ion-Mobility Spectrometry Closer Together: Shape Correlations, Structure-Based Predictors, and 

Dissociation. J Phys Chem B 2018, 122 (35), 8317-8329. 

45. Baldwin, A. J.; Lioe, H.; Hilton, G. R.; Baker, L. A.; Rubinstein, J. L.; Kay, L. E.; Benesch, J. L., The 
polydispersity of alphaB-crystallin is rationalized by an interconverting polyhedral architecture. Structure 

2011, 19 (12), 1855-63. 

46. D'Urzo, A.; Konijnenberg, A.; Rossetti, G.; Habchi, J.; Li, J.; Carloni, P.; Sobott, F.; Longhi, S.; 
Grandori, R., Molecular basis for structural heterogeneity of an intrinsically disordered protein bound to a 

partner by combined ESI-IM-MS and modeling. J Am Soc Mass Spectrom 2015, 26 (3), 472-81. 



 

47. Politis, A.; Park, A. Y.; Hyung, S. J.; Barsky, D.; Ruotolo, B. T.; Robinson, C. V., Integrating ion 
mobility mass spectrometry with molecular modelling to determine the architecture of multiprotein complexes. 

PLoS One 2010, 5 (8), e12080. 

48. Santhanagopalan, I.; Degiacomi, M. T.; Shepherd, D. A.; Hochberg, G. K. A.; Benesch, J. L. P.; 

Vierling, E., It takes a dimer to tango: Oligomeric small heat shock proteins dissociate to capture substrate. J 
Biol Chem 2018, 293 (51), 19511-19521. 

49. Alber, F.; Forster, F.; Korkin, D.; Topf, M.; Sali, A., Integrating diverse data for structure 

determination of macromolecular assemblies. Annu Rev Biochem 2008, 77, 443-77. 
50. Thalassinos, K.; Pandurangan, A. P.; Xu, M.; Alber, F.; Topf, M., Conformational States of 

macromolecular assemblies explored by integrative structure calculation. Structure 2013, 21 (9), 1500-8. 

51. Hansen, K.; Lau, A. M.; Giles, K.; McDonnell, J. M.; Struwe, W. B.; Sutton, B. J.; Politis, A., A Mass-
Spectrometry-Based Modelling Workflow for Accurate Prediction of IgG Antibody Conformations in the Gas 

Phase. Angew Chem Int Ed Engl 2018, 57 (52), 17194-17199. 

52. Hall, Z.; Politis, A.; Robinson, C. V., Structural Modeling of Heteromeric Protein Complexes from 

Disassembly Pathways and Ion Mobility-Mass Spectrometry. Structure 2012, 20 (9), 1596-1609. 
53. Karaca, E.; Bonvin, A. M., On the usefulness of ion-mobility mass spectrometry and SAXS data in 

scoring docking decoys. Acta Crystallogr D Biol Crystallogr 2013, 69 (Pt 5), 683-94. 

54. Breuker, K.; McLafferty, F. W., Stepwise evolution of protein native structure with electrospray into 
the gas phase, 10(-12) to 10(2) s. Proc Natl Acad Sci U S A 2008, 105 (47), 18145-52. 

55. Loo, R. R.; Loo, J. A., Salt Bridge Rearrangement (SaBRe) Explains the Dissociation Behavior of 

Noncovalent Complexes. J Am Soc Mass Spectrom 2016, 27 (6), 975-90. 

56. van der Spoel, D.; Marklund, E. G.; Larsson, D. S. D.; Caleman, C., Proteins, Lipids, and Water in the 
Gas Phase. Macromol. Biosci. 2011, 11 (1), 50-59. 

57. Rolland, A. D.; Prell, J. S., Computational insights into compaction of gas-phase protein and protein 

complex ions in native ion mobility-mass spectrometry. Trac-Trend Anal Chem 2019, 116, 282-291. 
58. Hall, Z.; Politis, A.; Bush, M. F.; Smith, L. J.; Robinson, C. V., Charge-State Dependent Compaction 

and Dissociation of Protein Complexes: Insights from Ion Mobility and Molecular Dynamics. J. Am. Chem. 

Soc. 2012, 134 (7), 3429-3438. 
59. Pacholarz, K. J.; Porrini, M.; Garlish, R. A.; Burnley, R. J.; Taylor, R. J.; Henry, A. J.; Barran, P. E., 

Dynamics of intact immunoglobulin G explored by drift-tube ion-mobility mass spectrometry and molecular 

modeling. Angew Chem Int Ed Engl 2014, 53 (30), 7765-9. 

