This is a repository copy of Environmental change reduces body condition, but not population growth, in a high-arctic herbivore.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/168436/
Version: Accepted Version

Article:

Layton-Matthews, K., Grøtan, V., Hansen, B.B. et al. (3 more authors) (2021)
Environmental change reduces body condition, but not population growth, in a high-arctic herbivore. Ecology Letters, 24 (2). pp. 227-238. ISSN 1461-023X
https://doi.org/10.1111/ele. 13634

This is the peer reviewed version of the following article: Layton-Matthews, K., Grøtan, V., Hansen, B.B., Loonen, M.J.J.E., Fuglei, E. and Childs, D.Z. (2020), Environmental change reduces body condition, but not population growth, in a high-arctic herbivore. Ecology Letters., which has been published in final form at https://doi.org/10.1111/ele.13634. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

```
Environmental change reduces body mass, but not population growth, in a high-arctic
herbivore
Kate Layton-Matthews \({ }^{1}\), Vidar Grøtan \({ }^{1}\), Brage B. Hansen \({ }^{1}\), Maarten J. J. E. Loonen \({ }^{2}\), Eva
Fuglei \({ }^{3}\), Dylan Z. Childs \({ }^{4}\)
\({ }^{1}\) kate.l.matthews@ntnu.no, vidar.grotan@ntnu.no, brage.b.hansen@ntnu.no
2m.j.j.e.loonen@rug.nl
3eva.fuglei@npolar.no
4d.childs@sheffield.ac.uk
\mp@subsup{}{}{1}\mathrm{ Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science}\=
and Technology, Trondheim, Norway
2}\mathrm{ Arctic Centre, University of Groningen, Groningen, the Netherlands
3}\mathrm{ Norwegian Polar Institute, Tromsø, Norway
4}\mathrm{ Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
Corresponding author:
Kate Layton-Matthews
+4794156575
kate.l.matthews@ntnu.no
Number of words: abstract =149, main text =4984, references = 89, figures =4, tables =2
```

Running title: population-growth responses to declining mass

Data accessibility statement: We (the authors) confirm that, on acceptance of the manuscript, data supporting the results will be archived in Dryad data repository and a DOI will be included at the end of the article.

Key words

Arctic, climate change, population dynamics, barnacle goose, trait-mediated and modified effects, integral projection models, life table response experiments, transient LTRE

Abstract

Environmental change influences fitness-related traits and demographic rates, which in herbivores are often linked to resource-driven variation in body mass. Coupled body mass-demographic responses may therefore be important for herbivore population dynamics in fluctuating environments, such as the Arctic. We applied a transient Life-Table Response Experiment ('transient-LTRE') to demographic data from Svalbard barnacle geese (Branta leucopsis), to quantify their population-dynamic responses to changes in body mass. We partitioned contributions from direct and delayed demographic and body mass-mediated processes to variation in population growth. Declines in body mass (1980-2017), which positively affected reproduction and fledgling survival, had negligible consequences for population growth. Instead, population growth rates were largely reproduction-driven, in part through positive responses to rapidly advancing spring phenology. The virtual lack of body mass-mediated effects indicates that herbivore population dynamics may be more resilient to changing body condition than previously expected, with implications for their persistence under environmental change.

Introduction

Fluctuations in fitness-related traits and population size are jointly affected by environmental stochasticity and density dependence (Lande et al. 2003; Sæther et al. 2016). Body condition, often measured as proxies e.g., body mass or mass/tarsus ratio (Schamber et al. 2009), is a key fitnessrelated trait, reflecting energy reserves available to survive, grow and reproduce (Labocha \& Hayes 2012). Individual body condition is constantly responding to weather and density-dependent processes, as they influence food availability and energy expenditure (Sæther 1997; Parker et al. 2009). Particularly in herbivores, this can directly influence reproduction and survival (FestaBianchet et al. 1997; Sæther 1997; Post \& Stenseth 1999). Short-term effects of weather and density can also lead to cohort effects on body mass, with lasting impacts on reproduction (Albon et al. 1987; Choudhury et al. 1996) and population size (Beckerman et al. 2002). Simultaneous changes in body mass and vital rates occur when both respond to variation in weather or density (Parmesan 2006), with potentially complex population-growth consequences (Post et al. 1997; Ozgul et al. 2010). However, this coupling remains largely unexplored. Linking changes in fitnessrelated traits to variation in population growth is particularly complex when environment-traitdemography associations vary temporally (e.g., seasonally, Paniw et al. 2019b) or among lifehistory components (e.g., Douhard et al. 2013).

Arctic environments are seasonal and stochastic. Consequently, Arctic herbivores are exposed to variable resource availability, causing annual fluctuations in body mass and population size (Forchhammer et al. 2002; Couturier et al. 2008; Albon et al. 2017). Weather patterns are being modified by climate change (Scheffer et al. 2001), which is occurring most rapidly in the Arctic (Serreze \& Barry 2011). Accordingly, climate change effects on body condition (Albon et al. 2017), reproduction (Post \& Forchhammer 2008; Layton-Matthews et al. 2019a), survival (Aubry
et al. 2013), and population size (Forchhammer et al. 2002; Albon et al. 2017) have been documented in Arctic herbivores. However, climate effects on fitness-related traits and demographic rates do not act independently, and relatively little is known about the linkages among them due to the challenge of quantifying these - often complex - relationships (McLean et al. 2016; Visser et al. 2016; Jenouvrier et al. 2018). Additionally, traits can influence environmentdemography relationships via two mechanisms: trait-mediating (Ozgul et al. 2010; Plard et al. 2015; Albon et al. 2017) or trait-modifying effects (Herfindal et al. 2006; Harrison et al. 2013). A mediating trait effect explains a relationship between environmental conditions and vital rates, e.g., temperature affects body mass, which in turn affects survival, whereas a modifying effect requires a body mass-temperature interaction effect on survival.

