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Abstract

Internet of Things (IoT) business partnership are formed by technological partners
and traditional manufacturers. IoT sensors and devices capture data from manufac-
turers’ products. Data enforces product/service innovation thanks to data sharing
among companies. However, data sharing among firms increases the risk of data
breaches. The risk increase is due to two phenomena: information linkage and
privacy interdependency. Data Protection Authorities (DPA) protect data users’
rights and fine firms if there is an infringement of privacy laws. We present two
different business scenarios: the first is where each firm is a data owner and the
second is where only the manufacturer is the data owner. Data protection author-
ities sanction the responsible of privacy law infringement. For both scenarios we
present two fair penalty schemes that suggest: the total amount of the fine and how
to share the fine among the participants. Penalties critically vary at how innova-
tion networks are structured in IoT industries. Our penalties provide incentives to
data sharing since they redistribute firms’ responsibility against data breaches. Our
penalties may mitigate the risk on the manufacturer if is the unique responsible for
data handling.

Keywords: Data Breach, Data Sharing, Cooperative Game Theory, Risk Mitigation,
European GDPR

200-character summary for social media

We provide systems of penalties for IoT connected firms if a data breach occurs. Our penalties
take into account two factors: data ownership and two types of data. Our penalties may integrate
the European GDPR.

*Address correspondence to Francesco Ciardiello, Management School, University of Sheffield 1 Conduit Road,
Sheffield S10 1 FL (UK), E-mail: f.ciardiello@sheffield.ac.uk.
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1 Introduction

The increasing fusion of information and communication technologies has brought the so-
called Industry 4.0 into the manufacturing world. Traditional manufacturers trigger new industries
off by virtue of a new technological revolution: Internet of Things (IoT). Connections between users
and devices have rapidly expanding. Technologies, such as sensors, are embedded in every day
products like cars, utility meters, white goods, wearable fitness trackers or home security systems.
Traditional products are equipped with sensors and devices. Devices are capable of sensing and
remotely communicating among them and with products. Users’ data are captured from sensors and
are updated, transmitted, sorted and analysed. The latter is possible thanks to advances in digital
technologies, driven largely by three fundamental economic factors: lower processing costs, cheaper
storage and less expensive bandwidth (Büyüközkan & Göçer, 2018). Even though manufacturers
are often data holders, they are often unable to extract business value from IoT data. Nowadays,
manufacturers tend to form partnerships with technology companies, service providers and related
businesses. There is an increasing trend of data-driven networks among firms in order to turn
raw data in customers’ services, new business models, innovation. Partners enables manufacturers
to create an additional foothold with new services and manufacturers have an incentive to share
IoT data with these technological partners. Conversely partners have the opportunity to face new
business challenges. However, data sharing is an intricate issue for firms: coordination among firms
is extended to the sharing of IoT data management infrastructures and architectures (Abu-Elkheir,
Hayajneh, & Ali, 2013).

In this emerging business scenario, consumers become users and users generate data. However,
users have concerns about how data are collected and shared with third parties. Data can show
personal features of users’ identity or behaviour. Data can be leaked, or more explicitly, exploited
for non authorised purposes. The concept of data breaches embraces different contexts and angles.
One of the most common definition is the following: A data breach is a security violation in
which sensitive, protected or confidential data are copied, transmitted, viewed, stolen or used by an
individual unauthorized to do so. 1 The data processing tasks include data acquisition, fusion,
aggregation and integration in IoT systems. In case of IoT ecosystems data acquired from different
streams originating from various devices and subsystems undergo fusion, aggregation and integration
to ensure innovation, quality of service. During data integration, attributes of data belonging to
different services are correlated and integrated. At times, this reveals information or insights about
users, their demographic location and activities, which lead to severe privacy concerns. In addition,
with the data sharing and processing tasks possible at various levels of granularity, it becomes more
complex to identify where information linkage might occur. For example, in case of IoT ecosystems,
information linkage might occur not just at device/data-stream level but also while sharing statistics
and analytics on the data among firms. This is why, in privacy-sensitive domains, individual data
streams that potentially lead to a privacy hazard are anonymised before data handling (Porambage
et al., 2016). Firms share data. However, sharing is not necessarily limited to dyadic relationships.
Once data are shared with a firm, same data might be transmitted to other entities without the
consent of the original source; this mechanism could be out of their own control. In such interlaced
settings, the privacy of individual users is bound to be affected by the decisions of third parties and
third parties’ third parties and so on. The latter mechanism increase the magnitudo of negative
externalities on users’ privacy. This phenomenon is known as privacy interdependence and has
been analysed in several data sharing contexts (Biczók & Chia, 2013), (Pu & Grossklags, 2014),
(Symeonidis et al., 2018), (Olteanu, Huguenin, Humbert, & Hubaux, 2016), (Symeonidis, Shirazi,
Biczók, Pérez-Solà, & Preneel, 2016). IoT Data do not have the same potential threat to users’
privacy. In the current work, we make a clear distinction between two types of data having different
value for users. Data, that has a higher level of users’ potential information, are subject to third
parties’ processing, integration and analysis. We refer these data to as private data. Data deal with

1https://www.acf.hhs.gov/sites/default/files/cb/im1504.pdf. Last accessed April 30, 2020.
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information on products and are analysed to improve products’ features. We refer these data to as
common data. Common data have a lower level of potential disclosure. Many privacy bodies are
worldwide active and put in place laws and mechanisms to protect users’ privacy rights. One of the
most known regulation is the General Data Protection Regulation in the European Union (GDPR).
GDPR is a regulation in EU law on data protection and privacy in the EU. According to GDPR,
some key legal points are fixed: companies, who collect data, are also liable for the data processing
from third parties. If a data breach happens, the supervisory body validates data that have been
treated not in compliance with GDPR. The body fines the so-called data controller.

Can we suggest to Data Privacy Authorities sensible penalties for firms if a data breach
happens? If not, can IoT data accountability be fairly shared among IoT firms in new business
scenarios? Can those penalties mitigate the manufacturers’ economic risk if the manufacturer is the
unique data owner? Are potential proposed schemes congruent, integrable with the current GDPR’s
operational procedures and with GDPR’s philosophy?

We build two penalty schemes based on a fair measurement of firms’ accountabilities in IoT
industries. The first penalty scheme regulates penalties if each firm is owner of private data. The
second penalty scheme regulates penalties if the loss is due to a mixture of common and private data,
originally collected and owned by the manufacturer. The second scenario is when the manufacturer
collects data and, then, shares data with its partners. For instance, manufacturers are owners of
data produced in the vehicle in the industry of smart cars.

The rest of the paper is organised as it follows. Section 2 contains literature related to our
paper. Section 3 contains the description of the holistic IoT model where different economic actors
are present: consumers or users, manufacturers and technological partners. To boost the formal
description of the privacy model, we provide evidence of an industrial case: the industry of smart
cars. In Section 4 we present our cooperative model described by transferable utility games with
characteristic functions. Measurements of privacy accountability are given by Shapley values of
the previous TU games. Finally, Section 5 provides penalties for privacy loss due to leaked data.
Penalties are based on previous accountability measures. To boost our results in modern IoT cases,
we emulate a procedural case of privacy infringement under GDPR. We show how our penalties can
be used to sanction partners and how can mitigate fines’ impact on the unique data controller, i.e.
the manufacturer. In Conclusions, we discuss the relevance, limitations and future research of the
current paper. In Appendix, proofs of main results are shown.

2 Related works

Privacy issues for sensor networks are especially related to the process of integration of data
from multiple sources (Lopez, Rios, Bao, & Wang, 2017), (Madaan, Ahad, & Sastry, 2018). Privacy
accountability can be somehow complex to be defined, if data ownership does not assume a clear
formulation. In fact, many papers address the inadequacy of formal and ethical frameworks regulat-
ing IoT business environments and advocate for urgent actions in legal analysis and new legislation
(Maras, 2015), (Weber, 2015), (Caron, Bosua, Maynard, & Ahmad, 2016), (Tzafestas, 2018). The
problem of data ownership is the legal key and is widely discussed under different angles in (Janeček,
2018). In (S. Park, 2019) the author empirically argues how the growing body of privacy laws does
not match with a reduction of data breaches in US. The failure is explained through the presence of
unregulated economic spillovers among different firms. The complexity of the relations is specific for
each business case. For instance, European regulations and data ownership in smart car industries
are disentangled in (Kerber, 2018). The author argues that manufacturers use legally the so-called
extended vehicle concept: this allows the transmission of all data produced in cars directly to servers
of the manufacturers, granting them a monopolistic control of these data. Moreover, he observes
that firms, within ecosystems of connected and automated mobility, could provide a wide range of
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services to the cars owners and drivers, if they also have access to the in-vehicle data. As such,
this recommendation suggests to transfer privacy accountability from manufacturers to partners.
From the aforementioned literature, it is straightforward to see that privacy regulations are con-
flictual with business interests. GDPR or similar privacy regulations create friction, complexity and
litigations to Internet of Things ecosystems (Seo, Kim, Park, Park, & Lee, 2018), (Shovon, Roy,
Shil, & Atik, 2019). A few papers adopt an ex post analysis. Even if there is a growing body of
literature supporting privacy by design, associated costs for those designs are high. In (Seo, Kim,
Park, Park, & Lee, 2017), the authors examine the impacts and consequences of GDPR on a IoT
industry and they perform a cost analysis. The outcome is that those costs are extremely high. The
latter suggests that many firms might fail in protecting customers’ privacy and they might incur in
fines imposed by Data Protection Authorities. Another stream of research is related to consumers’
compensation if data breaches happen. The most common practice is that firms provide product
and service compensation for free (Goode, Hoehle, Venkatesh, & Brown, 2017), (Kude, Hoehle, &
Sykes, 2017). Interestingly, social structure can affect consumers’ perception of fairness for a given
compensation (Kude et al., 2017).