60. Pagel, K.; Natan, E.; Hall, Z.; Fersht, A. R.; Robinson, C. V., Intrinsically disordered p53 and its 
complexes populate compact conformations in the gas phase. Angew Chem Int Ed Engl 2013, 52 (1), 361-5. 

61. Landreh, M.; Marklund, E. G.; Uzdavinys, P.; Degiacomi, M. T.; Coincon, M.; Gault, J.; Gupta, K.; 

Liko, I.; Benesch, J. L.; Drew, D.; Robinson, C. V., Integrating mass spectrometry with MD simulations reveals 
the role of lipids in Na(+)/H(+) antiporters. Nat Commun 2017, 8, 13993. 

62. Konermann, L., Molecular Dynamics Simulations on Gas-Phase Proteins with Mobile Protons: 

Inclusion of All-Atom Charge Solvation. The journal of physical chemistry. B 2017, 121 (34), 8102-8112. 
63. Marchese, R.; Grandori, R.; Carloni, P.; Raugei, S., A computational model for protein ionization by 

electrospray based on gas-phase basicity. J Am Soc Mass Spectrom 2012, 23 (11), 1903-10. 

64. Eschweiler, J. D.; Frank, A. T.; Ruotolo, B. T., Coming to Grips with Ambiguity: Ion Mobility-Mass 

Spectrometry for Protein Quaternary Structure Assignment. J Am Soc Mass Spectrom 2017, 28 (10), 1991-
2000. 

65. Degiacomi, M. T., On the Effect of Sphere-Overlap on Super Coarse-Grained Models of Protein 

Assemblies. J Am Soc Mass Spectrom 2019, 30 (1), 113-117. 
66. Schneidman-Duhovny, D.; Pellarin, R.; Sali, A., Uncertainty in integrative structural modeling. Curr 

Opin Struct Biol 2014, 28, 96-104. 

67. Tamo, G.; Maesani, A.; Trager, S.; Degiacomi, M. T.; Floreano, D.; Dal Peraro, M., Disentangling 

constraints using viability evolution principles in integrative modeling of macromolecular assemblies. Sci Rep 
2017, 7 (1), 235. 

68. Politis, A.; Stengel, F.; Hall, Z.; Hernandez, H.; Leitner, A.; Walzthoeni, T.; Robinson, C. V.; 

Aebersold, R., A mass spectrometry-based hybrid method for structural modeling of protein complexes. Nat 
Methods 2014, 11 (4), 403-406. 

69. Xia, H.; Attygalle, A. B., Untrapping Kinetically Trapped Ions: The Role of Water Vapor and Ion-

Source Activation Conditions on the Gas-Phase Protomer Ratio of Benzocaine Revealed by Ion-Mobility Mass 
Spectrometry. J Am Soc Mass Spectrom 2017, 28 (12), 2580-2587. 



 

70. Marchese, R.; Grandori, R.; Carloni, P.; Raugei, S., On the zwitterionic nature of gas-phase peptides 
and protein ions. PLoS Comput Biol 2010, 6 (5), e1000775. 

71. Warnke, S.; Seo, J.; Boschmans, J.; Sobott, F.; Scrivens, J. H.; Bleiholder, C.; Bowers, M. T.; 

Gewinner, S.; Schollkopf, W.; Pagel, K.; von Helden, G., Protomers of benzocaine: solvent and permittivity 

dependence. J Am Chem Soc 2015, 137 (12), 4236-42. 
72. Wanasundara, S. N.; Thachuk, M., Theoretical investigations of the dissociation of charged protein 

complexes in the gas phase. J Am Soc Mass Spectrom 2007, 18 (12), 2242-53. 

73. McAlary, L.; Harrison, J. A.; Aquilina, J. A.; Fitzgerald, S. P.; Kelso, C.; Benesch, J. L. P.; Yerbury, 
J. J., Trajectory Taken by Dimeric Cu/Zn Superoxide Dismutase through the Protein Unfolding and 

Dissociation Landscape Is Modulated by Salt Bridge Formation. Anal Chem 2020, 92 (2), 1702-1711. 

74. Bakhtiari, M.; Konermann, L., Protein Ions Generated by Native Electrospray Ionization: Comparison 
of Gas Phase, Solution, and Crystal Structures. J Phys Chem B 2019, 123 (8), 1784-1796. 

75. Bonner, J.; Lyon, Y. A.; Nellessen, C.; Julian, R. R., Photoelectron Transfer Dissociation Reveals 

Surprising Favorability of Zwitterionic States in Large Gaseous Peptides and Proteins. J Am Chem Soc 2017, 

139 (30), 10286-10293. 
76. Boyd, R.; Somogyi, A., The mobile proton hypothesis in fragmentation of protonated peptides: a 

perspective. J Am Soc Mass Spectrom 2010, 21 (8), 1275-8. 