Since body condition is so influential on life-history processes in Arctic herbivores, we could expect large population-level responses to changes in this trait (Albon et al. 2017). However, changes in fitness-related traits do not necessarily affect population growth (McLean et al. 2020), since three conditions must be met for trait-mediated effects on population growth to arise; (1) the trait must fluctuate at the relevant life-history stage for a given, potentially age-specific, demographic rate, (2) the demographic rate must be sensitive to changes in the trait, and (3) the population growth rate must, in turn, be sensitive to variation in the demographic rate. If any of these conditions are not met, then no pathway exists from trait variation to population growth variation (Jenouvrier et al. 2018).

Populations are constantly being perturbed by short-term, temporal variation in the environment (Bierzychudek 1999; Clutton-Brock \& Coulson 2002). This can lead to 'transient population dynamics’ (Hastings 2004; Koons et al. 2005; Ezard et al. 2010), as fluctuating environments cause changes in underlying population structure (e.g., age structure, Koons et al.
2016) or trait distributions (e.g., body mass, Ozgul et al. 2010). Changes in population structure can have delayed, transient effects on future population growth, especially when there is substantial variation in the vital rates of different classes of individuals (Beckerman et al. 2002; De Roos et al. 2003; Hansen et al. 2019). If poor conditions reduce cohort body mass, vital rates can be affected for several subsequent years through delayed effects, mediated by early-life body mass (e.g., Albon et al. 1987). Recent extensions of matrix (MPM) and integral (IPM) projection models have attempted to quantify population-growth consequences of such delayed ('lagged') effects (Koons et al. 2005; Kuss et al. 2008). Transient life-table response experiments (transientLTREs) partition variance in the realised population growth rate into contributions from demographic rates. Furthermore, they can be used to separate temporal variation in λ into direct demographic effects versus delayed effects from transient changes in population structure/trait distributions (e.g., cohort effects), thereby explicitly incorporating past environments (Maldonado-Chaparro et al. 2018).

We explored how a substantial change in body mass contributed to variation in population growth in a high-arctic herbivore, the barnacle goose (Branta leucopsis). We analysed female mark-recapture and body mass data (1990-2017) to quantify environmental and density effects on survival, reproduction, growth, and fledgling body mass. Using the regression models we constructed an environmentally-driven, stochastic IPM (Rees \& Ellner 2009; Metcalf et al. 2015). Using a recently developed transient-LTRE (Maldonado-Chaparro et al. 2018), we decomposed variation in the realised population growth rate $\left(\lambda_{t}\right)$ into vital rate contributions through demographic and trait-mediated pathways, separated into direct and delayed effects. This methodology revealed that while variation in λ_{t} was largely reproduction-driven, through direct and delayed effects (i.e., changes in age structure), body mass-mediated pathways contributed
negligibly to population growth. Thus, herbivore populations appear more resilient to substantial changes in body condition than previously anticipated, with implications for their persistence under future environmental change.

Material and methods

Study species

Arctic geese are migratory capital breeders, relying, to some extent, on accumulated body reserves for reproduction (Jönsson 1997; Hahn et al. 2011). Therefore, an individual's body condition prior to the breeding season affects their reproductive success (Ankney \& MacInnes 1978; Ebbinge \& Spaans 1995). Svalbard barnacle geese overwinter in Scotland, UK ($55^{\circ} \mathrm{N}, 3.30^{\circ} \mathrm{W}$). They fly to Svalbard for breeding in summer, stopping over in spring along the coast of mainland Norway. The study population breeds close to Ny-Ålesund, western Spitsbergen ($78^{\circ} 55^{\prime} \mathrm{N}, 11^{\circ} 56^{\prime} \mathrm{E}$). Geese arrive at the end of May and nest on islands in the fjord, Kongsfjorden. Hatching occurs from late June. Families leave the nesting islands to forage thereafter, until offspring fledge at the end of August and geese migrate back to Scotland by October.

Demographic data

All analyses were female based. Over the main study period (i.e. mark-recapture period: 19902017), 1669 females in total were caught in July-August and ringed with unique colour and metal identification bands. Recapture data were based on daily observations of ringed individuals around Ny-Ålesund during the foraging period from late June to August ($\mathrm{n}_{\mathrm{obs}}=7280$). Some years were missing recapture or body mass data (see Appendix 1 for annual sample sizes). Reproduction was assessed based on observations of sexually mature adults with offspring at the beginning of August

- when offspring fledge. Birds were divided into two age classes, individuals ringed in their first year of life as 'fledglings' $(f l)$ and older individuals as 'adults' $(a d)$ - a pooled age class of up to 28 years old. Body mass was measured during a catch ($\mathrm{n}_{\text {measurements }}: f l=696, a d=2108$). We analysed body mass rather than other body condition proxies since body mass is a reliable measure of condition in geese (Schmutz 1993; Lindholm et al. 1994). We tested for a temporal trend in cohort body mass (1980-2017) by fitting a linear regression with year as an explanatory variable.

Analytical approach

First, we fitted (generalised) linear mixed-effects models ((G)LMMs) to describe fledgling body mass $\left(C_{0}\right)$, growth (i.e., change in body mass from t to $\left.t+1, G\right)$, overwinter survival (ϕ) and reproduction: the probability of reproducing (R) and fledged brood size (fec). For each model, we quantified effects of age class, body mass and covariates, using model selection. Based on the bestapproximating models, we constructed an IPM to model temporal dynamics of population size and body mass distribution. We decomposed variation in the population growth rate $\left(\lambda_{t}\right)$, using a transient-LTRE, into direct effects of demographic rates versus indirect effects through fluctuations in age class structure and body mass distribution. Contributions were further decomposed into variation from modelled covariates versus random effects.

Regression models

We fitted an LMM to fledgling body mass data, to model the mean and distribution of fledgling body masses $\left(C_{0}\right)$, including catch date as a predictor since gosling growth exhibited a seasonal trend (Appendix 2). We also fitted an LMM to body mass data of both age classes (fledglings and adults), describing body mass-dependent growth between years, due to ontogeny and phenotypic
plasticity (G). Reproduction and mark-recapture data were modelled with GLMMs. To estimate apparent survival (ϕ), mark-recapture data were modelled with a Cormack-Jolly-Seber framework using the RMark interface (Laake 2013) for program MARK (White \& Burnham 1999). Reproduction was modelled as two response parameters. R describes the annual reproduction probability i.e., whether or not a female had at least one fledgling ($0 / 1$), fitted as a binomial response. Fledged brood size (fec) describes the number of fledglings per mother, fitted as a Poisson response. Only observations from 2 year-olds onwards (the age of sexual maturity, Forslund \& Larsson 1992; Fjelldal et al. 2020) were included in the reproductive models, and the model of fec only included successfully reproducing individuals ($R=1$). All (G)LMM's were fitted with year as a random effect in the package lme4 (Bates et al. 2015).