The main concern that customers, in primis, and individuals in general, have about their data
is security but also privacy (Ziegeldorf, Morchon, & Wehrle, 2014), (Díaz, Martín, & Rubio, 2016),
(Lopez et al., 2017), (Kerber, 2018). Nevertheless users do not put in place mechanisms to protect
privacy: such behaviour is commonly referred to as privacy paradox (Posner, 1981), (Acquisti, John,
& Loewenstein, 2013), (Spiekermann, Acquisti, Böhme, & Hui, 2015), (Acquisti, Taylor, & Wagman,
2016). There is a stream of literature where users strategically reveal personal data at different levels
in order to protect their privacy (Ioannidis & Loiseau, 2013) (Chessa, Grossklags, & Loiseau, 2015).
Users may receive some benefits in giving private data away. The appropriate quantification of how
much benefits users can get by releasing their data is faced in (Chessa & Loiseau, 2017). The authors
propose two famous solutions from cooperative game theory: the Shapley value and the core as tools
for compensating the release of personal data. The problem of economic trade-offs in data games is
axiomatically faced in (Béal & Deschamps, 2016), (Béal, Deschamps, & Solal, 2016). The authors
define compensation schemes, which specify how data owners should be compensated by the agents
in needs of data. On the class of data games, the core, the nucleolus and the Shapley value provide
relevant compensation schemes. The authors provide characterisations of the set of all (additive)
compensation schemes belonging to the core, of the nucleolus, of the Shapley value for data sharing
games.

3 A mathematical representation of IoT models.

A manufacturer sells a product endowed with sensors and devices. We make the following
hypotheses and assumptions explicit in our holistic IoT model:

- Sensors collect data on users and on product’s functioning. Data are usually stored in un-
structured databases or may be captured by firms in real time (Wang et al., 2013). Data have
different level of users’ privacy. Most of acquired data are released on aggregate and anony-
mous basis and, then, is referred to as common data. Conversely, some data are personal and
embodies users’ sensible information. This data are referred to as private data. Data have a
value since hides users’ personal information somehow. This value represents a cost for users
if users give away data. Such a cost increases within the associated effects in data sharing:
interdependent privacy and information linkage.

- Consumers buy the product and accept privacy conditions imposed by the manufacturer.
Consumers are users and generate data. Users have an incentive to give away their data (also,
the most sensible ones) because they expect to receive product improvements. Consumers are
aware of this process of data collection but they are less aware of further data processing from
partners/third parties.
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- The manufacturer forms partnerships with technological companies, service providers, IT com-
panies in order to create business value from data. The whole set of companies in the IoT
industry share and integrate data. Partnerships are innovation networks where connections
are bi-directional. The relationship among innovation and inter-organisations has been deeply
analysed in several and multiple environments. It is quite established result that the knowledge
base of an industry has a complex behaviour when innovation is the key for the industry. The
sources of innovation are found in networks, rather than in individual firms. The cooperation
(more than competition) and the formation of flexible organisational links is dominant in un-
certain early market (S. H. Park, 1996). Cooperation among firms to extract information from
the raw data creates the so-called value chain in data-driven networks for innovation (Powell,
Koput, & Smith-Doerr, 1996), (Gulati & Gargiulo, 1999), (Goes & Park, 1997). IoT systems
offer a great amount of private data and innovation networks are data-driven (Abella, Ortiz-
de Urbina-Criado, & De-Pablos-Heredero, 2017). Thus, new technologies are the focus of a
variety of cooperative efforts that seek to reduce the inherent uncertainties associated within
unexplored markets.

- Data sharing increase users’ privacy value, even if data sharing is useful to product innovation.
Data sharing among firms has two negative externalities for users’ privacy: interdependent
privacy and information linkage. The first network phenomenon can be briefly summarised as
it follows: copying in same data (from a source firm to an interdependent destination firm and
so on) increases users’ peril of data breaches (Kamleitner & Mitchell, 2019). If destinations,
i.e. firms, have own data then there is a supplementary risk to users’ privacy. The second
phenomenon can be briefly summarised as it follows (Madaan et al., 2018). A firm receives
data from another firm. The last company might integrate received this data with their own
data; in doing this, the company can gain a surplus of private information on users’ private
features.

We provide a mathematical formulation of the previous IoT system. As we have discussed above,
partners and manufacturers form networks in order to provide innovation to products. The best
way to mathematically represent this network is the mathematical concept of a graph.

- Let N be the set of n partners including the manufacturer.

- E is the set of links which represent connections from/to two different firms.

- Firms may have different number of connections with other firms. Let di be the degree of
i ∈ N in E. It represents the number of connections in which firm i is involved.

- |E| denotes the total number of connections available in the network. Let E−i ⊂ E be the set
of connections in which firm i ∈ N is not involved. It is |E| = |E−i| + di for any i ∈ N . A
network is a simple and connected mathematical graph, that is G = (N, E).

- Data have a privacy value for users. The value of private data unit is βpriv ∈]0, 1]. The value
of common data unit is βcomm ∈]0, 1]. The unitary value of private data is greater or equal
than the value of common data. We normalise βpriv to one and set βcomm ≡ β ∈]0, 1[. Both
quantities of common and private data are represented by real positive numbers, since IoT
data have a high volume. They can be measured in terabytes. Data can be monetized and
will be measured in US $.

3.1 A real case: the industry of smart cars with a unique manufacturer

To boost our model, we discuss the case of the traditional industrial sector endowed with IoT
technologies. In the last several years, the phenomenon of smart vehicles has exploded due to the
technology of Internet of Things (Peters, Chun, & Lanza, 2015). In smart cars, devices are devoted
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to regulate relationships between vehicles and road infrastructures, between vehicles, between ve-
hicles and pedestrians. Most data are aimed at the safety or maintenance of cars. Collaborative
technological networks are emerging in the new automotive manufacturing sector with IoT tech-
nologies (Markendahl, Lundberg, Kordas, & Movin, 2017). New technological companies entered
IoT business forming partnership with traditional car manufacturers to share risk and uncertainty.
For instance, the giant Apple launched a project and listed its collaboration with many car manu-
facturers: BMW, Ford, GM, Honda, Hyundai, Jaguar Land Rover, KIA, Mitsubishi, Nissan, PSA
Peugeot Citroen, Subaru, Suzuki and Toyota. Business structures of those industrial collaborations
are quite fragmented and are based on initial and flexible partnership. For instance, the Car Con-
nectivity ConsortiumÂő (CCC) is a cross-industry organisation advancing global technologies for
smartphone-to-car connectivity solutions. It includes big companies as Apple and Samsung.

Car manufacturers provide customised services to drivers. For instance, CCC is developing
Digital Key, an exciting new open standard to allow smart devices, like smartphones to act as a
vehicle key. Digital Key will let drivers lock and unlock their cars, and even let them start the
engine and share access to friends or valets, using their phones. Mobiles are integrated in IoT data-
architectures, by increasing the exposure level of users’ privacy. Biometric solutions for motorised
vehicles are also the source of privacy concerns since personal data could be used by insurance
companies (Villa, Gofman, & Mitra, 2018), (Iqbal & Lim, 2006). For instance, Xpeng Motors in
conjunction with electronics company Xiaomi, launched a car model G3 electric SUV, including facial
recognition door access. In autonomous driving projects, automated GPS-based surveillance may
create serious concerns for privacy and, specially, connected problems related to tracking activities
and profiling, including home addresses and social and work activities (Iqbal & Lim, 2010), (Seif &
Hu, 2016). There are numerous firms working in the area of autonomous vehicle: the most advanced
ones include Waymo, GM Cruise and Argo AI. As such, services may pose a threat to users’ privacy.

4 A cooperative approach

In this Section, our main aim is to provide fair measures of firms’ accountability to privacy:
these measures will be, meaningfully, used to build penalties for firms in the Section 5. To build
these measures, we need two essential steps described as it follows: (1) to construct a special class
of cooperative game: transferable utility games with characteristic functions; (2) to obtain measures
through allocation rules of cooperative models.

4.1 A transferable utility game

Before doing this, we need to formally clarify what a transferable utility game is. A transfer-
able utility game in characteristic form is a pair (N, ν) where N is a finite set and ν : P (N) → R,
where P (N) = 2N is the superset of N . 2 The quantity ν(T ) represents the quantified degree of
cooperation of players in T ⊆ N . Let T ⊆ N be a subset of firms. Suppose that firms in T cooperate
in integrating, sharing private data. It is assumed that only firms belonging to T share private data.
We clarify the conceptual meaning of a fundamental quantity for our analysis.

Definition 1. Let MT
priv the sum of quantities of private data owned by firms in T . The Privacy

Value for a coalition T is the value of private data MT
priv, after some data being shared among firms

in T or/and integrated with data from different IoT sources. If T = N , we simply call it privacy
value.

