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Vertical Stratification in Urban Green Space Aerobiomes
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Martin F. Breed®*

lDepaurtment of Landscape, The University of Sheffield, Sheffield, UK

2inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, New Jersey, USA
3College of Science and Engineering, Flinders University, Bedford Park, Australia

“The Healthy Urban Microbiome Initiative (HUMI), Adelaide, Australia

3School of Public Health and the Environment Institute, University of Adelaide, Adelaide, Australia

BACKGROUND: Exposure to a diverse environmental microbiome is thought to play an important role in “educating” the immune system and facilitat-
ing competitive exclusion of pathogens to maintain human health. Vegetation and soil are key sources of airborne microbiota—the aerobiome. A lim-
ited number of studies have attempted to characterize the dynamics of near surface green space aerobiomes, and no studies to date have investigated
these dynamics from a vertical perspective. Vertical stratification in the aerobiome could have important implications for public health and for the
design, engineering, and management of urban green spaces.

OBJECTIVES: The primary objectives of this study were to: @) assess whether significant vertical stratification in bacterial species richness and even-
ness (alpha diversity) of the aerobiome occurred in a parkland habitat in Adelaide, South Australia; b) assess whether significant compositional differ-
ences (beta diversity) between sampling heights occurred; and c) to preliminarily assess whether there were significant altitudinal differences in
potentially pathogenic and beneficial bacterial taxa.

METHODS: We combined an innovative columnar sampling method at soil level, 0.0, 0.5, 1.0, and 2.0 m, using passive petri dish sampling to collect
airborne bacteria. We used a geographic information system (GIS) to select study sites, and we used high-throughput sequencing of the bacterial 16S
rRNA gene to assess whether significant vertical stratification of the aerobiome occurred.

RESULTS: Our results provide evidence of vertical stratification in both alpha and beta (compositional) diversity of airborne bacterial communities,
with diversity decreasing roughly with height. We also found significant vertical stratification in potentially pathogenic and beneficial bacterial taxa.

Discussion: Although additional research is needed, our preliminary findings point to potentially different exposure attributes that may be contingent
on human height and activity type. Our results lay the foundations for further research into the vertical characteristics of urban green space aero-

biomes and their implications for public health and urban planning. https://doi.org/10.1289/EHP7807

Introduction

Vegetation and soil are known to be key sources of airborne
microbiota—i.e., the aerobiome (Joung et al. 2017; Liu et al.
2018). Exposure to a diverse suite of microbes from the environ-
ment (including the aerobiome) is thought to be important for the de-
velopment and regulation of the human immune system (Rook et al.
2003, 2013; Tasnim et al. 2017). Furthermore, studies now link the
microbiome to a plethora of maladies from Alzheimer’s disease
(Kowalski and Mulak 2019) and myalgic encephalomyelitis
(Hanson and Giloteaux 2017), through inflammatory bowel
(Aschard et al. 2019) and skin diseases (Prescott et al. 2017), to re-
spiratory health (Sokolowska et al. 2018). Environmental factors
are thought to be more important than genetic factors in shaping the
composition of the gut microbiome (Rothschild et al. 2018). Indeed,
Browne et al. (2016) showed that spore-forming bacteria (which
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survive in aerobic conditions) dominated the human gut, comprising
50%—60% of bacterial genera, and displayed greater change in abun-
dance and species over time in comparison with nonspore formers,
suggesting that many gut bacteria may come and go from the
environment.

Gut colonization aside, exposure to airborne microbiota has
implications for the human skin and airways. For example, sev-
eral studies (particularly in agricultural settings) have demon-
strated that the composition of the human nasal microbiome is
significantly influenced by airborne microbial communities from
the surrounding environment (Shukla et al. 2017; Kraemer et al.
2018). A recent study also showed that the diversity of skin and
nasal microbiota increased after exposure to urban green spaces
(Selway et al. 2020). Furthermore, a recent systematic review
highlights that despite the relative infancy of aerobiome-human
health research, two studies have shown that rural aerobiomes
shifted immune function away from allergic (Th2-type) responses
(Flies et al. 2020). In the indoor environment, studies have also
drawn the link between microbial composition and endotoxin lev-
els in dust and immuno-protection (e.g., against asthma)
(Gehring et al. 2008; Stein et al. 2016). Other indoor-based stud-
ies show airborne microbes contribute to nasal, oral, and skin
microbiomes (Lai et al. 2017; Chen et al. 2019). Studies have
also shown that up to 10° microbial cells can be found in a cubic
meter of air (Santl-Temkiv et al. 2018; Tignat-Perrier et al.
2019). Therefore, there is considerable potential for aerobiome—
respiratory system interactions.

A limited number of studies have attempted to characterize the
community structure and spatiotemporal dynamics of near-surface
green space aerobiomes. For example, Mhuireach et al. (2016) com-
pared bioaerosol samples in green spaces and parking lots and found
compositional distinctions in bacterial communities between the
two land cover types. Furthermore, Mhuireach et al. (2019) explored
spatiotemporal controls on the aerobiome and suggested that local-
ized site factors were likely to be important in driving bacterial
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community structure. However, no known studies have investigated
the spatial and compositional factors from a vertical perspective.
Support for the existence of aerobiome vertical stratification can be
drawn from studies of pollution, allergenic pollen, and fluid dynam-
ics of particulates, where stratification has been shown to occur at
various scales. For example, in an indoor agricultural environment
and under ventilated conditions, Miles (2008) showed that NH3
molecule concentrations decreased vertically with increasing dis-
tance from source (i.e., the ground). Gao and Nui (2007) found that
vertical concentration stratification of particles up to (10.0 pm)
occurred under different ventilation conditions. Particles smaller
than 2.5 um were less affected by gravitational factors, and submi-
cron particles with small relaxation times (i.e., the time required for
particles to adjust their velocity to new conditions of forces)
behaved more like trace gases following main airstreams. Alcézar
et al. (1998) found higher concentration of Urtica membranacea
pollen at the upper region of their sampling height range of
1.5 m—15 m and higher concentrations of U. urens-Parietaria sp. at
lower heights, possibly due to pollen mass and different fluid dy-
namics. The size range of bacterial cells can vary by eight orders of
magnitude (0.013 pm to 750 pm) (Levin and Angert 2015) and can
clump together and adhere to larger suspended particles (Tham and
Zuraimi 2005; Haas et al. 2013; Gong et al. 2020). These factors,
along with turbulent mixed flow could conceivably influence aero-
biome stratification.