We identified effects of age class, body mass, density and external covariates (see below, Covariates) on C_{0}, G, R, fec and ϕ, using Akaike's Information Criterion corrected for small sample sizes (AICc, Burnham \& Anderson 2002) to identify the most parsimonious model. Body mass was de-trended for model selection of G and C_{0}, to avoid spurious correlations caused by declining trends. A set of candidate models were fitted for each rate including all possible subsets of covariates and interactions between age class, body mass and covariates (global models shown in Appendix 3, Table S 1). If competing models had $\triangle \mathrm{AICc}<2$, the one with least parameters was considered most parsimonious. Model selection of survival rates was performed in RMark, but the final model was fitted in a Bayesian framework to model age class-, and year-, specific random effects. Markov Chain Monte Carlo (MCMC) simulations were implemented in JAGS via the rjags package (Plummer 2013), assuming annual variation in survival originated from a random process with zero mean and age class-specific deviations (see Schaub et al. 2013; Layton-Matthews et al. 2019 b for details). All priors were non-informative. Missing body mass observations were imputed
by drawing from a normal distribution, where priors were set at the age class-specific mean body mass and variance (Gimenez et al. 2006). While the Bayesian framework allows for estimation of age- and year-specific random effects, sampling missing body mass data can lead to underestimation of individual heterogeneity (McCarthy \& Masters 2005).

Covariates

Covariates reflecting weather and population density over the annual cycle, and predator abundance effects on barnacle goose demography (Layton-Matthews et al. 2019a) were included in the regression models of reproduction ($R, f e c$), survival (ϕ), growth (G) and fledgling body mass $\left(C_{0}\right)$. From the overwintering grounds at Solway Firth, Scotland (win, i.e., winter: October $_{\mathrm{t}}-$ March $_{\mathrm{t}+1}$), we included annual mean winter temperature ($T_{\text {win }}$) and total flyway population counts $\left(N_{\text {win }}\right)$. From the spring staging grounds at Helgeland, (spr, i.e., spring: April-May), we included spring precipitation $\left(P_{s p r}\right)$ using data from the Vega weather station ($65^{\circ} 38^{\prime} \mathrm{N}, 11^{\circ} 52^{\prime} \mathrm{E}$). Climate covariates from the breeding grounds in Svalbard (sum, i.e., summer) included the date of spring onset $\left(\mathrm{SO}_{\text {sum }}\right)$, i.e., the ordinal day when the 10 -day smoothed daily temperature crossed $0^{\circ} \mathrm{C}$ and remained above for at least 10 days (Le Moullec et al. 2019), temperature (mid-June-mid-July, $T_{\text {sum }}$) and precipitation (mid-July-mid-August, $P_{\text {sum }}$). Estimated adult population size in Kongsfjorden ($N_{\text {sum }}$, Layton-Matthews et al. 2019b) was also included, and also the proportion of occupied known dens as an index of Arctic fox (Vulpes lagopus) abundance (fox sum), since predation by Arctic foxes affects pre-fledging survival (Fuglei et al. 2003; Layton-Matthews et al. 2019a). More details on covariates can be found in Layton-Matthews et al. (2019a).

Stochastic integral projection model

We constructed a stochastic IPM, describing temporal dynamics of population size and body mass distribution, $\mathrm{n}(z, t)$, of fledglings $(f l)$ and adults $(a d)$, following the life cycle in Fig. 1. The growth kernel, $G^{(t)}\left(z^{\prime}, z\right)$, describes the probability density function of body masses z^{\prime} in August in year $t+1$ of an individual of body mass z in year t. Annual age-class specific survival, $\phi^{(t)}(z, a)$, describes the probability of an individual, of age class $a(f l$ or $a d)$ and body mass z at year t, surviving to year $t+1 . \mathrm{P}_{\mathrm{ad}}^{(\mathrm{t}}\left(z^{\prime}, z\right)$ and $\mathrm{P}_{f \mathrm{f}}^{(\mathrm{t})}\left(z^{\prime}, z\right)$ represent survival-growth kernels for adults and fledglings describing how individuals of body mass z at time t, survive and grow to reach mass z^{\prime} at $t+1$, given by:
$\mathrm{P}_{a}^{(\mathrm{t})}\left(z^{\prime}, z\right)=\phi^{(\mathrm{t})}(z, a) G^{(t)}\left(z^{\prime}, z\right) \quad$ for $a=$ fledgling or adults
Annual reproduction probability, $R^{(t)}(z)$, describes the probability of a >1-year-old female of body mass z producing at least one fledgling at $t+1$, given she survives. Fledged brood size, $f e c^{(t)}$, describes the number of fledglings per mother at $t+1$, conditional on reproduction. Fledgling body mass kernel, $C_{0}^{(t)}\left(z^{\prime}\right)$, describes the probability distribution of fledgling body masses in August at $t+1$. This was assumed to be independent of mother body mass, since a pedigree was not available, which is likely a fair assumption since offspring body mass has not been linked to mother body mass, rather to structural size (e.g., head size, Larsson et al. 1998). $\mathrm{F}_{a d}^{(t)}\left(z^{\prime}, z\right)$ is the reproduction kernel, describing the density of fledglings of body mass z ' that adults of body mass z can contribute to the population at year $t+1$;
$\mathrm{F}_{a d}\left(z^{\prime}, z\right)=\phi^{(t)}(z, a d) R^{(t)}(z) f e c^{(t)} C_{0}^{(t)}\left(z^{\prime}\right) / 2$
Reproduction was divided by 2 since the model was female based. The structure of the IPM was:
$n_{f l}\left(z^{\prime}, \mathrm{t}+1\right)=\int_{L}^{U} \mathrm{~F}_{a d}^{(\mathrm{t})}\left(z^{\prime}, z\right) n_{a d}(z, t) d z$
$n_{a d}\left(z^{\prime}, \mathrm{t}+1\right)=\int_{L}^{U} \mathrm{P}_{a d}^{(\mathrm{t})}\left(z^{\prime}, z\right) n_{a d}(z, t) d z+\int_{L}^{U} \mathrm{P}_{f l}^{(\mathrm{t})}\left(z^{\prime}, z\right) n_{f l}(z, t) d z$