In order to understand how privacy values are structured, we can make assumptions on the
effect of data sharing and integration on data value. In particular, we define coefficients which
regulate the increase from the original value of MT

priv to the privacy value within a coalition T . It is
given for granted that firms in T might use links in the whole E for the sake of data transmission.

2v(∅) = 0.
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3 After a clarification on what cooperation means in our settings, we define coefficients that shape
the increase of privacy values.

Definition 2. Let N the set of players (firms) and E a set of links between players. We represent
the unitary increase rate of value of MT

priv, through a function

λE : P (N) → R
+,

which satisfies the following axioms:

- λE(T ) = 0 if T contains isolated firms in T , i.e. E|T = ∅.

- If T1 ⊆ T2 ⊆ N , then λE(T1) ≤ λE(T2).

- Let T ⊆ N and E, E′ be two sets of links between palyers such that E ⊆ E′. Then λE(T ) ≤
λE′

(T ).

If λE(T ) = 0, then private data sharing do not increase users’ value of private data. The first
axiom says that the rate is 0, if firms in T are not neighbours. The second axiom says the following:
the rate increases if we add some players to the coalition T . The third axiom says that the rate
increases if the number of internal links in T increases.

In the following, for simplicity and whenever this does not create confusion, we will simply
indicate λE as λ.

Among coefficients satisfying those axioms, the simplest expression is the following:

λa(T ) = 2|E|T |.

A normalised readjusting term, which takes into account the size of the coalition, multiplies the
previous coefficient, as it follows

λf (T ) = 2
|T |

n
|E|T |.

Privacy values depend on how private data are originally distributed among firms, after their collec-
tions. In other words, privacy values depend on data ownership before being shared and integrated
among them. It is also reasonable to assume that privacy values decrease if data are scattered
among different firms. The more data ownership is spread among firms, the less the privacy value
becomes. To better formalise, we say that an ownership distribution of private data in N is a
function s : N → R

+, which assign to firms the quantity of private data possessed by firms. The
support of data distribution is the following integer: supp(s) = |{i ∈ N |si 6= 0}|. The worth of a
coalition ν(T ) will be the privacy value for coalition T divided by the support of the restricted data
distribution function s|T : N → R

+.

4.2 The Shapley value

To find fair measures of accountability against privacy value is the next step. The technique
used here is to build these accountability measures, as an outcome of allocation rules for transfer-
able utility games. Before proceeding further, we specify the allocation rule used throughout this
paper: the Shapley value. The Shapley value addresses an aggregation question: How to summarise
information from TU games into single payoffs assigned to each of the players? Shapley proposes a
solution to this question, which is based on the simple fact of defining an axiomatic value for each
participant involved in the game. Such an individual value is the so-called Shapley value. Shapley

3 The cooperation among firms in T does not embody the classical "connectedness" of T , i.e., the capability of
transmitting data between firms in T , only through links in E|T . The graph induced on E by T is E|T . To cover this
aspect through a cooperative approach, we should take into consideration only connected coalitions. Differently in
the current paper, we take into consideration only firms’ contributions to share and/or integrate data on networks.
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succeeded in providing four conditions on the transformation from a TU-game into an allocation
that can be fairly said to be natural. The first is the symmetry axiom: if two participants equally
contribute to the worth of any coalition, i.e. ν(T ), then they must have the same Shapley value.
The second is the efficiency axiom: the sum of individual Shapley values must be equal to the worth
of the whole grand coalition. The third is the dummy-player axiom. A participant who does not
contribute to any coalition must have a null value. A fourth axiom is the additivity axiom (the most
debated one). Let us have two TU games on the same set of players. For each TU game, each player
has a Shapley value. Let us construct the sum-game of the previous two games. Then, individual
Shapley values of sum game are equal to the sum of the two initial Shapley values. Actually, some
of those axioms can be considered quite compelling, from the point of view of the standard inter-
pretation of cooperative games. Such a value is unique and can be formulated for a TU game (N, ν)
as it follows:

Shi(N, ν) =
∑

T ⊆N\{i}

W (|T |, n) (ν(T ∪ {i}) − ν(T )) ,

where

W (τ, n) =
τ !(n − τ − 1)!

n!
.

In (Moretti & Patrone, 2008), the authors describe how wide is the scientific domain that has
been investigated using the Shapley value and related refinements: cost allocation, social networks,
water-focused issues, biology, reliability theory, belief formation, centrality theory.

4.3 Results

We have clarified the cooperative approach to the model and we have clarified the role of the
Shapley value as a fair individual measure for privacy accountability. We are ready to apply our
conceptual scheme to two business scenarios. The two scenarios differ because of a key issue in IoT
ecosystems: data ownership. Our scenarios are similar to the ones described in (?): a vertical and
a horizontal models for IoT business models.

4.4 Scenario A.

Each firm collects private data from different sensors and devices. This data are different.
The data collected potentially contain sensitive consumer data and can be classified as private data.
The amount of private data collected from each firm is mpriv ≥ 0. The ownership distribution of
private data is the function: s(i) = mpriv, with supp(s) = N . The quantity of private data within
coalition T is equal to |T |mpriv. The increase of original value is λ(T, s)|T |mpriv. The privacy value
for T is the sum of the two previous terms. It is straightforward to see that s|T (i) = mpriv and
supp(s|T ) = |T |. We define our characteristic function as the ratio of privacy values and the support
of data distribution on T . The TU game (N, ν) is represented as it follows:

ν(T ) =















[1 + λ(T )] mpriv|T |

supp(s|T )
if T 6= ∅,

0 if T = ∅.

(1)

We build two transferable utility games by replacing the rate λ(T ) with λa, λf , respectively.

Theorem 1. Let ν = νa, where

νa(T ) =







[

1 + 2|E|T |
]

mpriv if T 6= ∅,

0 if T = ∅.

(2)
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Then

Shi(N, νa) =

(

di +
1
n

)

mpriv. (3)

Theorem 2. Let ν = νf , where

νf (T ) =















[

1 + 2
|T ||E|T |

n

]

mpriv if T 6= ∅,

0 if T = ∅.

(4)

Then

Shi(N, νf ) =

(

2
3

di +
2

3n
|E| +

1
n

)

mpriv. (5)

4.5 Scenario B

The manufacturer collects private and common data provided by a set C of consumers. The

Users/
Consumers	  

Innovation	  

Partners	  
Data	  Sharing	  

Manufacturer	  	  

(data	  owner)	  

D
at
a	  

Figure 1 . Scenario B. Three actors are present in IoT business ecosystems. The manufacturer
collects data from users. The manufacturer with its technological partners provide innovation to
users. Users give away their data to the manufacturer. Scenario B describes the case of data
ownership in the industry of smart cars.

special relationship of the manufacturers with the remaining actors is illustrated in Fig.1. For the
sake of simplicity, the manufacturer is the firm denoted by i = 1. The amount of private information
collected by i = 1 is mpriv ≥ 0. The ownership distribution of private data is, then, s(i) = mpriv

for i = 1; 0 otherwise. Its support is 1. The amount of public information, collected by i = 1, is
Mcomm ≥ 0. If the manufacturer does not share data with peers in the network, the privacy values
thus collected are

ν({1}) = mpriv + βMcomm, ν({i}) = 0

where 0 ≤ β < 1, i 6= 1. The manufacturer shares collected data with some or all components of
the network. Let T ⊆ N . If 1 6∈ T then the companies that are in T have no data from C. If
1 ∈ T then firms that are in T acquire both private and public data from the manufacturer. In
particular, each firm in T acquire the quantity of mpriv. Data values for coalition T increase by the
rate λ(T ). We define the worth of a coalition T as the ratio between privacy values and supports of
data distribution on T . Then, the worth of coalition T becomes equal to

ν(T ) =
mpriv + λ(T )mpriv

supp(s|T )
+ βMcomm.
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Summing up those considerations, we define the TU cooperative game (N, ν) where the characteristic
function ν is defined by

ν(T ) =







[1 + λ(T )] mpriv + βMcomm if 1 ∈ T,

0 if 1 6∈ T.

(6)

Let C1 = {i ∈ N |(1, i) ∈ E i = 2, ..., n} be the subset of firms connected to the manufacturer.

Theorem 3. Let ν = νa, where

νa(T ) =







(

1 + 2|E|T |
)

mpriv + βMcomm if 1 ∈ T,

0 if 1 6∈ T.

(7)

It is

Sh1(N, νa) =

(

1 +
1
3

d1 +
2
3

|E|

)

mpriv + βMcomm. (8)

Let k ∈ N with k 6= 1. If k ∈ C1, then

Shk(N, νa) =

(

2
3

dk +
1
3

)

mpriv. (9)

Let k ∈ N with k 6= 1. If k 6∈ C1, then

Shk(N, νa) =
2
3

dkmpriv. (10)

Theorem 4. Let ν = νf , where

νf (T ) =















[

1 + 2
|T ||E|T |

n

]

mpriv + βMcomm if 1 ∈ T,

0 if 1 6∈ T.