The existence of aerobiome vertical stratification could have
important implications for the design, engineering and manage-
ment of urban green spaces, particularly those aimed at promot-
ing public health via microbial exposure (Watkins et al. 2020).
For example, do children receive the same exposure to airborne
microbiota as taller adults? Do people who lie down or work
close to the ground (e.g., gardeners bending over to dig) have dif-
ferent exposure levels to those who remain upright, and what are
the downstream implications for health? Developing a refined
understanding of this aerobiome—human interface could also
have implications for the design and monitoring of nature-based
health interventions, for example via green/nature prescribing
(Robinson and Breed 2019; Shanahan et al. 2019; Robinson et al.
2020). Furthermore, protocols for sampling the aerobiome to date
have often included a reasonable yet arbitrary sampling height of
2m (Airaudi and Marchisio et al. 1996; Cordeiro 2010;
Mhuireach et al. 2016; Domingue 2017). Therefore, investigating
aerobiome composition at various heights could also provide im-
portant methodological insights to fine-tune future study proto-
cols and public health recommendations.

In this proof of concept study, we combine innovative colum-
nar aerobiome sampling methods along with remote sensing tech-
niques and high-throughput sequencing of the bacterial 16S
rRNA gene. The primary objectives of this study were to: a)
assess whether significant vertical stratification in bacterial spe-
cies richness and evenness (alpha diversity) of the aerobiome
occurred; b) assess whether significant compositional differences
(beta diversity) between sampling heights occurred; and c) to pre-
liminarily assess whether there were significant altitudinal differ-
ences in putative pathogenic and beneficial bacterial taxa.

Materials and Methods

Site Selection

Our study site comprised three vegetated plots totaling 7 hectares
(ha) of the southern section of the Adelaide Parklands (Kaurna
Warra Pintyanthi), South Australia. The justification for the

selected study site was as follows:
1. Its broadly consistent soil geochemistry, because the south-
ern Parklands generally fall within the Upper Outwash
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Plain soil boundary (coalescing alluvial soil, draining the
Eden Fault Block).

2. This area is managed by a single division of the City of
Adelaide, minimizing variation in site management and
allowing for simpler study logistics.

3. Asingle study site (i.e., the southern section) in the Parklands
provided a degree of control over potential variation in land-
scape effects on the aerobiome (e.g., dominant vegetation
type, distance to coast, elevation, orientation, aspect).

4. Urban Parkland is representative of conditions that both
child and adult residents might be exposed to.

Following site selection, boundaries of three plots (as poly-
gons) were defined in QGIS 3 (version 3.0.2). These polygons
were subsequently converted to shapefiles (.shp), and a random
point algorithm was generated. This process provided randomly
selected sampling points within each vegetated plot to include in
our study (Figure 1). The spatial coordinates for each sampling
point were recorded and programmed into a handheld global
positioning system (GPS) device. This device was operated on
site to allow us to identify the relevant locations for setting up the
sampling stations.

Sampling Equipment

The sampling stations (Figure 2) were constructed using timber
(SpecRite 42 mm X 28 mm X 2.7 m screening Merbau). The sam-
pling stations comprised a timber stand with 45° leg braces. Hooks
and guy ropes were also installed, ensuring stability in the field. We
used standard lab-grade, clear plastic petri dishes (Nest Cell) sup-
ported by steel brackets (and attached to the brackets with Velcro
tabs) to passively sample the aerobiome per Mhuireach et al. (2016).

The level of stability was tested in two phases. Phase 1: dur-
ing windy conditions ( ~ Beaufort scale No. 5) in a yard environ-
ment, and Phase 2: in situ, prior to the sampling phase.

Data Loggers

We installed temperature and relative humidity data loggers
(Elitech RC-4HC) at each sampling station. Each logger was pro-
grammed to record data at 8-s intervals for the entire sampling
period. The dataloggers were calibrated at the start of each sam-
pling day using a mercury thermometer (Gerotherm) and a sling
psychrometer (Sper Scientific 736700) taking the range between
the two bulbs to determine baseline humidity.

On-Site Setup Procedure

The sampling stations were placed into position between 0600
hours and 0800 hours on 4, 5, and 6 November 2019. This proce-
dure ensured that sufficient time was allocated to travel between
the sampling locations. From 0800 hours onward and prior to
installing the petri dishes for passive sampling, the sampling sta-
tions were decontaminated using a 5% Decon 90 solution. The
microclimate data loggers were then decontaminated and installed
on the sampling stations. The nearest trees (all <10 m height and
20 cm-50 cm in diameter at breast height) were between 2 m and
5 m from the sampling stations.