We numerically integrated the IPM using the 'midpoint rule' (Easterling et al. 2000) with lower (L) and upper (U) integration limits of body mass 400 and 2500 grams, to avoid eviction of individuals from the model. The IPM assumed density-independent population growth, since density effects on survival exhibited a linear temporal trend that would have imposed extreme restrictions on the model. Stochastic population dynamics were simulated over 100,000 years using a two-step MCMC resampling approach (Metcalf et al. 2015). For each year, a set of environment/density covariate values was sampled from 28 observations in this study (1990-2017). For each function $\left(C_{0}, G, R, f e c, \phi_{f l}\right.$ and $\left.\phi_{a d}\right)$ values were sampled from their respective distributions (i.e., distribution sampling, Metcalf et al. 2015). We used estimates of intercept and yearly random effects to calculate a variance-covariance matrix and sampled parameter sets assuming a multivariate normal distribution (Gelman \& Hill 2006), to account for potential correlations (Compagnoni et al. 2016). Trends in demographic rates, growth or fledgling body mass were captured as random effects but were not explicitly included in the simulation, since temporal variation was assumed to be independent and identically distributed (i.i.d.) over time. Transition kernels for each annual projection were constructed by combining both sets of sampled parameters to calculate realised intercepts and slopes for each function.

Transient life table response experiment

We used an extension of the Monte Carlo random LTRE, introduced by Rees and Ellner (2009), to incorporate transient fluctuations in age class-structure and body mass distribution (Maldonado-Chaparro et al. 2018). Rather than assuming the population was always close to its stable structure, i.e., focusing on the yearly asymptotic growth rates ($\tilde{\lambda}_{t}$), we decomposed variance in the realised population growth rate at time $t\left(\lambda_{t}\right)$. We included lagged parameter effects in the
model of λ_{t}, to quantify delayed effects of parameters (i.e., parameter i at time $t, \theta_{i, t}$), acting through changes in age structure or body mass distribution. Variance decompositions of λ_{t} were modelled assuming either linear (linear model, LM) or non-linear (generalised additive model, GAM) dependencies of λ_{t}. Following Maldonado-Chaparro et al. (2018), we decomposed variance in $\log ($ λ_{t}). We compared the R^{2} of LMs and GAMs and incorporated delayed effects with increasing numbers of year lags. We also tested whether interaction effects between parameters (pairwise smooths for GAMs) contributed to substantial variation in $\log \left(\lambda_{t}\right)$. We considered a model of $\log ($ λ_{t}) to be a better fit when the amount of variance explained increased by at least 1% (Maldonado-Chaparro et al. 2018).

Vital rate contributions were further partitioned into variation from modelled covariates effects versus random effects. In this case, (net) contributions of covariates to λ_{t} depended on; (1) temporal covariances among covariates, (2) their effect size on $\theta_{i, t}$ and (3) the sensitivity of λ_{t} to $\theta_{i, t}$. We assumed linear dependencies of λ_{t} on $\theta_{i, t}$ for the environmental decomposition. In the IPM, trait-mediated effects could contribute to intercept variation in each function (e.g., G or ϕ), while trait-modified effects would cause variation in the slope describing the relationship between body mass and a function. Consequently, we decomposed variation in $\log \left(\lambda_{t}\right)$ at three hierarchical levels: (1) overall contributions from $C_{0}, G, R, f e c$ and ϕ, (2) modelled environment versus random effects and (3) slope versus intercept variation.

Results

Body mass and life history processes

The best-approximating model of overwinter survival (ϕ) included an interaction effect between age class and body mass, with a much stronger positive effect on fledglings (Fig. 1a), and additive
effects of overwintering population size ($N_{\text {win }}$, negative effect) and winter temperature ($T_{\text {win }}$, positive effect) (Table 1). The best growth model (G), estimating body mass at year $t+1$, included a positive effect of body mass at t (Fig. 1b). The best model of reproduction probability (i.e., of an adult female producing fledglings, R) included spring precipitation (positive effect, $P_{s p r}$) and date of spring onset (negative effect, $S O_{\text {sum }}$), and an interaction effect between mother body mass and $S O_{\text {sum }}$, with a strong, positive body mass effect in late springs and no effect in early springs (Fig. 1c-e). For fledged brood size (fec), the best model included negative effects of Arctic fox abundance $\left(f o x_{\text {sum }}\right)$ and summer precipitation $\left(P_{\text {sum }}\right)$. The best model of fledgling body mass $\left(C_{0}\right)$ included an interaction effect of fox $_{\text {sum }}$ and adult population density at the breeding grounds ($N_{\text {sum }}$), where $N_{\text {sum }}$ tended to have a negative effect only at high fox abundance (Fig. 1f-h). Further description of the model selection and associated tables (Tables S2.1-2.5) can be found in Appendix 3.

Over the study period, average cohort body mass declined significantly ((lope $=-8.3 \mathrm{~g}$ per cohort, $\mathrm{SE}=0.8 \mathrm{~g}, \mathrm{p}<0.001$). Inter-annual changes in body mass were relatively small for adults, but larger for fledglings (Fig. 2).