77. Mistarz, U. H.; Chandler, S. A.; Brown, J. M.; Benesch, J. L. P.; Rand, K. D., Probing the Dissociation 
of Protein Complexes by Means of Gas-Phase H/D Exchange Mass Spectrometry. J Am Soc Mass Spectrom 

2019, 30 (1), 45-57. 

78. Konermann, L.; Metwally, H.; McAllister, R. G.; Popa, V., How to run molecular dynamics 

simulations on electrospray droplets and gas phase proteins: Basic guidelines and selected applications. 
Methods 2018, 144, 104-112. 

79. Porrini, M.; Rosu, F.; Rabin, C.; Darre, L.; Gomez, H.; Orozco, M.; Gabelica, V., Compaction of 

Duplex Nucleic Acids upon Native Electrospray Mass Spectrometry. ACS Cent Sci 2017, 3 (5), 454-461. 
80. Li, J.; Lyu, W.; Rossetti, G.; Konijnenberg, A.; Natalello, A.; Ippoliti, E.; Orozco, M.; Sobott, F.; 

Grandori, R.; Carloni, P., Proton Dynamics in Protein Mass Spectrometry. J Phys Chem Lett 2017, 8 (6), 1105-

1112. 
81. Meyer, T.; de la Cruz, X.; Orozco, M., An atomistic view to the gas phase proteome. Structure 2009, 

17 (1), 88-95. 

82. Calvo, F.; Chirot, F.; Albrieux, F.; Lemoine, J.; Tsybin, Y. O.; Pernot, P.; Dugourd, P., Statistical 

analysis of ion mobility spectrometry. II. Adaptively biased methods and shape correlations. J Am Soc Mass 
Spectrom 2012, 23 (7), 1279-88. 

83. Chirot, F.; Calvo, F.; Albrieux, F.; Lemoine, J.; Tsybin, Y. O.; Dugourd, P., Statistical analysis of ion 

mobility spectrometry. I. Unbiased and guided replica-exchange molecular dynamics. J Am Soc Mass 
Spectrom 2012, 23 (2), 386-96. 

 

  



 

Figure 1 

 

 

Fig.1: Overview of progress in what we view as the five key computational themes for IM-MS. The “battery 

icons” depict our assessment of relative progress in each area. The central pentagram shows the links between 

these themes, and the edges are coloured according to how well the themes are currently integrated. The 

dashed line refers to a link whose importance is debatable. 

  



 

Table 1 

IM-MS Data Information Utility 

Mass to charge ratio (m/z) Mass Stoichiometry 

 Charge Conformation/structure, surface properties 

Charge state distribution Charge distribution Qualitative view of conformational diversity 

Average arrival time* Ion mobility Conformation/structure (relative) 

 CCS Conformation/structure (absolute) 

Arrival time distribution* Ion mobility 

distribution 

Relative conformational diversity 

 CCSD Absolute conformational diversity 

   

IM-MS Experiment Data Utility 

Stimulated unfolding 

(e.g. CIU) 

Arrival time v 

activation 

Quantify gas-phase stability 

Stimulated dissociation 
(e.g. CID) 

m/z v activation Determine composition and stoichometry 

Time course Arrival time and m/z v 

time 

Kinetics of assembly, disassembly and 

conformational exchange reactions 

Titration Arrival time and m/z v 
concentration 

Solution stability (thermodynamics) 

* or equivalent from non-drift tube or travelling wave instrument 

Table.1: Information content, and its utility for structural biology, in native IM-MS data and experimental 

workflows. 

 

 

 

 

 

 

 

 

  



 

Box 1 

 

Box. 1: Outstanding and key computational challenges for the field of native IM-MS to overcome. 

 

 

 

 

 

Key computational challenges for native IM-MS 

• An improved understanding of structural changes upon desolvation, their case-specific amplitude, 

and how these changes can be predicted based on the solution structure.  

• Knowledge of how important net charge and charge-site configurations are for MD, along with an 

understanding of how to accommodate them by robust charge placement and explicit allowance of 

charge mobility.  

• Development of force fields and associated methods for solvent-free MD, and integration of 

solvent-free MD with on-the-fly CCS calculation. 

• Quantitative accommodation of biases and uncertainty that may arise in raw native MS data or in 

its analysis and interpretation, and appropriate cross-validation strategies. 

• Supporting and influencing MS experimental development, in terms of instruments, 

methodologies, and rigour. 