Sampling Protocol

The sampling procedure involved collecting soil samples (actively)
and airborne microbiota (passively). Environmental metadata were
also collected (e.g., wind speed, temperature, and relative humidity).
Soil pH at each site was measured using a digital pH meter
(Alotpower). The probe of the pH meter was inserted into the soil
and left for a period of 1 min prior to taking a reading, per manufac-
turer’s instructions.
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Sites selection for the aerobiome study (with randomised subsites)
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Figure 2. Design of the aerobiome vertical stratification sampling stations. These were deployed in scrub habitat in the Adelaide Parklands, South Australia.
The figure also shows a silhouette of humans to provide perspective.
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Wind speed and direction data for the entire study area were
obtained from Adelaide’s meteorological weather station at
Ngayirdapira (West Terrace): Lat: —34.93, Lon: 138.58, Height:
29.32 m. Wind speed and direction was also recorded at each
sampling site on an hourly basis (Mhuireach et al. 2016) using
the handheld anemometer (Digitech QM-1644).

Soil samples. Topsoil samples were collected using a small
shovel and stored in 50-mL sterile falcon tubes. The shovel was
decontaminated using the 5% Decon 90 solution prior to use.
Wearing gloves, we sampled five topsoil samples (depth: 57 cm)
at equidistant sampling points, 20-30 cm from the central stem of
each sampling station (Zarraonaindia et al. 2015). The soil samples
were subsequently pooled and then homogenized, passed through
a 1-mm pore sieve, and placed in new sterile 50-mL Falcon tubes.
The sample tubes were labeled using a predefined labeling system.
We included field controls of soil samples by opening 50-mL ster-
ile falcon tubes for 60 s at each site (Mbareche et al. 2019). All soil
and field control samples were immediately chilled by placing in
an ice box in the field and then storing at —80°C in the lab prior to
DNA extraction and sequencing (Zarraonaindia et al. 2015). In
total, we collected 15 soil subsamples per sampling day across the
three sampling stations for each of the three sampling days.
Subsamples were pooled and homogenized by sampling station
and day, which gave a total of nine homogenized samples (three
per sampling station) plus three field controls.

Aerobiome samples. Passive sampling methods were used to
collect low biomass aerobiome samples following established pro-
tocols (Mhuireach et al. 2016, 2019). Petri dishes (100 X 15 mm)
were attached with decontaminated Velcro tabs on the sampling
stations at four sampling heights: ground level, 0.5 m, 1 m, and
2 m. The total height of the sampling stations was 2 m from ground
level (in a cohort study across Europe, North America, Australia,
and East-Asia, 95% of adult human heights fell within 2SD at
1.93 m for males and 1.78 m for females) (Jelenkovic et al. 2016).
One meter is the average height of a 4-y-old child (RCPCH 2020)—
typically the maximum weaning age (Mutch 2004; Clayton et al.
2006) and the time when the gut microbiome is thought to become
less plastic (Milani et al. 2017)—and is the approximate height of a
jogging stroller (Thule 2020). Fifty centimeters is the approximate
height of an adult torso from the hip to the mouth (representing the
height of an adult sitting on the floor) (Nikolova et al. 2017),
although this will vary depending on size and age. The ground sur-
face is also considered to be an important sampling level, for exam-
ple, representing the point of contact for a crawling child or an adult
lying on the floor. The petri dish sampling plates were also decon-
taminated using the 5% Decon 90 solution prior to use.

The petri dishes were secured to the sampling stations (Figure 2)
and left open for 6-8 h (Mhuireach et al. 2016). At the end of the
sampling period, we closed the petri dishes. A new set of gloves was
worn for the handling of petri dishes at each vertical sampling point
to reduce potential contamination. The petri dishes were then sealed
using Parafilm, labeled, immediately placed on ice, and transported
to the laboratory for storage at —80°C prior to DNA extraction
(Mhuireach et al. 2019). Unused petri dishes were left open for 60 s
in the equipment box carried on site and then sealed at each site as
field controls. Dishes were later swabbed during the DNA extraction
process using nylon flocked swabs (FLOQSwabs Cat. No.
501CS01, Copan Diagnostics, Inc.) (Mhuireach et al. 2019; Bae
etal. 2019; Liddicoat et al. 2020).

DNA Extraction, Amplification, and Sequencing

We extracted DNA from samples at the Evolutionary Biology Unit
(EBU), South Australian Museum. The order of processing sam-
ples was randomized using a digital number randomizer, including
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the soil samples (higher biomass), which were processed after the
low biomass aerobiome samples to minimize cross-contamination.

The petri dishes for each sampling station were swabbed with
FLOQSwabs for 30 s (with consistent back and forth strokes) in a
laminar flow cabinet type 1 (License No. 926207). The base and lid
samples for each height, station, and date were then pooled, prior
to extraction. The swabs were cut with decontaminated scissors
directly into labeled 2-mL Eppendorf tubes. Extraction blank con-
trols were used to demonstrate the absence of sample contamina-
tion during extraction and were the last samples in the extraction.
Sterile water and reagents were used instead of a sample, and all
DNA extraction steps were performed as if they were normal sam-
ples. We used Qiagen QIAamp DNA Blood Mini Kits to extract
DNA from the swabs together with extraction blank controls, and
Qiagen DNAeasy PowerLyzer Soil Kits to extract DNA from the
soil samples (and extraction blank controls). We followed the man-
ufacturer’s instructions throughout the extraction process.