Transient LTRE

The mean stochastic population growth rate $\hat{\lambda}_{t}$ was 1.07 (confidence interval: $0.77,1.59$) (Appendix S4, Fig. S1), which was similar to the observed growth rate (1.05; 0.65, 1.53). The stable body mass-age class distribution reflected the bimodal distribution of fledgling and adult body mass (Appendix S4, Fig. S2). 94% of the variation in λ_{t} was explained by main effects of the functions, including a one-year time lag, with the transient linear LTRE (LM-LTRE), which increased to 98% with a generalised additive model (GAM-LTRE). The only pairwise smooth
(interaction between parameters) explaining more than 1% variance was between the intercept and slope terms of reproduction probability (R) - since $S O_{\text {sum }}$ was a predictor in both terms. Parameter effects with more than a one-year lag explained $<1 \%$ of the variance in λ_{t}.

Sensitivity surfaces were estimated using the GAM-LTRE for $\log \left(\lambda_{t}\right)$, illustrating the influence of each function through direct (Fig. 3a) and delayed effects (Fig. 3b). Direct effects of variation operating through reproduction probability (R) was larger than survival (ϕ) or fledged brood size (fec). λ_{t} was sensitive to variation through survival rates, especially adult survival (Fig. 3a). Note that direct effects of variation through changes in growth and fledgling body mass are not included in Fig. 3a since changes in body mass only affect λ the following year (i.e., delayed effects). The population growth rate was insensitive to delayed effects (Fig. 3b) through G and C_{0} (i.e., trait-mediated effects). The sensitivity of λ_{t} to delayed effects (i.e., at $t-1$) through R and fec reflects how increased reproduction in a given year had a negative impact the following year, via a shift in the age structure towards a larger proportion of non-reproductive individuals.

Vital rate contributions from variances and covariances in $\log \left(\lambda_{t}\right)$, separating variance explained by covariates versus random effects, indicated large contribution from variation in the reproductive probability (R) (Fig. 4). R contributed 69% through direct effects and 12% through delayed effects (i.e., changes in age structure). The remaining $\sim 20 \%$ was largely explained by direct and delayed contributions from variation in adult survival ($\phi_{a d}$, total contribution $=6 \%$), fledged brood size $(f e c, 6 \%)$, and fledgling survival $\left(\phi_{f f}, 2 \%\right)$. Changes in body mass acting through fledgling body mass and growth functions (i.e., trait-mediated effects) made negligible contributions to variance in $\lambda\left(0.04 \%\right.$ through G and 0.5% through $\left.C_{0}\right)$. Reproduction $(R, f e c)$ was negatively correlated with adult survival $\left(\phi_{a d}\right)$, resulting in a total contribution of -7% to $\log \left(\lambda_{t}\right)$, i.e., high adult survival in one year meant lower reproduction, thereby reducing temporal variation
in λ. Both reproductive parameters (R and $f e c$) and survival parameters ($\phi_{f l}$ and $\phi_{a d}$) positively covaried, and both covariations contributed ca. 3% to $\log \left(\lambda_{t}\right)$.
58% of the variation in $\log \left(\lambda_{t}\right)$ acting through reproduction probability (R) was attributed to modelled covariates (Fig. 4). Precipitation at the spring stopover site $\left(P_{s p r}\right)$ contributed to 26% of the variation, while date of spring onset at the breeding grounds $\left(S O_{\text {sum }}\right)$ contributed 16% through intercept and slope variance. 59% of the variation in $\log \left(\lambda_{t}\right)$ that was attributed to adult survival (ϕ_{ad}) was explained by temperature $\left(T_{\text {win }}\right)$ and population size $\left(N_{\text {win }}\right)$ at the wintering grounds, accounting for 1% and 2% of the overall variation in $\log \left(\lambda_{t}\right)$. In contrast, $<1 \%$ of the variation in fledgling survival was attributed to $T_{\text {win }}$ and $N_{\text {win }}$ although these covariates explained 95% of the positive covariation between fledgling and adult survival, leading to a positive contribution of ca. 1% to variation in $\log \left(\lambda_{t}\right)$ (Fig. 4). Finally, 65% of the variation in $\log \left(\lambda_{t}\right)$ through fledged brood size (fec) was explained by Arctic fox abundance and summer precipitation, each contributing 3% to variation in $\log \left(\lambda_{t}\right)$.

Discussion

Coupled trait-demography responses to environmental change may be key to understand and predict short- and long-term population dynamics, especially in Arctic herbivores. Here, we have explored population growth responses to a substantial decline in body mass in an Arctic goose population, using a recently developed transient-LTRE. Body mass at fledging was densitydependent (Fig. 1f-h), supporting previous findings that the temporal decline in body mass -a phenomenon observed across Arctic goose species (Cooch et al. 1991b; Larsson et al. 1998) - was caused by habitat degradation at the breeding grounds. However, population growth appeared buffered against these changes in body mass (Fig. 3b, Table 2), despite the strong influence of this
body condition proxy on reproduction and survival (Fig. 1a, c-e). Instead, variation in population growth rates was largely explained by direct and delayed effects operating through reproduction, partly caused by annual variation in spring phenology at the breeding grounds (Fig. 4).

Both resident and migrant Arctic herbivores are exposed to highly variable weather conditions, which can lead to variation in body condition and population size (Festa-Bianchet et al. 1997; Sæther 1997). Although effects of population density and weather on body mass are well documented in herbivores, whether these effects extend to variation in population growth remains largely unanswered. Goose populations have expanded across the Arctic, as a result of increasing numbers caused by hunting bans and agricultural change at overwintering grounds (Madsen \& Cracknell 1999; Fox \& Madsen 2017). Density-dependent processes associated with overgrazing by geese have degraded the Arctic breeding grounds, leading to declining cohort body size and mass of Arctic geese (Cooch et al. 1991b; Loonen et al. 1997; Reed \& Plante 1997; Larsson et al. 1998). Average cohort body mass of the study population has declined by 10% from 1980-2017. We documented density dependence in fledgling body mass, although this was only evident at high Arctic fox abundance, i.e. the main predator of the goslings and, occasionally, adults (Fuglei et al. 2003). Foxes therefore influenced geese both through lethal effects on fledged brood size (fec) and non-lethal effects on fledgling body mass, by inducing density-dependent restrictions on their ability to utilise all available foraging areas (Loonen et al. 1998).