(11)

It is

Sh1(N, νf ) =

(

n + 1
6n

d1 +
n + 1

2n
|E| + 1

)

mpriv + βMcomm. (12)

Let k ∈ N con k 6= 1. If k ∈ C1, then

Shk(N, νf ) =

(

1
6n

d1 +
1
2

dk +
1

2n
|E| +

1
6

)

mpriv. (13)

Let k ∈ N with k 6= 1. If k 6∈ C1, then

Shk(N, νf ) =

(

1
6n

d1 +
1
2

dk +
1

2n
|E|

)

mpriv. (14)
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5 Penalties

IoT companies may be involved in cases of privacy infringement. A data breach is a disruptive
event in which part of data are stolen, or used for not authorised purposes. Data, that have been
affected by a breach, somehow, are referred to as leaked data. We adopt EU as legal authority
and GDPR for infringement of privacy. Investigations by Data Protection Authorities may find the
infringement of privacy regulations. Since data (originally in the hands of a specific data controller)
may be in possess of any firm (after data sharing), then each firm can be found guilty of privacy
laws’ infringements. However, EU Data Protection Authorities fine only data controllers if there is an
infringement.4 Data controllers are the firms who, after collecting users’ data, are also responsible
of data processing from third parties. Therefore, our penalties establish the total amount of the
fine. Our penalties enforce a corporate spirit of responsibility for data breaches and divides the fine
among the whole set of firms. How to divide the whole fine among firms? Each firm is sanctioned
proportionally to its fair measure against the privacy value. These proportional fair measures are
given by firms’ Shapley values. In addition, Shapley values and, then, individual penalties change if
networks have specific topologies.

Innovation networks involve the interchange of people, ideas and organizations to create new,
technologically and commercially feasible products, and organizational structures. The complex-
ity of such interactions among IoT firms might be framed into a general framework for innovation
proposed in (Ahrweiler & Keane, 2013). However, empirical results show differences in the topol-
ogy of networks formed by firms in knowledge-intensive sectors (Salavisa, Sousa, & Fontes, 2012).
For instance, scaling behavior exhibited by US patent networks is consistent with a preferential
attachment mechanism(Valverde, Solé, Bedau, & Packard, 2007). It is challenging to a priori define
stereotypical topologies for innovation networks, especially in emerging IoT business models. On
the top of these considerations, Data Protection Authorities may find cumbersome to access to the
knowledge of IoT ecosystems and, within realistic assumptions, may have a partial knowledge of
these technological infrastructures. For the sake of showing examples of our penalties, we limit our
attention to some regular networks. From now onwards, we select linear, circular and star-shaped
networks for our analysis. A linear network is characterised by the following topology: d1 = dn = 1,
d2 = ..., dn−1 = 2 and |E| = n − 1 for n firms. Firm 1 is the manufacturer in the linear model. In
star-shaped networks, the manufacturer is connected to any firm. The topological parameters are
the the following: d1 = n − 1, di = 1 for i = 2, ..., n and |E| = n − 1. A circular network assumes the
geometrical shape of a circle and its topological parameters are the following: di = 2 for i = 1, ..., n

and |E| = n. However, some supporting considerations on the selected topologies can be underlined.
Linear networks are classic in the literature of supply chains; a mixture of strong and weak ties in
the shape of star-shaped networks show reinforcing properties for some Italian innovation networks
with a leading firm (Capaldo, 2007); circular networks are emergent in the field of a new production
paradigm, the so-called circular economy.

In scenario A, each firm collects private data and, then, is the data controller of his own
private data. We define the following penalties if breaches involve a certain quantity of private data.

Definition 3. Assume M leak
priv being leaked. We define the function

νleak : x ∈ [0, Mpriv] → [1 + 2|E|] x.

A vector x ∈ Rn is a penalty scheme if

x =
νleak(M leak

priv )

ν(N)
y

4 EU Commission includes a proposal for consumer organisations to bring collective class-style actions on behalf
of users. Fines are decided by the privacy authority on case-by-case basis. Fines can be reckoned according to the
negative impact on users. Users may claim that data collected have been treated not in compliance with GDPR. The
following website https://www.enforcementtracker.com/ contains a list and overview of fines which Data Protection
Authorities have imposed under EU General Data Protection Regulation.
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where yi = Shi(N, ν).

Here, we deduce the specific formulations of Shapley values, if business scenario A is the
adopted one for IoT data ownership.

Corollary 1 (Scenario A).

– A linear network.

Shi(N, νa) =

(

1 +
1
n

)

mpriv if i = 1, n;

Shi(N, νa) =

(

2 +
1
n

)

mpriv if i = 2, ..., n − 1;

Shi(N, νf ) =

(

4
3

+
1

3n

)

mpriv if i = 1, n;

Shi(N, νf ) =

(

2 +
1

3n

)

mpriv if i = 2, ..., n − 1;

– A circular network.

Shi(N, νa) = Shi(N, νf ) = 2 +
1
n

, i = 1, n;

– A star-shaped network.

Sh1(N, νa) =

(

n − 1 +
1
n

)

mpriv;

Shk(N, νa) =

(

1 +
1
n

)

mpriv; if k = 2, ..., n.

Sh1(N, νf ) =

(

2n

3
+

1
3n

)

mpriv;

Shk(N, νf ) =

(

4
3

+
1

3n

)

mpriv; if k = 2, ..., n.

We show a potential example for business scenario A.

Example 1. Each firm collects mpriv = 300, 000 from users. Its value is 300, 000$. Assume that
the amount of leaked private data is 400, 000. (N, E) is a linear network with n = 5. We assume
that the characteristic function used to compute the Shapley values is νa, which has been defined in
(2). The Shapley values are

Shi(N, νa) = 360, 000; i = 1, 5

Shi(N, νa) = 660, 000 i = 2, 3, 4.

The penalty is equal to 3, 600, 000 $. It is shared among the firms as it follows:

x1 = x5 = 480, 000$ x2 = x3 = x4 = 880, 000$
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We assume that the characteristic function used to compute the Shapley values is νf , which
has been defined in (4). The penalty is equal to 3, 600, 000 $.

Shi(N, νf ) = 7
5 mpriv i = 1, 5;

Shi(N, νf ) = 31
15 mpriv i = 2, 3, 4;

It is shared among the firms as it follows:

x1 = x5 = 560, 000$; x2 = x3 = x4 = 826, 666.66$.

The manufacturer collects data from users in scenario B. The data controller/data holder is
the manufacturer within General Data Protection Regulation (GDPR). The manufacturer is, then,
the responsible of data handling. If data are a mixture of common and private data, then we say
that data are mixed. Assume that leaked data are mixed, then we have the following definition of
penalties.

Definition 4. We define the function

νleak : (x, y) ∈ [0, mpriv] × [0, Mcomm] → [1 + 2|E|] x + βy.

Assume that the quantity M leak
priv + M leak

comm has been leaked. A vector x ∈ Rn is a penalty scheme if

x =
νleak(mleak

priv, M leak
comm)

ν(N)
y

where yi = Shi(N, ν).

Here, we formulate the expressions of Shapley values if the business scenario B is the adopted
one for IoT data ownership.

Corollary 2 (Scenario B).

– A linear network. n ≥ 3

Sh1(N, νa) =

(

2n

3
+

2
3

)

mpriv + βMcomm;

Sh2(N, νa) =
5
3

mpriv;

Shk(N, νa) =
4
3

mpriv; if k = 3, ..., n − 1;

Shn(N, νa) =
2
3

mpriv.
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Sh1(N, νf ) =

(

n

2
+

7
6

−
1

3n

)

mpriv + βMcomm;

Sh2(N, νf ) =

(

5
3

−
1

3n

)

mpriv;

Shk(N, νf ) =

(

3
2

−
1

3n

)

mpriv; if k = 3, ..., n − 1;

Shn(N, νf ) =

(

1 −
1

3n

)

mpriv.

– A circular network.

Sh1(N, νa) =

(

2n

3
+

5
3

)

mpriv + βMcomm;

Shk(N, νa) =
5
3

mpriv; if k = 2, n;

Shk(N, νa) =
4
3

mpriv; if k = 3, ..., n − 1.

Sh1(N, νf ) =

(

n

2
+

11
6

+
1

3n

)

mpriv + βMcomm;

Shk(N, νf ) =

(

5
3

+
1

3n

)

mpriv; if k = 2, n;

Shk(N, νf ) =

(

3
2

+
1

3n

)

mpriv; if k = 3, ..., n − 1.

– A star-shaped network.

Sh1(N, νa) = nmpriv + βMcomm;

Shk(N, νa) = mpriv; if k = 2, ..., n.

Sh1(N, νf ) =

(

2n

3
+ 1 −

2
3n

)

mpriv + βMcomm;

Shk(N, νf ) =

(

4
3

−
2

3n

)

mpriv; if k = 2, ..., n.

In scenario B, our penalties are useful since other firms contribute to fines and mitigate the
risk sustained by a single firm, e.g. the manufacturer. We show a potential example of infringement
of privacy laws for the scenario B.

Example 2. Assume that only the manufacturer collects data and shares them with the remaining
firms. Assume that (N, E) is a circular network and n = 5. Common and private data are Mcomm =
1, 000, 000 and mpriv = 300, 000, respectively. The whole quantity of common and private data are
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leaked. The total cost of common and private data is 800, 000$ since β = 0.5. Assume that the
characteristic function is νa defined in (7). It is νleak(mleak

priv, M leak
comm) = 3, 800, 000. According to

GDPR, the manufacturer is fined the amount 3, 800, 000 $. However, our penalties try to mitigate
the fine’s impact on the manufacturer. Our penalties prescribe the following payments for the whole
set of firms:

x1 = Sh1(N, νa) = 2, 000, 000$;

x2 = x5 = Sh2(N, νa) = Sh5(N, νa) = 500, 000$;

x3 = x4 = Sh3(N, νa) = Sh4(N, νa) = 400, 000$.