Polymerase chain reaction (PCR) amplification was done in
triplicate using the 341F/806R primer targeting the V3—V4 region
of the 16S rRNA gene (5-CCTAYGGGRBGCASCAG-3'/5'-
GGACTACNNGGGTATCTAAT-3’). The 300-bp paired end run
was sequenced on an Illumina MiSeq platform at the Australian
Genome Research Facility Ltd (AGRF) using two flow cells (ID
000000000-CW9V6 and 000000000-CVPGT). Image analysis
was done in real time by the MiSeq Control Software (MCS) (ver-
sion 2.6.2.1) and Real Time Analysis (RTA) (version 1.18.54).
Then the Illumina bel2fastq 2.20.0.422 pipeline was used to gener-
ate the sequence data. A minimum of 0.20 ng/uL of usable PCR
product was required to generate sequencing output guarantee of
10,000 raw reads and to be included in the analysis.

Bioinformatics and Statistical Analysis

Paired-end reads were assembled by aligning the forward and
reverse reads using PEAR (version 0.9.5). Primers were identified
and trimmed. Trimmed reads were processed using Quantitative
Insights into Microbial Ecology (QIIME 1.8.4), USEARCH (ver-
sion 8.0.1623), and UPARSE software. Using USEARCH tools,
reads were quality filtered; full-length duplicate reads were
removed and sorted by abundance. Singletons or unique reads in
the data set were discarded. Reads were clustered and chimeric
reads were filtered using the “rdp_gold” database as a reference.
To obtain the number of reads in each operational taxonomic unit
(OTU), reads were mapped back to OTUs with a minimum identity
of 97%. Taxonomy was assigned using QIIME.

We used the phyloseq (version 1.24.0) package (McMurdie
and Holmes 2013) in R to import and analyze the sequencing
data, and decontam (version 1.1.2) (Davis et al. 2018) to identify
and exclude contaminants.

Lower biomass samples (i.e., air, field blanks, and extraction
blank controls) were analyzed using the isNotContaminant() func-
tion, where contaminants were identified by increased prevalence in
negative controls. Higher biomass samples (i.e., soil, and correspond-
ing extraction blanks) were analyzed using the isContaminant() func-
tion. Using isContaminant(), contaminants were identified by the
frequency that varies inversely with sample DNA concentration, or
by increased prevalence in negative controls. All taxa identified as
contaminants were pooled and removed from further analysis. To
estimate OTU alpha diversity, we derived Shannon Index values
based on rarefied abundances (Liddicoat et al. 2020) in phyloseq. The
lowest number of reads in a sample was used to rarefy the data sets
(Liddicoat et al. 2020). We generated box and violin plots with
ggplot2 (version 3.0.0) to visualize the distribution of the alpha diver-
sity scores for each sampling height. Microbial beta diversity was
visualized using nonmetric multidimensional scaling (NMDS) ordi-
nation of Bray—Curtis distances based on rarefied OTU abundances.
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The ordinations plots show low-dimensional ordination space in
which similar samples are plotted close together, and dissimilar sam-
ples are plotted far apart.

We used permutational multivariate analysis of variance
(PERMANOVA) to test for compositional differences between
sampling heights. The Pearson’s product-moment and Spearman’s
rank correlation tests were used to examine correlations between
sampling height and alpha diversity scores. A Mann-Whitney-
Wilcoxon test was used to examine differences in alpha diversity
between merged air sampling heights (0.0-0.5 m and 1.0-2.0 m)
and a Kruskal-Wallace chi-square test to explore differences in cor-
relations between sites and dates. We also calculated OTU relative
abundances using the phyloseq package in R to examine the distri-
bution of taxa that have potential implications for public health. To
compare presence and proportions of taxa, we used two-sample
tests for equality of proportions with continuity corrections and
created radial charts using pivot tables with comma separated value
(csv) files. A data point was considered to be an outlier if it was
more than 1.5 X above the third quartile or below the first quartile.

Results
We obtained 3,781,284 raw reads from air samples with an aver-
age length of 300 base pairs and 3,278,433 reads after quality
control (QC). For soil, we obtained 1,830,395 raw reads and
1,287,303 reads after QC. The range of reads per samples after
QC was 19,966-251,822. Reads were clustered into 10,563
OTUs. Overall, bacterial communities were diverse at each sam-
pling height and bacterial phyla were dominated by:
¢ Proteobacteria (at 2.0 m: 49.5%; 1.0 m: 43.8%; 0.5 m: 28.1%;
0.0 m: 27.1%; and soil level: 23.12%); and,
¢ Actinobacteria (at 2.0 m: 19.7%; 1.0 m: 17.5%; 0.5 m:
26.6%; 0.0 m: 43.5%; and soil level: 47.2%).
Ten bacterial phyla represented 100% of OTUs over 1% relative
abundance, including: Proteobacteria, Actinobacteria, Bacteriodetes,

A

Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimondates,
GNO2, OD1, and TM7. Proteobacteria were dominant at upper
sampling heights, and Actinobacteria were dominant at lower
sampling heights.

We observed a significant negative correlation between alpha
diversity (air and soil for all sites/dates) and sampling height
[r=—0.58, degrees of freedom (df) =38, p= <0.01; Figure
3A; Table 1].

Alpha diversity ranged from 1 to 6 and was highest at soil
level followed by the lower air sampling levels (0.0 m—0.5 m)
and the upper sampling levels (1.0 m—2.0 m), respectively.

When the lower sampling heights and the upper sampling
heights were merged (0.0 with 0.5 m; 1.0 m with 2.0 m), we
observed a significant negative correlation between alpha diversity
and sampling height (r= — 0.68, df =38, p= < 0.01) (Figure 3B).
Following an examination of alpha diversity scores for individual
sites and dates, all variants showed negative correlations between
alpha diversity and sampling height. Four out of six indicated
strong and significant relationships (Day 1: r= —0.76, p=0.00;
Day 3: r=—0.64, p=0.01; SCOIl: r= —0.68, p= <0.01; and,
SCO03: r= —0.73, p=0.01; Table 2). It is important to note that we
omitted six samples from the lower heights due to failure to reach
minimum DNA concentrations (as denoted by “—""in Table 1).