Despite the temporal decline in (cohort) body mass, between-year fluctuations in adult body mass were rather small. Fledgling body mass exhibited more inter-annual variation, likely a result of strong resource dependence during gosling growth (Cooch et al. 1991a; Lindholm et al. 1994). Body mass, in turn, positively influenced survival and reproduction. The reserves first-year-geese accumulate at the breeding grounds affect survival during migration (Owen \& Black 1989; Menu
et al. 2005), reflected in the strong positive effect of body mass on fledgling overwinter survival found here. Adult survival, however, was largely unaffected by body mass and varied less interannually.

Several studies have stressed the potential importance of coupled trait-demography responses in predicting population persistence under environmental change (Ozgul et al. 2009; 2010; Plard et al. 2014; Jenouvrier et al. 2018). However, some studies have indicated that changes in traits may lead to more limited population-level responses than expected (Wilson \& Arcese 2003; Maldonado-Chaparro et al. 2018; McLean et al. 2020). Here, despite the potential for coupled body mass-demography responses, changes in the body mass of Arctic geese did not incur population-level responses through trait-mediated effects. Over the study period, body mass underwent a temporal decline and positively influenced demographic rates. However, fluctuations in body mass did not translate into effects on population growth because all three conditions required for trait-mediated pathways to arise were not met for any age class-specific demographic rate (Table 2). Although fledging survival ($\phi_{f l}$) was influenced by body mass, variance in $\phi_{f l}$ only made a negligible contribution to λ since fledglings represent only a small fraction of the population. In contrast, population growth was sensitive to changes in adult survival, but body mass had close to no effect on adult survival $\left(\phi_{a d}\right)$. Variation in λ through $\phi_{a d}$ was attributed to overwinter temperature and population density. Population growth was highly sensitive to changes in reproduction probability, which was only weakly influenced by adult body mass (at mean environmental conditions), showing a pronounced long-term decline yet limited inter-annual variation. This resulted in a lack of trait-mediated effects through reproduction (R). Nevertheless, further changes in body mass could have large effects on λ, operating through R. According to the demographic buffering hypothesis, variability in λ reduces fitness (Tuljapurkar 1982), leading to
selection for reduced variation (Gaillard \& Yoccoz 2003; Jongejans et al. 2010). Therefore, buffering of population growth against trait-mediated variation may have occurred via such mechanisms.

Quantifying demographic - and associated trait - responses to climate change is necessary for a mechanistic and predictive understanding of population-level consequences (Jenouvrier 2013; Paniw et al. 2019a). Arctic warming is advancing snow melt, with widespread effects on plant phenology, while rising summer temperatures are influencing plant productivity (Bjorkman et al. 2020). For migrating Arctic geese, spring phenology at the breeding grounds also dictates when nesting sites become snow-free as well as the onset of plant growth: both important determinants of breeding success (Reed et al. 2004; Madsen et al. 2007). The positive effect of earlier spring onset on fledgling production in our study population has previously been attributed to females laying bigger clutches with improved hatching success (Layton-Matthews et al. 2019a). Advancing spring phenology could therefore benefit reproduction and population growth, which appears unhampered by the temporal decline in body mass (i.e., since effects of body mass on reproduction diminish with earlier springs). However, neither R nor $f e c$ exhibited positive temporal trends (Appendix 5) likely due to contrasting direct versus indirect climate change effects, as the number of Arctic foxes - and thus gosling predation rates - are generally increasing (LaytonMatthews et al. 2019a; unpublished data, E. Fuglei).

In capital breeders, such as Arctic geese, accumulating body stores is beneficial in unpredictable environments, and this strategy is therefore typical at higher latitudes (Varpe et al. 2009; Sainmont et al. 2014). Storing resources along their flyway allows geese to initiate reproduction without immediate food access (Klaassen et al. 2017). Consequently, several reproductive stages are dependent on fat reserves (Bêty et al. 2003; Guillemain et al. 2008; Aubry
et al. 2013), reflected here in the positive relationship between body mass and reproduction probability. Heavier individuals were more likely to reproduce than lighter ones under poor (delayed) spring conditions, since they have more 'capital' to initiate reproduction (i.e., a traitmodified climate effect). However, in earlier springs (i.e. typically in more recent years), possibly with excess nesting sites and food resources, benefits of accumulating fat reserves were reduced and the influence of body mass on reproduction was weaker. Further advanced springs due to continued climate change could therefore tip the balance in favour of accumulating fewer resources for reproduction, potentially relaxing selection on body mass if individuals gain a survival advantage by requiring fewer fat reserves for migration (Larsson et al. 1998).

Overall, population dynamics of Arctic migratory geese appear largely unaffected by the decline in body mass, thus far. Buffering population growth against changes in body condition which is essential for survival and reproduction in Arctic herbivores - has clear implications for their resilience to future environmental change. However, as the Arctic continues to change, further body mass declines could potentially have big effects on population growth, in this case via trait-mediated effects through reproduction.

This work emphasises the importance of holistic approaches fully capturing pathways from environmental variation to individual and population-level responses. Even when environmental change substantially alters trait distributions that are correlated with vital rates, we cannot assume this will have consequences for population persistence.

Acknowledgements

Funding for data collection was provided by; NWO, Ministry of Foreign Affairs, BIRDHEALTH (851.40.071), Geese on Arctic Tundra (866.12.407), EU FP7-project FRAGILE and University of

437 Groningen. The Research Council of Norway supported this work (FRIMEDBIO project 276080, 438 Centres of Excellence 223257, Arctic Field Grant 282619). We thank scientists, students and 439 volunteers for data collection and Stefan J.G. Vriend for comments on the manuscript.