Conversely, we assume that the characteristic function is νf . Then, our penalties prescribe
the following payments:

x1 = Sh1(N, νf ) = 1, 820, 000$;

x2 = x5 = Sh2(N, νf ) = Sh5(N, νf ) = 520, 000$;

x3 = x4 = Sh3(N, νf ) = Sh4(N, νf ) = 470, 000$.

Conclusions and Future research

Firms in IoT industries must be accountable for handling data. Some IoT data are common
and associated privacy is hidden; some data are more explicit about private or personal details.
We propose two penalty schemes to be applied on firms. Penalties can be applied if there is an
infringement or violation of privacy rights. Penalties are fair and take into account different privacy
value of data. Our penalties redistribute fines’ monetary amount among partners, including the
manufacturer. In case the manufacturer is the unique data owner, our penalty schemes represent
an incentive for the manufacturer to share data with its partners. In this case, the manufacturer
mitigate its individual risk for a potential data breach. Penalty schemes represent an incentive for
partners to protect data since they become accountable for potential data breaches.

Future privacy models might take into account asymmetric endowments of data for firms in
IoT ecosystems. However, this may bring in severe difficulties to compute penalties. A simulation
approach to the computation of Shapley values is needed for such investigation. Penalties might
incorporate a feedback from consumers’s side if data breaches happen. For example, DPA might
impose penalties taking into account users’ evaluation of product innovation, lastly provided by
the manufacturer. The latter should determine the lowering of penalties for firms. Cooperative
game theory might suggest different allocation rules, in order to study penalties. The Shapley value
gained its reputation for its fairness. However, the nucleolus, that takes into account objections and
counter-objections, might prevent firms’ data breach litigations.

Acknowledgements

The authors thank two anonymous referees who helped us to improve the current paper.
The authors thank Antonio Capaldo, Andrea Genovese, Diego Ruiz-Hernandez, Ines Macho-Stadler,
Antonino Sgalambro and Philippe Solal for discussions across multiple disciplines: hazard/risk eval-
uation, innovation networks, production systems/supply chains and, of course, cooperative game
theory.

Conflict of Interests

The authors declare that there are no conflict of interest.



PENALTIES FOR IOT FIRMS 16

Appendix

Proof of Theorem 1

Proof. It straightforwardly follows from Theorem 1 in (Deng & Papadimitriou, 1994).

Note that ν = ν1 + ν2, where ν is defined in (1) and

ν1(T ) =







λ(T, E|T )mpriv if T 6= ∅,

0 if T = ∅.

(A. 1)

ν2(T ) =







mpriv if T 6= ∅,

0 if T = ∅.

(A. 2)

For the additivity property of the Shapley value, it is

Shi(N ; ν) = Shi(N ; ν1) + Shi(N ; ν2); i = 1, ..., n.

Lemma 1. It is
Shi(N ; ν2) =

mpriv

n
. (A. 3)

Proof. Let T ⊆ N such that i 6∈ T . If T 6= ∅, then ν2(T ∪ {i}) − ν2(T ) = 0. If T = ∅ then
ν2(T ∪ {i}) − ν2(T ) = mpriv. It is

Shi(N ; ν2) = W (0, n)mpriv =
mpriv

n
.

Lemma 2. Let

λ(T, E|T ) = 2
|T ||E|T |

n
.

Then

Shi(N ; ν1) =
2
3

mprivdi + γ|E|, (A. 4)

where

γ :=
2mpriv

3n
.

Proof. Let us consider e ∈ E connecting agents i and j. We say that e ∈ g(T ) if i ∈ T and j ∈ T ,
where T ⊆ N . We define the following function νe : 2N → R,

νe(T ) =







2 |T | mpriv

n
if e ∈ g(T );

0 if e 6∈ g(T ).
(A. 5)

Let Ge = (N, ve) the finite family of TU-games on N with characteristic function νe.
Let T ⊆ N . It is

∑

e∈E

νe(T ) =
∑

e∈g(T )

2|T |

n
mpriv =

2|E|T ||T |

n
mpriv = ν1(T ),

where ν1 is defined by (A. 1).
Therefore, it is

∑

e∈E

νe = ν1.
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1. Let us consider the game Ge = (N, ve), where e = (i, j), i, j ∈ N .

(a) Nodes i and j are symmetric with respect to the game Ge.
In fact, suppose that a coalition T does not include i, j. By definition of νe, it follows
ve(T ∪ {i}) = ve(T ∪ {j}) = 0.

(b) Let s, t ∈ N \ {i, j}. Suppose that a coalition T does not include s, t. By definition of νe,
the following is true.

- If e ∈ g(T ) then e ∈ g(T ∪ {s}) and e ∈ g(T ∪ {t}). Moreover |T ∪ {s}| = |T ∪ {t}| =
|T | + 1. Hence

ve(T ∪ {s}) = ve(T ∪ {t}) = 2
(|T | + 1) mpriv

n
.

- If e 6∈ g(T ) then e 6∈ g(T ∪{s}) and e 6∈ g(T ∪{t}). Hence ve(T ∪{s}) = ve(T ∪{t}) = 0.

It follows that players s and t are symmetric.

Since the Shapley value satisfies the symmetry properties, we have

Shi(N, νe) = Shj(N, νe) := ρe Shs(N, νe) = γe ∀s ∈ N, s 6= i, s 6= j.

2. Here, we compute the Shapley value of each game Ge = (N, ve), e = (i, j) ∈ E for players
different from i and j.

Let k ∈ N , k 6= i, k 6= j. By definition, it is

γe = Shk(N, νe) =
∑

T ⊆N\{k}

W (|T |, n) [νe(T ∪ {k}) − νe(T )] , (A. 6)

where

W (|T |, n) =
|T |!(n − |T | − 1)!

n!
.

It is
γe = W (n − 1, n) [νe(N) − νe(N \ {k})] + γe,

where 5

γe =
n−2
∑

|T |=2
T ⊆N\{k}

W (|T |, n) [νe(T ∪ {k}) − νe(T )] .

It is

W (n − 1, n) [νe(N) − νe(N \ {k})] =
1
n

[νe(N) − νe(N \ {k})] =
2
n2

mpriv.

Let T be a coalition such that 2 ≤ |T | ≤ n − 2 and k 6∈ T .

- If e = (i, j) ∈ g(T ), then

[νe(T ∪ {k}) − νe(T )] = 2
(|T | + 1) mpriv

n
− 2

(|T |) mpriv

n
=

2 mpriv

n
.

- If e = (i, j) 6∈ g(T ), then
[νe(T ∪ {k}) − νe(T )] = 0.

5Note that if T is a single player coalition, then e 6∈ g(T ) and e 6∈ g(T ∪k). It follows that νe(T ) = νe(T ∪{k}) = 0.
Consequently, the contribution of single player coalition in the sum (A. 6) is null.
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It follows that

γe =
n−2
∑

|T |=2
k 6∈T ; e∈g(T )

W (|T |, n) [νe(T ∪ {k}) − νe(T )] =
n−2
∑

|T |=2
k 6∈T ; e∈g(T )

W (|T |, n)
2 mpriv

n
,

so that

γe =
2 mpriv

n

n−2
∑

|T |=2
k 6∈T ; e∈g(T )

W (|T |, n).

The number of coalitions T such that |T | = τ , k 6∈ T ; i ∈ T ; j ∈ T is
(

n−3
τ−2

)

. Consequently

γe =
2 mpriv

n

n−2
∑

τ=2

(

n − 3
τ − 2

)

W (τ, n),

or

γe =
2 mpriv

n

n−2
∑

τ=2

(n − 3)!
(τ − 2)!(n − τ − 1)!

τ !(n − τ − 1)!
n!

.

It is

n−2
∑

τ=2

(n − 3)!
(τ − 2)!(n − τ − 1)!

τ !(n − τ − 1)!
n!

=
1

n(n − 1)(n − 2)

n−2
∑

τ=2

τ(τ − 1) =
n − 3

3n
.

Then, it is

γe =
2(n − 3)

3n2
mpriv.

We conclude that

γe =
2
n2

mpriv +
2(n − 3)

3n2
mpriv,

or

γe =
2

3n
mpriv.

Note that γe does not depend on the specific edge e, hence definitively we set γ = γe.

3. Let k ∈ N . Let Ek = {e ∈ E|k is an endpoint of e}. It is |Ek| = dk. By additivity of the
Shapley value, we have

Shk(N, ν1) =
∑

e∈E

Shk(N, νe) =
∑

e∈Ek

Shk(N, νe) +
∑

e∈E\Ek

Shk(N, νe);

that is
Shk(N, ν1) =

∑

e∈Ek

ρe +
∑

e∈E\Ek

γ =
∑

e∈Ek

ρe + γ(|E| − dk).

It is easy to verify that ρe does not depend on the specific edge e. We set ρ := ρe. It follows
that

Shk(N, ν1) = dkρ + (|E| − dk)γ.

The efficiency property of the Shapley value implies

ν1(N) =
∑

k∈N

Shk(N, ν) = ρ
∑

k∈N

dk +

(

|N ||E| −
∑

k∈N

dk

)

γ.
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Let us remember that
∑

k∈N dk = 2|E|. It follows that

ν1(N) = 2|E|ρ + (n|E| − 2|E|) γ. (A. 7)

Since ν1(N) = 2|E| mpriv and γ = 2
3n

mpriv, substituting in (A. 7), we obtain

ρ =
2(n + 1)

3n
mpriv.