With the merged sampling heights, all correlations increased in
strength and were all statistically significant (Table 2). A Mann-
Whitney-Wilcoxson test for differences in alpha diversity between
the merged air sampling heights (0.0 m—0.5 m and 1.0 m—2.0 m)
showed a statistically significant difference (W =188, p = <0.01). A
Kruskal-Wallace chi-squared test indicated no significant difference
in correlations between sites or dates (p = 0.44).

Using these same merged sampling heights, a two-sample test
for equality of proportions with continuity correction showed a
significant difference in proportions of taxa that occurred in lower
air sampling heights (compared to upper sampling heights) that
also occurred in the soil samples. The positive relationship
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Figure 3. Box/violin plots of Shannon alpha diversity scores for each sampling height including soil (A) and for merged lower heights 0.0-0.5 m and upper
heights 1.0-2.0 m, with soil (B). Plots also display mean values, interquartile range, and kernel density estimation. Box plots indicate a vertical stratification
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Table 1. Shannon alpha diversity scores for each spatial and temporal repli-
cate, along with means and standard deviations.

Scrub 01 Scrub 02 Scrub 03
(SCO01) (SC02) (SC03)
Shannon Shannon Shannon
Days/sampling o diversity o diversity o diversity
height score score score Mean (£ SD)
Day 1
Soil 5.73 5.60 5.93 5.75+0.16
0.0 m 5.26 6.01 4.74 5.34+0.63
0.5m 4.63 5.82 5.72 5.39+0.66
1.0 m 443 3.21 4.48 4.04+0.71
2.0 m 1.54* 3.87 4.53 3.31+1.57
Day 2
Soil 5.63 5.60 5.93 5.72+0.18
0.0 m — 3.15 4.15 3.65+0.70
0.5m 4.35 6.01 5.14 5.16+0.83
1.0 m 3.01 4.86 2.90 3.59+1.10
2.0m 4.67 4.79 4.14 4.53+0.34
Day 3
Soil 5.68 5.74 6.00 5.81+0.17
0.0 m — — — —
0.5m 4.77 5.02 — 4.89+0.17
1.0 m 3.28 4.98 4.74 4.33+0.92
2.0m 4.57 3.53 4.23 4.11+0.53
Note: —, missing data (failed to reach minimum DNA concentrations: 0.20ng/uL of

usable PCR product was required to generate sequencing output of 10,000 raw reads);
*A data point was considered to be an outlier if it was more than 1.5 above the third
quartile or below the first quartile. Scrub 1, 2, and 3 refer to samples collected from the
scrub habitat study sites. SD, standard deviation.

between the proportion of taxa occurring in the air that also
occurred in the soil decreased as vertical distance from the soil
increased. For example, at the genus level, 84.4% of taxa in the
lower air samples also occurred in the soil samples, whereas only
76.1% of the taxa in the upper air samples occurred in the soil.
This difference was statistically significant (y>=9.5376, df =1,
p = <0.01; Figure 4 shows taxonomic breakdown).

Sampling heights displayed distinct bacterial signatures (Figure
5A). Sampling height explained 22% of the variation in environ-
mental microbiota when all air sampling heights and the soil level
were included, and this was statistically significant (PERMANOVA
df=4,F=2.50,R* = 0.22, p = <0.01, permutations = 999).

When analyzing air samples in isolation, sampling height
explained 11% of the variation in environmental microbiota,
however, this was not significant (df =3, F=1.18, R2=0.11,

Table 2. Correlation scores of alpha diversity and sampling height based on
all air and soil samples, followed by merged air sampling heights
(0.0 m-0.5 m and 1.0 m—2.0 m) and soil samples.

Days/sites r score df p-Value
Day 1 (04-11-19) —-0.76 11 <0.01™*
Day 2 (05-11-19) -0.31 12 0.17
Day 3 (06-11-19) —0.64 11 0.01**
Scrub 01 (SCO1) —-0.68 13 <0.01™*
Scrub 02 (SC02) —-0.41 12 0.14
Scrub 03 (SC03) -0.73 9 0.01™
Merged air sampling heights
(0.0 m—0.5 m
and 1.0 m-2.0 m):
Day 1 (04 November 2019) -0.76 11 <0.01*
Day 2 (05 November 2019) —-0.59 12 0.02"
Day 3 (06 November 2019) -0.72 11 <0.01™
Scrub 01 (SCO1) -0.72 13 <0.01™*
Scrub 02 (SC02) —-0.54 12 0.04*
Scrub 03 (SC03) —-0.86 9 <0.01"**

Note: The Pearson’s product moment correlation test was used. Correlation scores for
each sampling date and site are included. Scrub 1, 2, and 3 refer to samples collected
from the scrub habitat study sites. df, degrees of freedom. *0.05. **0.01. ***<0.01.
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p=0.15, permutations =999). When we merged within lower
and upper sampling heights, sampling heights explained 6% of
the variation and this was statistically significant (df =1,
F=1.98, R”?=0.06, p=0.01, permutations = 999) (Figure 5B).