IPM function	Model	Best-fitting regression model
Survival	$\operatorname{logit}\left(\phi_{f l, a d}\right)$	$-2.67+4.32 a+0.004 z-0.003 a: z+0.22 \boldsymbol{T}_{\text {win }}-0.21 \boldsymbol{N}_{\text {win }}$
Growth	G	$648.50+0.60 z$
Fledgling body mass	C_{0}	$-3357.40+19.46$ catch $-2.37 \boldsymbol{f o x}_{\text {sum }}-46.30 \boldsymbol{N}_{\text {sum }}-7.70$ fox $_{\text {sum }}: \boldsymbol{N}_{\text {sum }}$
Reproductive rate	$\operatorname{logit}(R)$	$-3.76+0.002 z+0.86 \boldsymbol{P}_{\text {spr }}-3.52 \boldsymbol{S O} \boldsymbol{O}_{\text {sum }}+0.002 z: \boldsymbol{S O}_{\text {sum }}$
Fledged brood size	$\log (f e c)$	$0.77-0.16 \boldsymbol{f o x}_{\text {sum }}-0.10 \boldsymbol{P}_{\text {sum }}$

449 Table 2. Summary of which conditions for body mass-mediated effects on the population growth rate (for each demographic rate) that were met or not $(\checkmark=$ condition met).

Condition	Fledgling	Adult	Reproduction	Fledged brood
	survival $\left(\phi_{f f}\right)$	survival $\left(\phi_{a d}\right)$	probability (R)	size $(f e c)$

Body mass fluctuates at the
relevant stage
Demographic rate sensitive
to body mass change
λ sensitive to variation in
demographic rate

Figures

Figure 1. Life cycle of barnacle geese based on a post-breeding census (i.e., breeding occurs just before a census). Individuals in age class a must survive with a body mass-dependent probability $(\phi(z, a))$ and grow to the next year $\left(G\left(z^{\prime}, z\right)\right)$ in order to reproduce $(R(z), f e c)$ and contribute fledglings of body mass $\left(\mathrm{C}_{0}\left(z^{\prime}\right)\right)$ to the population. Model predictions of body mass effects at t on; (a) fledgling $\left(\phi_{f l}\right)$ and adult $\left(\phi_{a d}\right)$ survival, (b) body mass at $t+1$, reproduction probability (R) of

459 adult females at the (c) $20^{\text {th }}$ quantile, (d) mean and (e) $80^{\text {th }}$ quantile of the date of spring onset $460\left(S O_{\text {sum }}\right)$. Effects of adult population size at Ny -Ålesund $\left(N_{\text {sum }}\right)$ on fledgling body mass $\left(\mathrm{C}_{0}\right)$ at the 461 (f) $20^{\text {th }}$, (g) mean and (h) $80^{\text {th }}$ quantile of Arctic fox abundance $\left(\right.$ fox $\left._{\text {sum }}\right)$.

Figure 2. Temporal trends in average cohort adult (black, 1980-2016) and annual fledgling (grey, 1991-2016) body mass. Slope (bold line) with 95% confidence intervals (shading) were calculated based on a linear regression.
(a) direct effects

(b) delayed effects

Figure 4. Percentage contributions of the largest demographic contributions (through adult survival, $\phi_{a d}$, fledgling survival, $\phi_{f f}$, reproduction probability, R and fledged brood size, $f e c$) to variance in the population growth rate, $\log \left(\lambda_{t}\right)$. Contributions were decomposed into direct and delayed variances and covariances. Colours represent contributions from modelled covariates versus unexplained variation (random effects).

References

Albon, S., Clutton-Brock, T. \& Guinness, F. (1987). Early development and population dynamics in red deer. II. Density-independent effects and cohort variation. The Journal of Animal Ecology, 69-81.

Albon, S.D., Irvine, R.J., Halvorsen, O., Langvatn, R., Loe, L.E., Ropstad, E. et al. (2017). Contrasting effects of summer and winter warming on body mass explain population dynamics in a food-limited Arctic herbivore. Global Change Biology, 23, 1374-1389.

Ankney, C.D. \& MacInnes, C.D. (1978). Nutrient reserves and reproductive performance of female Lesser Snow Geese. The Auk, 459-471.

Aubry, L.M., Rockwell, R.F., Cooch, E.G., Brook, R.W., Mulder, C.P. \& Koons, D.N. (2013). Climate change, phenology, and habitat degradation: drivers of gosling body condition and juvenile survival in lesser snow geese. Global Change Biology, 19, 149-160.

Bates, D., Machler, M., Bolker, B.M. \& Walker, S.C. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67, 1-48.

Beckerman, A., Benton, T.G., Ranta, E., Kaitala, V. \& Lundberg, P. (2002). Population dynamic consequences of delayed life-history effects. Trends in Ecology \& Evolution, 17, 263269.

Bêty, J., Gauthier, G. \& Giroux, J.-F. (2003). Body condition, migration, and timing of reproduction in snow geese: a test of the condition-dependent model of optimal clutch size. The American Naturalist, 162, 110-121.

Bierzychudek, P. (1999). Looking backwards: assessing the projections of a transition matrix model. Ecological Applications, 9, 1278-1287.

Bjorkman, A.D., García Criado, M., Myers-Smith, I.H., Ravolainen, V., Jónsdóttir, I.S., Westergaard, K.B. et al. (2020). Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio, 49, 678-692.

Burnham, K.P. \& Anderson, D.R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd edn. Springer Science \& Business Media, New York, USA.

Choudhury, S., Black, J.M. \& Owen, M. (1996). Body size, fitness and compatibility in barnacle geese Branta leucopsis. Ibis, 138, 700-709.

Clutton-Brock, T. \& Coulson, T. (2002). Comparative ungulate dynamics: the devil is in the detail. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357, 1285-1298.

Compagnoni, A., Bibian, A.J., Ochocki, B.M., Rogers, H.S., Schultz, E.L., Sneck, M.E. et al. (2016). The effect of demographic correlations on the stochastic population dynamics of perennial plants. Ecological Monographs, 86, 480-494.

Cooch, E., Lank, D., Dzubin, A., Rockwell, R. \& Cooke, F. (1991a). Body size variation in lesser snow geese: environmental plasticity in gosling growth rates. Ecology, 72, 503512.

Cooch, E., Lank, D., Rockwell, R. \& Cooke, F. (1991b). Long-term decline in body size in a snow goose population: evidence of environmental degradation? The Journal of Animal Ecology, 483-496.

Couturier, S., Cote, S.D., Huot, J. \& Otto, R.D. (2008). Body-condition dynamics in a northern ungulate gaining fat in winter. Canadian Journal of Zoology, 87, 367-378.