It follows that

Shk(N, ν1) = dkρ + (|E| − dk)γ = (ρ − γ)dk + γ|E| =
2
3

mpriv + γ|E|.

Proof of Theorem 2

Proof. It follows from Lemma 1 and Lemma 2.

Lemma 3.

Sh1(N ; ν2) = mpriv + βMcomm, Shj(N ; ν2) = 0 se j 6= 1. (A. 8)

Proof. The proof is trivial.

Lemma 4. Let

ν1(T ) =







λ(T, E|T )mpriv if 1 ∈ T,

0 if 1 6∈ T,

where
λ(T, E|T ) = 2|E|T |.

In other words

ν1(T ) =







2|E|T |mpriv if 1 ∈ T,

0 if 1 6∈ T.

Let
C1 = {k ∈ N |(1, k) ∈ E}.

It is #(C1) = d1. Moreover

•

Sh1(N ; ν1) =

(

1
3

d1 +
2
3

|E|

)

mpriv. (A. 9)

• Let k ∈ N and k 6= 1. If k ∈ C1, then

Shk(N ; ν1) =

(

2
3

dk + +
1
3

)

mpriv. (A. 10)
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• Let k ∈ N and k 6= 1. If k 6∈ C1, then

Shk(N ; ν1) =
2
3

dkmpriv. (A. 11)

Proof. 1. Let us consider e = (i, j) ∈ E an edge connecting agents i and j. We say that
e ∈ g(T ) if i ∈ T and j ∈ T , where T ⊆ N . We define the following function νe : 2N → R

νe(T ) =







2mpriv if e ∈ g(T ) and 1 ∈ T ;

0 otherwise.

(A. 12)

Let Ge = (N, ve) the finite family of TU-games on N with characteristic function νe.

Let T ⊆ N .

- Let 1 ∈ T . Then
∑

e∈E

νe(T ) =
∑

e∈g(T )

2 mpriv = 2|E|T |mpriv = ν1(T ).

- Let 1 6∈ T . Then
∑

e∈E

νe(T ) = 0 = ν1(T ),

Therefore, it is
∑

e∈E

νe = ν1.

2. (Computation of Sh1(νe)).

Sh1(N, νe) =
∑

T ⊆N\{1}

W (|T |, n) [νe(T ∪ {1}) − νe(T )] , (A. 13)

where

W (|T |, n) =
|T |!(n − |T | − 1)!

n!
.

Since 1 6∈ T implies νe(T ) = 0, we have

Sh1(N, νe) =
∑

T ⊆N\{1}

W (|T |, n)νe(T ∪ {1}).

(a) Let e = (i, j) with i 6= 1 and j 6= 1. It is

e ∈ g(T ∪ {1}) ⇐⇒ e ∈ g(T ).

If e ∈ g(T ), then
νe(T ∪ {1}) = 2mpriv.

Hence
Sh1(N, νe) =

∑

T ⊆N\{1}; i∈T ; j∈T

W (|T |, n)2mpriv.

Let |T | = τ , τ = 2, ..., n − 1.

# {T ⊆ N |i ∈ T ; j ∈ T ; 1 6∈ T ; |T | = τ} =

(

n − 3
τ − 2

)

.
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It follows that

Sh1(N, νe) =
n
∑

τ=2

Wτ, n)2

(

n − 3
τ − 2

)

mpriv,

that is

Sh1(N, νe) =
2
3

mpriv. (A. 14)

(b) Let e = (1, j) with j 6= 1.

Let T ⊆ N with 1 6∈ T .

- If j ∈ T then
e 6∈ g(T ); e ∈ g(T ∪ {1}),

so that
νe(T ∪ {1}) = 2mpriv; νe(T ) = 0.

- If j 6∈ T then
e 6∈ g(T ); e 6∈ g(T ∪ {1}),

so that
νe(T ∪ {1}) = νe(T ) = 0.

Hence
Sh1(N, νe) =

∑

T ⊆N\{1}; j∈T

W (|T |, n)2mpriv.

Let |T | = τ , τ = 1, ..., n − 1.

# {T ⊆ N |j ∈ T ; 1 6∈ T ; |T | = τ} =

(

n − 2
τ − 1

)

.

It follows that

Sh1(N, νe) =
n−1
∑

τ=1

Wτ, n)2

(

n − 2
τ − 1

)

mpriv,

that is
Sh1(N, νe) = mpriv. (A. 15)

3. (Computation of Sh1(ν1)).

It is

Sh1(N, ν1) =
∑

e∈E

Sh1(νe) =
∑

e=(i,j)∈E|i 6=1; j 6=1

Sh1(νe) +
∑

e=(1,j)∈E|j 6=1

Sh1(νe).

# {e = (i, j) ∈ E|i 6= 1; j 6= 1} = |E| − d1; # {e = (1, j) ∈ E|j 6= 1} = d1.

From (A. 14) and (A. 15), it follows that

Sh1(N, ν1) = (|E| − d1)
2
3

mpriv + d1mpriv,

or

Sh1(N ; ν1) =

(

1
3

d1 +
2
3

|E|

)

mpriv.
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4. (Computation of Shk(νe); k 6= 1).

Shk(N, νe) =
∑

T ⊆N\{k}

W (|T |, n) [νe(T ∪ {k}) − νe(T )] , (A. 16)

where

W (|T |, n) =
|T |!(n − |T | − 1)!

n!
.

If 1 6∈ T then 1 6∈ T ∪ k, so that

νe(T ∪ {k}) = νe(T ) = 0.

Hence
Shk(N, νe) =

∑

T ⊆N\{k}; 1∈T ; e∈g(T )

W (|T |, n) [νe(T ∪ {k}) − νe(T )] ,

(a) Let e = (i, j) with i 6= 1; j 6= 1; i 6= k; j 6= k. It is

e ∈ g(T ∪ {k}) ⇐⇒ e ∈ g(T ).

If 1 ∈ T and e ∈ g(T ), then

νe(T ∪ {k}) − νe(T ) = 2mpriv − 2mpriv = 0.

Hence
Shk(N, νe) = 0.

(b) Let e = (1, j) with j 6= 1; j 6= k.
It is

e ∈ g(T ∪ {k}) ⇐⇒ e ∈ g(T ).

If 1 ∈ T and e ∈ g(T ), then

νe(T ∪ {k}) − νe(T ) = 2mpriv − 2mpriv = 0.

Hence
Shk(N, νe) = 0.

(c) Let e = (k, j) with j 6= 1; j 6= k. Remember that

Shk(N, νe) =
∑

T ⊆N\{k}; 1∈T ; e∈g(T )

W (|T |, n) [νe(T ∪ {k}) − νe(T )] ,

that is
Shk(N, νe) =

∑

T ⊆N\{k}; 1∈T ; j∈T

W (|T |, n) [νe(T ∪ {k}) − νe(T )] ,

Let T ⊆ N such that k 6∈ T ; 1 ∈ T ; j ∈ T ; j 6= k It is e 6∈ g(T ) and e ∈ g(T ∪ {k}).
Hence

Shk(N, νe) =
∑

T ⊆N\{k}; 1∈T ; j∈T ; j 6=k

W (|T |, n)2mpriv,

Let |T | = τ , τ = 2, ..., n − 1.

# {T ⊆ N | j ∈ T ; 1 ∈ T ; k 6∈ T ; |T | = τ} =

(

n − 3
τ − 2

)

.
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It follows that

Shk(N, νe) =
n−1
∑

τ=2

Wτ, n)2

(

n − 3
τ − 2

)

mpriv,

that is

Shk(N, νe) =
2
3

mpriv. (A. 17)

(d) Let e = (1, k) with k 6= 1. Remember that

Shk(N, νe) =
∑

T ⊆N\{k}; 1∈T ; e∈g(T )

W (|T |, n) [νe(T ∪ {k}) − νe(T )] ,

Let T ⊆ N such that k 6∈ T ; 1 ∈ T ; 1 6= k It is e 6∈ g(T ) and e ∈ g(T ∪ {k}).
Hence

Shk(N, νe) =
∑

T ⊆N\{k}; 1∈T ; 1 6=k

W (|T |, n)2mpriv,

Let |T | = τ , τ = 1, ..., n − 1.

# {T ⊆ N | 1 ∈ T ; k 6∈ T ; |T | = τ} =

(

n − 2
τ − 1

)

.

It follows that

Shk(N, νe) =
n−1
∑

τ=1

W (τ, n)2

(

n − 2
τ − 1

)

mpriv,

that is
Shk(N, νe) = mpriv. (A. 18)

5. (Comutation of Shk(N, ν1); k 6= 1).

It is

Shk(N, ν1) =
∑

e∈E1

Shk(N, νe) +
∑

e∈E2

Shk(N, νe) +
∑

e∈E3

Shk(N, νe) +
∑

e∈E4

Shk(N, νe),

where
E1 = {e ∈ E|e = (i, j); i 6= 1; j 6= 1; i 6= k; j 6= k},

E2 = {e ∈ E|e = (1, j); j 6= 1; j 6= k},

E3 = {e ∈ E|e = (k, j); j 6= 1; j 6= k},

E4 = {e ∈ E|e = (1, k)}.

Then

Shk(N, ν1) = mpriv

(

0#(E1) + 0#(E2) +
2
3

#(E3) + 1#(E4)

)

.