The dominant taxa in the soil and lower sampling heights were
Actinobacteria (based on mean relative abundance >1%), and the
dominant taxa in the upper sampling heights were Proteobacteria
(Figure 6; segments 1 and 9). A significantly greater proportion of
Actinobacteria were present in lower air sampling heights (merged
0.0 m—0.5 m; 43.52% and 26.61%, respectively; x=35.07%)
compared to upper air sampling heights (merged 1.0 m-2.0 m;
17.52% and 19.67%, respectively; x=18.59%) (x>=6.1032,
df =1,p=0.01).

A significantly greater proportion of Proteobacteria was present
in the upper air sampling heights (merged 1.0 m—2.0 m; 43.78%
and 49.50% respectively; x =46.64%) compared to the lower air
sampling heights (merged 0.0 m-0.5 m; 27.11% and 28.14%,
respectively; x =27.63%) (x> =6.9471,df = 1,p= <0.01).

A number of relatively abundant and notable taxa (contingent
primarily on their implications for public health) were identified
in the samples (Figure 7). The relative abundance of these taxa
differed across sampling heights, and all significantly correlated
with sampling height, ranging from moderate to strong relation-
ships (Table 3). The relative abundance of these taxa are as fol-
lows: Streptomyces (3.63% and 3.7% in soil and 0.0 m,
respectively), Kingella (2% and 4.1% in 1.0 m and 2.0 m, respec-
tively), Lactobacillus (5.9% and 3.8% in 1.0 m and 2.0 m, respec-
tively), Flavobacterium (4.3% in 0.0 m, 7.5% in 0.5 m, 7.9% in
1.0 m, and 4.8% in 2.0 m), and Sphingomonas (4.3% in 0.0 m,
4.8% in 0.5 m, 6.5% 1.0 m, and 6.8% in 2.0 m). The potential
implications of these taxa for public health are highlighted further
in Table 4 in the Discussion.

Discussion

Vertical Stratification of Aerobiome Alpha Diversity

Here we show that vertical stratification of aerobiome alpha di-
versity occurred in an urban green space scrub habitat in
Adelaide Parklands, South Australia. This transpired as a signifi-
cant association in the reduction of bacterial alpha diversity as
height increased (i.e., between the ground surface level and two
vertical meters of the air column). When considering all sampling
heights, alpha diversity reduced with greater height. This vertical
stratification in alpha diversity was neither spatially (i.e., site spe-
cific) or temporally dependent. The strength of the negative rela-
tionship between alpha diversity and height increased when we
merged lower sampling heights (0.0 m with 0.5 m) and the upper
sampling heights (1.0 m with 2.0 m). This finding implies that
the required spatial frequency to elucidate vertical stratification in
alpha diversity—specifically, five sampling heights across a 2-m
vertical transect—may have been overestimated. However, sev-
eral omissions in the lower sampling heights due to failure to
reach minimum DNA concentrations could have affected the
strength of this association.

The decay in observed alpha diversity as height increased
could be the result of increasing distance from the primary
source, i.e., potentially the soil. It is widely accepted that soil rep-
resents one of the most microbially diverse terrestrial habitats
(Briones 2014; Bender et al. 2016; Dumbrell 2019; Zhu et al.
2019). Therefore, it seems reasonable to suggest that lower sam-
pling heights may possess a higher level of microbial diversity
because they are closer to a potentially greater concentration of
microbiota. We observed that a greater proportion of bacteria
taxa found in the lower sampling heights (in comparison with the
upper sampling heights) were also present in the soil samples,

128(11) November 2020



A Merged lower sampling B 2-sample test for equality of C Merged upper sampling
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Figure 4. Radial charts showing proportions (as percent) of taxa from the air samples that also occurred in the soil samples for each sampling height and across
all available taxonomic levels. A two-sample test for equality of proportions shows significant differences between lower and upper sampling heights for both
genus and family taxonomic levels. Merged lower sampling heights are shown on the left (A), with the radial bar colors corresponding to the taxonomic level
shown in (B), and merged upper heights are shown on the right (C). Proportional differences for individual taxonomic levels are compared in (D), with black
radial bars indicating lower sampling heights, and gray indicating upper heights.

6.0 °

4.0

2

°

g

0

NMDS2

NMDS1

0.

o

14

0

-2.0
-2.0

W]
Soil level

-2.0 1.0 0.0 -1.0 15 1.0 0.5 0.0 -0.5 -1.0
NMDS2 NMDS1
Sampling height Sampling height
() 20m ) 00m () 10m-20m
1.0m () soil level () 00m-05m
O 0.5m

Figure 5. Nonmetric multidimensional scaling (NMDS) ordination plots for visualizing bacterial beta diversity (community composition) for all sampling
heights, including soil (A) (Stress: 0.09, R?> =0.22) and for all sampling heights, excluding soil and merging within lower and upper samples (B) (Stress: 0.10,
R*=0.06). Ellipses represent Euclidian distance from the center, with the radius equal to the confidence level (0.95). Clusters suggest clear differences between
communities at different sampling heights (indicated by the colors).
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Table 3. Correlations for notable taxa at the genus level across sampling
heights, based on mean relative abundance (>1%) for each sampling height.

Reference

number Taxa (genus) g score S p-Value
1 Streptomyces —0.66 23,596 <0.01™*
2 Kingella +0.39 8,606 <0.01™*
3 Lactobacillus +0.54 6,470 <0.01™*
4 Flavobacterium +0.53 6,639 <0.01™*
5 Sphingomonas +0.39 8,577 <0.01™*

Note: The Spearman’s rank order correlation test was used. S=(n3—n) X (1—rs)/6,
where n is the number of bivariate observations and rs is Spearman’s rank correlation
coefficient. Reference number refers to the number key and corresponding notable taxa
in Figure 7 and Table 4. “0.05. *0.01. **<0.01.

both at genus and family levels. Together, these results suggest
that soil does appear to play a key role in supplementing the local
aerobiome, particularly at lower heights.