We distinguish two cases:

(a) (1, k) ∈ E.
#(E4) = 1; #(E2) = d1 − 1; #(E3) = dk − 1;

#(E1) = |E| − #(E2) − #(E3) − #(E4) = |E| − d1 − dk + 1.

It is

Shk(N, ν1) = mpriv

(

2
3

(dk − 1) + 1

)

,

or

Shk(N, ν1) = mpriv

(

2
3

dk +
1
3

)

.



PENALTIES FOR IOT FIRMS 24

(b) (1, k) 6∈ E.
#(E4) = 0; #(E2) = d1; #(E3) = dk;

#(E1) = |E| − #(E2) − #(E3) − #(E4) = |E| − d1 − dk.

It is

Shk(N, ν1) =
2
3

dkmpriv.

Remark 1. It is worthwhile to prove the efficiency of our formulas. The sum of the Shapley values
should be equal to ν1(N). The authors are aware that this property should be already guaranteed
by our formulas. However, we prove that this property is satisfied. Remember that Sh1(N ; ν1) =
(

1
3

d1 +
2
3

|E|

)

mpriv. Let Sh
yes
k (N ; ν1) = mpriv

(

2
3

dk +
1
3

)

, Shno
k (N ; ν1) =

2
3

dkmpriv. Note that

n
∑

k=1

Shk(N, ν1) = Sh1(N, ν1) +
∑

k 6=1; (1,k)∈E

Sh
yes
k (N, ν1) +

∑

k 6=1; (1,k) 6∈E

Shno
k (N, ν1).

#{k ∈ N |k 6= 1; (1, k) ∈ E} = d1; #{k ∈ N |k 6= 1; (1, k) 6∈ E} = n − 1 − d1.

∑

k 6=1; (1,k)∈E

Sh
yes
k (N, ν1) = mpriv





1
3

d1 +
∑

k 6=1; (1,k)∈E

2
3

dk





∑

k 6=1; (1,k) 6∈E

Shno
k (N, ν1) = mpriv

∑

k 6=1; (1,k) 6∈E

2
3

dk

∑

k 6=1; (1,k)∈E

Sh
yes
k (N, ν1) +

∑

k 6=1; (1,k) 6∈E

Shno
k (N, ν1) = mpriv





1
3

d1 +
∑

k 6=1

2
3

dk



 .

∑

k 6=1

2
3

dk =
2
3

∑

k 6=1

dk =
2
3

(2|E| − d1) =
4
3

|E| −
2
3

d1.

∑

k 6=1; (1,k)∈E Sh
yes
k (N, ν1) +

∑

k 6=1; (1,k) 6∈E Shno
k (N, ν1) =

= mpriv

(

1
3

d1 +
4
3

|E| −
2
3

d1

)

= mpriv

(

4
3

|E| −
1
3

d1

)

.

n
∑

k=1

Shk(N, ν1) = Sh1(N, ν1) + mpriv

(

4
3

|E| −
1
3

d1

)

.

n
∑

k=1

Shk(N, ν1) = mpriv

(

1
3

d1 +
2
3

|E| +
4
3

|E| −
1
3

d1

)

.

n
∑

k=1

Shk(N, ν1) = 2|E|mpriv.

Then
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n
∑

k=1

Shk(ν1) = νa(N)

as expected.

Proof of Theorem 3

Proof. It follows from Lemma 3 and Lemma 4.

Lemma 5. Let

ν1(T ) =







λ(T, E|T )mpriv if 1 ∈ T,

0 if 1 6∈ T,

where

λ(T, E|T ) = 2
|T ||E|T |

n
.

In other words

ν1(T ) =











2
|T ||E|T |

n
mpriv if 1 ∈ T,

0 if 1 6∈ T,

Let

C1 = {k ∈ N |(1, k) ∈ E}.

It is |C1| = d1.
Moreover

-

Sh1(N ; ν1) =

(

n + 1
6n

d1 +
n + 1

2n
|E|

)

mpriv. (A. 19)

- Let k ∈ N and k 6= 1. If k ∈ C1, we have

Shk(N ; ν1) =

(

1
6n

d1 + 1
1
2

dk +
1

2n
|E| +

1
6

)

mpriv. (A. 20)

- Let k ∈ N and k 6= 1. If k 6∈ C1, we have

Shk(N ; ν1) =

(

1
6n

d1 +
1
2

dk +
1

2n
|E|

)

mpriv. (A. 21)

Proof. 1. Let us consider e = (i, j) ∈ E an edge connecting agents i and j. We say that
e ∈ g(T ) if i ∈ T and j ∈ T , where T ⊆ N . We define the following function νe : 2N → R

νe(T ) =







2 |T | mpriv

n
if e ∈ g(T ) and 1 ∈ T ;

0 otherwise.

(A. 22)

Let Ge = (N, ve) the finite family of TU-games on N with characteristic function νe.

Let T ⊆ N .
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- Let 1 ∈ T . Then

∑

e∈E

νe(T ) =
∑

e∈g(T )

2|T |

n
mpriv =

2|E|T ||T |

n
mpriv = ν1(T ),

- Let 1 6∈ T . Then
∑

e∈E

νe(T ) = 0 = ν1(T ),

Therefore, it is
∑

e∈E

νe = ν1.

2. (Computation of Sh1(N, νe)).

Sh1(N, νe) =
∑

T ⊆N\{1}

W (|T |, n) [νe(T ∪ {1}) − νe(T )] , (A. 23)

where

W (|T |, n) =
|T |!(n − |T | − 1)!

n!
.

Since 1 6∈ T implies νe(T ) = 0, we have

Sh1(N, νe) =
∑

T ⊆N\{1}

W (|T |, n)νe(T ∪ {1}).

(a) Let e = (i, j) with i 6= 1 and j 6= 1. It is

e ∈ g(T ∪ {1}) ⇐⇒ e ∈ g(T ).

If e ∈ g(T ), then

νe(T ∪ {1}) =
2(|T | + 1)

n
mpriv.

Hence

Sh1(N, νe) =
∑

T ⊆N\{1}; i∈T ; j∈T

W (|T |, n)
2(|T | + 1)

n
mpriv.

Let |T | = τ , τ = 2, ..., n − 1. It is6

# {T ⊆ N |i ∈ T ; j ∈ T ; 1 6∈ T ; |T | = τ} =

(

n − 3
τ − 2

)

.

It follows that

Sh1(N, νe) =
n
∑

τ=2

Wτ, n)
2(τ + 1)

n − 1

(

n − 3
τ − 2

)

mpriv,

that is

Sh1(N, νe) =
n + 1

2n
mpriv. (A. 24)

(b) Let e = (1, j) with j 6= 1. Let T ⊆ N with 1 6∈ T .

6#(S) denotes the number of elements of S.
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- If j ∈ T then
e 6∈ g(T ); e ∈ g(T ∪ {1}),

so that

νe(T ∪ {1}) =
2(|T | + 1)

n
mpriv; νe(T ) = 0.

- If j 6∈ T then
e 6∈ g(T ); e 6∈ g(T ∪ {1}),

so that
νe(T ∪ {1}) = νe(T ) = 0.

Hence

Sh1(N, νe) =
∑

T ⊆N\{1}; j∈T

W (|T |, n)
2(|T | + 1)

n
mpriv.

Let |T | = τ , τ = 1, ..., n − 1.

# {T ⊆ N |j ∈ T ; 1 6∈ T ; |T | = τ} =

(

n − 2
τ − 1

)

.

It follows that

Sh1(N, νe) =
n−1
∑

τ=1

Wτ, n)
2(τ + 1)

n − 1

(

n − 2
τ − 1

)

mpriv,

that is

Sh1(N, νe) =
2(n + 1)

3n
mpriv. (A. 25)

3. (Computation of Sh1(N, ν1)).

It is

Sh1(N, ν1) =
∑

e∈E

Sh1(N, νe) =
∑

e=(i,j)∈E|i 6=1; j 6=1

Sh1(N, νe) +
∑

e=(1,j)∈E|j 6=1

Sh1(N ; νe).

# {e = (i, j) ∈ E|i 6= 1; j 6= 1} = |E| − d1; # {e = (1, j) ∈ E|j 6= 1} = d1.

From (A. 24) and (A. 25), it follows that

Sh1(N, ν1) = (|E| − d1)
n + 1

2n
mpriv + d1

2(n + 1)
3n

mpriv,

or

Sh1(N, ν1) =

(

n + 1
6n

d1 +
n + 1

2n
|E|

)

mpriv.

4. (Computation of Shk(N, νe); k 6= 1).

Shk(N, νe) =
∑

T ⊆N\{k}

W (|T |, n) [νe(T ∪ {k}) − νe(T )] , (A. 26)

where

W (|T |, n) =
|T |!(n − |T | − 1)!

n!
.

If 1 6∈ T then 1 6∈ T ∪ k, so that

νe(T ∪ {k}) = νe(T ) = 0.

Hence
Shk(N, νe) =

∑

T ⊆N\{k}; 1∈T ; e∈g(T )

W (|T |, n) [νe(T ∪ {k}) − νe(T )] ,
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(a) Let e = (i, j) with i 6= 1; j 6= 1; i 6= k; j 6= k. It is

e ∈ g(T ∪ {k}) ⇐⇒ e ∈ g(T ).