The presence of vertical stratification of bacterial diversity in
the aerobiome could have important implications for human
health. Indeed, exposure to environmental microbes is thought to
prime and ‘“educate” the immune system (Belkaid and Hand
2014; Hanski 2014; Mincham et al. 2020) particularly in early
life, and a recent mouse study suggests that exposure to environ-
mental microbes such as the butyrate-producer Kineothrix aly-
soides could also have anxiolytic (anxiety-reducing) effects

Table 4. Notable taxa (operational taxonomic units at the genus level) identi-
fied during the examination for bacterial relative abundance, based on mean
relative abundance (>1%) for each sampling height.

Reference

number Notable taxa Potential public health implication

1 Streptomyces spp.  These Actinobacteria are relatively more
abundant at lower (vertically) sampling
levels. They are soil-associated but also
considered to be “old friends” with
potential beneficial implications for
human health (Bolourian and Mojtahedi
2018).

Higher relative abundance at upper (verti-
cal) levels. The Gram-negative K. kingae
is considered to be pathogenic to
humans, causing osteomyelitis and septic
arthritis, particularly in children (Kiang
et al. 2005; Nguyen et al. 2018).

Gram positive Firmicutes, relatively more
abundant at upper levels. Some species
are widely considered to be beneficial
“old friends” and probiotics in humans
and other ecosystems (Rook et al. 2014)
(e.g., L. acidophilus; L. plantarum; L.
rhamnosus).

4 Flavobacterium spp. Soil and water-dwelling Bacteroidetes bac-
teria. These are present in all levels but
with highest relative abundance at upper
levels. Generally not considered to be
pathogenic to humans. Spatial distribu-
tion suggests potential allochthonous
deposition.

5 Sphingomonas spp. These are Proteobacteria, found in a variety
of environments. Relatively abundant in
all sampling heights but less so in the
soil level. These organisms are not con-
sidered to be pathogenic to humans and
can in fact be highly beneficial via their
ability to break down polycyclic aro-
matic hydrocarbons, which are deleteri-
ous to human health (Macchi et al. 2017,
Asaf et al. 2020).

2 Kingella spp.

3 Lactobacillus spp.

Note: The taxa in this table may have important public health implications as high-
lighted in the third column. Reference number refers to the number key and correspond-
ing notable taxa in Figure 7.
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(Liddicoat et al. 2019). The vertical stratification concept could
also be important for exposome researchers, who investigate the
types and methods of exposures to both endogenous and exoge-
nous chemical composites (including microbes and their biologi-
cal compounds across the life course) (Escher et al. 2017; Daiber
et al. 2019; McCall et al. 2019). The presence of vertical stratifi-
cation implies that the potential for exposure to environmental
microbial diversity may differ throughout the human life course
due to age and gender differences in height, activity types, and
methods of motion. However, our static experimental conditions
fail to capture the dynamics of human movement and activity
within and between environments. Further research is required to
understand how vertical stratification may affect human coloniza-
tion, with particular focus on the dynamic nature of human move-
ment through environments. Additional research into aerobiome
stratification could lead to improved design and management of
three-dimensional urban structures and vegetation assemblages,
which may influence aerobiome dynamics. In the future, this
research could lead to ways of optimizing human—environmental
microbe interactions.

Humans are spending more time indoors (Ergan et al. 2019).
Therefore, future aerobiome studies should also consider whether
vertical stratification occurs indoors and consider the relative
influence of the outdoor environment and the potential health
implications of these dynamics. Understanding how patterns of
human behavior influence exposure to airborne microbiota will
also be important. For example, ongoing changes to commuting,
recreation, and living environments may have important implica-
tions for aerobiome characteristics and exposure potential.

Vertical Stratification of Aerobiome Beta Diversity

We also showed vertical stratification of aerobiome beta diversity,
where sampling height explained 22% of the variation in environ-
mental microbiota when all sampling heights were included. This
variation was corroborated by the analysis of equality of taxonomic
proportions between the air and the soil samples. As mentioned,
the proportion of bacterial taxa from the air samples that were also
present in the soil decreased as altitude increased. This finding pro-
vides preliminary evidence that soil has a stronger influence on
aerobiome composition at lower heights, and allochthonous sour-
ces make a key contribution to the aerobiome higher up.

It is likely that distance to source makes a key contribution to
aerobiome vertical stratification. However, there may be other
important biophysical driving factors. For example, the size range
of bacterial cells can vary by eight orders of magnitude (from
0.013 pm to 750 um) (Levin and Angert 2015). However, many
bacteria are thought to occur in the 0.3-5 pm range (Schaechter
2016). Bacteria can also nucleate and exist as “clumps” or adhere
to larger suspended particles (Tham and Zuraimi 2005; Haas et al.
2013; Gong et al. 2020), thus altering their net particle size that
would influence their fluid dynamics. Airborne bacterial concen-
trations can be influenced by several factors, including ambient
temperature, humidity, wind dynamics, and particulate matter
concentrations (Gong et al. 2020), and these factors could also
play important roles in vertical stratification and warrant further
research. There also appeared to be some mixing of aerobiome
signals within fine vertical resolution strata, whereas more sensi-
ble patterns emerged in larger vertical strata. These findings are
consistent with the phenomenon of turbulent mixed (nonlaminar)
flow, and we might expect some level of vertical mixing in the
aerobiome where turbulent flow occurs over and around obstacles
and over rough surfaces.

Vertical stratification in bacterial beta diversity could also
have important implications for public health. For example, our
results point to intriguing questions, such as: a) Are there
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significant and consistent differences in potentially beneficial and
pathogenic bacterial assemblages at different altitudes in the aero-
biome? b) Does this affect exposure and colonization in humans
across the life course? and ¢) What are the downstream health
implications of this, if any? We provide a preliminary contribu-
tion towards answering the first question, as discussed in the sec-
tion, “Relative Abundances and Notable Taxa.”

Future research could also consider the potential influence of
physicochemical (e.g., antimicrobials, pesticide use) and social
(e.g., crowd gathering, isolation, or distancing) practices on mi-
crobial vertical stratification. For example, efforts to reduce infec-
tious agents such as COVID-19 may disrupt out relationship with
environmental microbiomes. Therefore, understanding whether
and how these changes affect human—environmental microbial
interactions will be essential in the future.

Relative Abundances and Notable Taxa

Following the analyses of relative abundances, the dominant taxa
in the soil and lower sampling heights were found to be
Actinobacteria, and the dominant taxa in the upper sampling
heights were Proteobacteria. This finding is not surprising, given
that a large proportion of terrestrial Actinobacteria are soil-
dwelling organisms (Barka et al. 2016; Zhang et al. 2019), and
both phyla are among the largest in the bacterial domain (Verma
et al. 2013; Polkade et al. 2016; Rizzatti et al. 2017). Other stud-
ies have shown similar dominant roles for these phyla in the aero-
biome (Arfken et al. 2015; Maki et al. 2017; Li et al. 2018), but
vertical stratification has not, to our knowledge, been explored.

We identified a number of notable dominant taxa at the ge-
nus level, including Streptomyces, Kingella, Lactobacillus,
Flavobacterium, and Sphingomonas. With the exception of
Flavobacterium, species in these genera are considered to have
potentially beneficial or pathogenic impacts on human health. For
example, the Actinobacteria Streptomyces spp., is considered to be
amicrobial “old friend” and potentially beneficial to human health
via production and regulation of antiproliferative, antiinflamma-
tory and antibiotic compounds (Bolourian and Mojtahedi 2018;
Nguyen et al. 2020). This genus had higher relative abundance at
lower sampling heights. On the other hand, members of the
Kingella genus such as K. kingae are considered to be pathogenic
to humans, for example—causing debilitating conditions such as
osteomyelitis and septic arthritis, particularly in children (Kiang
et al. 2005; Nguyen et al. 2018; Ingersoll et al. 2019). These find-
ings warrant further research because, if consistent across time and
space, the spatial and compositional differences in microbiota
have the potential to be important considerations for public health
through the modulation of exposure.

Limitations

As a proof of concept study, we have demonstrated, for the first
time, the presence of vertical stratification of microbial alpha and
beta diversity at lower levels of the biosphere (ground level to
2.0 m high). However, data from a larger number of replicates
from different environments and geographical areas will be
required to establish the generalizability of our findings; i.e., will
our results be consistent outside of the Adelaide Parklands environ-
ment? We also used OTU picking methods at the bioinformatics
stage. We recognize that although this approach has value for
short-read platforms and many studies still use this approach (Dei-
Cas et al. 2020; Derilus et al. 2020; Sato et al. 2020), Amplicon
Sequence Variant (ASV) analysis would have provided a more
detailed taxonomic picture of vertical stratification. Further, fol-
lowing the DNA extraction process, three samples (each at SC03
0.0 m) failed to reach sufficient DNA concentrations to enable
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PCR and sequencing, which may have affected the vertical stratifi-
cation relationship; we can only speculate that the relationship
would have been stronger with their inclusion. There are many sen-
sitive variables involved with processing low biomass samples
(Eisenhofer et al. 2019; McArdle and Kaforou 2020), and perhaps
even more stringent workflows are required for passive sampling.

Conclusions

We provide support for the presence of aerobiome vertical strati-
fication in bacterial diversity (alpha and beta), and demonstrate
that significant spatial differences in potentially pathogenic and
beneficial bacterial taxa may occur. Although the need to pro-
mote healthy ecosystems and understand environmental micro-
bial exposures has always been important, in light of the COVID-
19 pandemic, it is now justifiably at the forefront of many public
health agendas worldwide. As discussed, there is growing evi-
dence to suggest that exposure to the microbiome in biodiverse
green spaces contributes towards educating the immune system
(Rook et al. 2003, 2013; Tasnim et al. 2017; Liddicoat et al.
2020). Furthermore, the microbiome is thought to support the
immune system’s defensive role against pathogens and prevent
hyperinflammatory responses and metabolic dysregulation, which
are risk factors for severe COVID-19 (Torres et al. 2019; Guo
et al. 2020). Gaining a greater understanding of the transmission
routes and physical factors (such as the vertical differential)
affecting our exposure to environmental microbiomes—including
potentially beneficial and pathogenic species—is likely to play an
increasingly important role in the health sciences.

Strategies to explicitly consider the microbiome as part of
health-promoting urban green spaces have recently been pro-
posed, such as Microbiome-Inspired Green Infrastructure (MIGI)
(Robinson et al. 2018; Watkins et al. 2020). Further exploration
of aerobiome vertical stratification could make an important con-
tribution to this approach. For example, there could be value in
determining whether different habitats and vegetation manage-
ment regimes affect vertical stratification in urban green spaces
and in elucidating the downstream health effects on urban dwell-
ers. Building on our findings—that vertical stratification did
occur in an urban green space aerobiome—has the potential to
inform future exposome research, urban biodiversity manage-
ment, and disease prevention strategies.
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