If 1 ∈ T and e ∈ g(T ), then

νe(T ∪ {k}) − νe(T ) =
2(|T | + 1)

n
mpriv −

2|T |

n
mpriv =

2
n

mpriv.

Hence

Shk(N, νe) =
∑

T ⊆N\{k}; 1∈T ; i∈T ; j∈T

W (|T |, n)
2
n

mpriv,

Let |T | = τ , τ = 3, ..., n − 1.

# {T ⊆ N |i ∈ T ; j ∈ T ; 1 ∈ T ; k 6∈ T ; |T | = τ} =

(

n − 4
τ − 3

)

.

It follows that

Shk(N, νe) =
n−1
∑

τ=3

Wτ, n)
2
n

(

n − 4
τ − 3

)

mpriv,

that is

Shk(N, νe) =
1

2n
mpriv. (A. 27)

(b) Let e = (1, j) with j 6= 1; j 6= k.

It is
e ∈ g(T ∪ {k}) ⇐⇒ e ∈ g(T ).

If 1 ∈ T and e ∈ g(T ), then

νe(T ∪ {k}) − νe(T ) =
2(|T | + 1)

n
mpriv −

2|T |

n
mpriv =

2
n

mpriv.

Hence

Shk(N, νe) =
∑

T ⊆N\{k}; 1∈T ; j∈T ; j 6=k

W (|T |, n)
2
n

mpriv,

Let |T | = τ , τ = 2, ..., n − 1.

# {T ⊆ N | j ∈ T ; 1 ∈ T ; k 6∈ T ; |T | = τ} =

(

n − 3
τ − 2

)

.

It follows that

Shk(N, νe) =
n−1
∑

τ=2

Wτ, n)
2
n

(

n − 3
τ − 2

)

mpriv,

that is

Shk(N, νe) =
2

3n
mpriv. (A. 28)

(c) Let e = (k, j) with j 6= 1; j 6= k. Remember that

Shk(N, νe) =
∑

T ⊆N\{k}; 1∈T ; e∈g(T )

W (|T |, n) [νe(T ∪ {k}) − νe(T )] ,
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that is
Shk(N, νe) =

∑

T ⊆N\{k}; 1∈T ; j∈T

W (|T |, n) [νe(T ∪ {k}) − νe(T )] ,

Let T ⊆ N such that k 6∈ T ; 1 ∈ T ; j ∈ T ; j 6= k It is e 6∈ g(T ) and e ∈ g(T ∪ {k}).
Hence

Shk(N, νe) =
∑

T ⊆N\{k}; 1∈T ; j∈T ; j 6=k

W (|T |, n)
2(|T | + 1)

n
mpriv,

Let |T | = τ , τ = 2, ..., n − 1.

# {T ⊆ N | j ∈ T ; 1 ∈ T ; k 6∈ T ; |T | = τ} =

(

n − 3
τ − 2

)

.

It follows that

Shk(N, νe) =
n−1
∑

τ=2

Wτ, n)
2(τ + 1)

n

(

n − 3
τ − 2

)

mpriv,

that is

Shk(N, νe) =
n + 1

2n
mpriv. (A. 29)

(d) Let e = (1, k) with k 6= 1. Recall that

Shk(N, νe) =
∑

T ⊆N\{k}; 1∈T ; e∈g(T )

W (|T |, n) [νe(T ∪ {k}) − νe(T )] ,

Let T ⊆ N such that k 6∈ T ; 1 ∈ T ; 1 6= k It is e 6∈ g(T ) and e ∈ g(T ∪ {k}).
Hence

Shk(N, νe) =
∑

T ⊆N\{k}; 1∈T ; 1 6=k

W (|T |, n)
2(|T | + 1)

n
mpriv,

Let |T | = τ , τ = 1, ..., n − 1.

# {T ⊆ N | 1 ∈ T ; k 6∈ T ; |T | = τ} =

(

n − 2
τ − 1

)

.

It follows that

Shk(N, νe) =
n−1
∑

τ=1

Wτ, n)
2(τ + 1)

n

(

n − 2
τ − 1

)

mpriv,

that is

Shk(N, νe) =
2(n + 1)

3n
mpriv. (A. 30)

5. (Computation of Shk(N, ν1); k 6= 1).

It is

Shk(N, ν1) =
∑

e∈E1

Shk(N, νe) +
∑

e∈E2

Shk(N, νe) +
∑

e∈E3

Shk(N, νe) +
∑

e∈E4

Shk(N, νe),

where
E1 = {e ∈ E|e = (i, j); i 6= 1; j 6= 1; i 6= k; j 6= k},

E2 = {e ∈ E|e = (1, j); j 6= 1; j 6= k},
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E3 = {e ∈ E|e = (k, j); j 6= 1; j 6= k},

E4 = {e ∈ E|e = (1, k)}.

Then

Shk(N, ν1) = mpriv

(

1
2n

#(E1) +
2

3n
#(E2) +

n + 1
2n

#(E3) +
2(n + 1)

3n
#(E4)

)

.

We distinguish two cases:

(a) (1, k) ∈ E.
#(E4) = 1; #(E2) = d1 − 1; #(E3) = dk − 1;

#(E1) = |E| − #(E2) − #(E3) − #(E4) = |E| − d1 − dk + 1.

It is

Shk(N, ν1) = mpriv

(

1
2n

(|E| − d1 − dk + 1) +
2

3n
(d1 − 1) +

n + 1
2n

(dk − 1) +
2(n + 1)

3n

)

,

or

Shk(N, ν1) = mpriv

(

1
6n

d1 +
1
2

dk +
1

2n
|E| +

1
6

)

.

6. (1, k) 6∈ E.
#(E4) = 0; #(E2) = d1; #(E3) = dk;

#(E1) = |E| − #(E2) − #(E3) − #(E4) = |E| − d1 − dk.

It is

Shk(N, ν1) = mpriv

(

1
2n

(|E| − d1 − dk) +
2

3n
d1 +

n + 1
2n

dk

)

,

or

Shk(N, ν1) = mpriv

(

1
6n

d1 +
1
2

dk +
1

2n
|E|

)

.

Remark 2. It is worthwhile to prove the efficiency of our formulas. The sum of the Shap-
ley values should be equal to ν1(N). The authors are aware that this property should be al-
ready guaranteed by our formulas. However, we prove that this property is satisfied. Recall that

Sh1(N, ν1) =

(

n + 1
6n

d1 +
n + 1

2n
|E|

)

mpriv. Let Sh
yes
k (N, ν1) =

(

1
6n

d1 +
1
2

dk +
1

2n
|E| +

1
6

)

mpriv,

Shno
k (N, ν1) =

(

1
6n

d1 +
1
2

dk +
1

2n
|E|

)

mpriv. Note that

n
∑

k=1

Shk(N, ν1) = Sh1(N, ν1) +
∑

k 6=1; (1,k)∈E

Sh
yes
k (N, ν1) +

∑

k 6=1; (1,k) 6∈E

Shno
k (N, ν1).

#{k ∈ N |k 6= 1; (1, k) ∈ E} = d1; #{k ∈ N |k 6= 1; (1, k) 6∈ E} = n − 1 − d1.

∑

k 6=1; (1,k)∈E

Sh
yes
k (N, ν1) = mpriv



d1

(

1
6n

d1 +
1

2n
|E| +

1
6

)

+
∑

k 6=1; (1,k)∈E

1
2

dk
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∑

k 6=1; (1,k) 6∈E

Shno
k (N, ν1) = mpriv



(n − 1 − d1)

(

1
6n

d1 +
1

2n
|E|

)

+
∑

k 6=1; (1,k) 6∈E

1
2

dk





It is

d1

(

1
6n

d1 +
1

2n
|E| +

1
6

)

+ (n − 1 − d1)

(

1
6n

d1 +
1

2n
|E|

)

=
2n − 1

6n
d1 +

n − 1
2n

|E|.

∑

k 6=1; (1,k)∈E

Sh
yes
k (N, ν1) +

∑

k 6=1; (1,k) 6∈E

Shno
k (N, ν1) = mpriv





2n − 1
6n

d1 +
n − 1

2n
|E| +

∑

k 6=1

1
2

dk



 .

∑

k 6=1

1
2

dk =
1
2

∑

k 6=1

dk =
1
2

(2|E| − d1) = |E| −
1
2

d1.

∑

k 6=1; (1,k)∈E

Sh
yes
k (N, ν1) +

∑

k 6=1; (1,k) 6∈E

Shno
k (N, ν1) = mpriv

(

2n − 1
6n

d1 +
n − 1

2n
|E| + |E| −

1
2

d1

)

.

∑

k 6=1; (1,k)∈E

Sh
yes
k (N, ν1) +

∑

k 6=1; (1,k) 6∈E

Shno
k (N, ν1) = mpriv

(

2n − 1
6n

d1 +
3n − 1

2n
|E| −

1
2

d1

)

.

n
∑

k=1

Shk(N, ν1) = Sh1(N, ν1) + mpriv

(

3n − 1
2n

|E| −
n + 1

6n
d1

)

.

n
∑

k=1

Shk(N, ν1) = mpriv

(

n + 1
6n

d1 +
n + 1

2n
|E| +

3n − 1
2n

|E| −
n + 1

6n
d1

)

.

n
∑

k=1

Shk(N, ν1) = 2|E|mpriv = ν1(N)

as it is expected.

Proof of Theorem 4

Proof. It follows from Lemma 3 and Lemma 5.
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