De Roos, A.M., Persson, L. \& McCauley, E. (2003). The influence of size-dependent life-history traits on the structure and dynamics of populations and communities. Ecology Letters, 6, 473-487.

Douhard, M., Gaillard, J.-M., Delorme, D., Capron, G., Duncan, P., Klein, F. et al. (2013). Variation in adult body mass of roe deer: early environmental conditions influence early and late body growth of females. Ecology, 94, 1805-1814.

Easterling, M.R., Ellner, S.P. \& Dixon, P.M. (2000). Size-specific sensitivity: applying a new structured population model. Ecology, 81, 694-708.

Ebbinge, B.S. \& Spaans, B. (1995). The importance of body reserves accumulated in spring staging areas in the temperate zone for breeding in dark-bellied brent geese Branta b . bernicla in the high Arctic. Journal of Avian Biology, 105-113.

Ezard, T.H., Bullock, J.M., Dalgleish, H.J., Millon, A., Pelletier, F., Ozgul, A. et al. (2010). Matrix models for a changeable world: the importance of transient dynamics in population management. Journal of Applied Ecology, 47, 515-523.

Festa-Bianchet, M., Jorgenson, J.T., Bérubé, C.H., Portier, C. \& Wishart, W.D. (1997). Body mass and survival of bighorn sheep. Canadian Journal of Zoology, 75, 1372-1379.

Fjelldal, M.A., Layton-Matthews, K., Lee, A.M., Grøtan, V., Loonen, M.J. \& Hansen, B.B. (2020). High-Arctic family planning: earlier spring onset advances age at first reproduction in barnacle geese. Biology Letters, 16, 20200075.

Forchhammer, M.C., Post, E., Stenseth, N.C. \& Boertmann, D.M. (2002). Long-term responses in arctic ungulate dynamics to changes in climatic and trophic processes. Population Ecology, 44, 113-120.

Forslund, P. \& Larsson, K. (1992). Age-related reproductive success in the barnacle goose. Journal of Animal Ecology, 61, 195-204.

Fox, A.D. \& Madsen, J. (2017). Threatened species to super-abundance: The unexpected international implications of successful goose conservation. Ambio, 46, 179-187.

Fuglei, E., Øritsland, N.A. \& Prestrud, P. (2003). Local variation in arctic fox abundance on Svalbard, Norway. Polar Biology, 26, 93-98.

Gaillard, J.-M. \& Yoccoz, N.G. (2003). Temporal variation in survival of mammals: a case of environmental canalization? Ecology, 84, 3294-3306.

Gelman, A. \& Hill, J. (2006). Causal inference using multilevel models. In: Data analysis using regression and multilevel/hierarchical models. Cambridge University Press Cambridge, UK, pp. 503-512.

Gimenez, O., Covas, R., Brown, C.R., Anderson, M.D., Brown, M.B. \& Lenormand, T. (2006). Nonparametric estimation of natural selection on a quantitative trait using mark-recapture data. Evolution, 60, 460-466.

Guillemain, M., Elmberg, J., Arzel, C., Johnson, A.R. \& Simon, G. (2008). The income-capital breeding dichotomy revisited: late winter body condition is related to breeding success in an income breeder. Ibis, 150, 172-176.

Hahn, S., Loonen, M.J.J.E. \& Klaassen, M. (2011). The reliance on distant resources for egg formation in high Arctic breeding barnacle geese Branta leucopsis. Journal of Avian Biology, 42, 159-168.

Hansen, B.B., Gamelon, M., Albon, S.D., Lee, A.M., Stien, A., Irvine, R.J. et al. (2019). More frequent extreme climate events stabilize reindeer population dynamics. Nature communications, 10, 1616.

Harrison, X.A., Hodgson, D.J., Inger, R., Colhoun, K., Gudmundsson, G.A., McElwaine, G. et al. (2013). Environmental conditions during breeding modify the strength of massdependent carry-over effects in a migratory bird. PloS one, 8, e77783.

Hastings, A. (2004). Transients: the key to long-term ecological understanding? Trends in Ecology \& Evolution, 19, 39-45.

Herfindal, I., Sæther, B.E., Solberg, E.J., Andersen, R. \& Høgda, K.A. (2006). Population characteristics predict responses in moose body mass to temporal variation in the environment. Journal of Animal Ecology, 75, 1110-1118.

Jenouvrier, S. (2013). Impacts of climate change on avian populations. Global Change Biology, 19, 2036-2057.

Jenouvrier, S., Desprez, M., Fay, R., Barbraud, C., Weimerskirch, H., Delord, K. et al. (2018). Climate change and functional traits affect population dynamics of a long-lived seabird. Journal of Animal Ecology, 87, 906-920.

Jongejans, E., De Kroon, H., Tuljapurkar, S. \& Shea, K. (2010). Plant populations track rather than buffer climate fluctuations. Ecology Letters, 13, 736-743.

Jönsson, K.I. (1997). Capital and income breeding as alternative tactics of resource use in reproduction. Oikos, 78, 57-66.

Klaassen, M., Hahn, S., Korthals, H. \& Madsen, J. (2017). Eggs brought in from afar: Svalbard-breeding pink-footed geese can fly their eggs across the Barents Sea. Journal of Avian Biology, 48, 173-179.

Koons, D.N., Grand, J.B., Zinner, B. \& Rockwell, R.F. (2005). Transient population dynamics: relations to life history and initial population state. Ecological modelling, 185, 283-297.

Koons, D.N., Iles, D.T., Schaub, M. \& Caswell, H. (2016). A life-history perspective on the demographic drivers of structured population dynamics in changing environments. Ecology letters, 19, 1023-1031.

Kuss, P., Rees, M., Ægisdóttir, H.H., Ellner, S.P. \& Stöcklin, J. (2008). Evolutionary demography of long-lived monocarpic perennials: a time-lagged integral projection model. Journal of Ecology, 96, 821-832.

Laake, J.L. (2013). RMark: an R interface for analysis of capture-recapture data with MARK. In: AFSC Processed Report 2013-01. Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA Seattle, Washington, USA.

Labocha, M.K. \& Hayes, J.P. (2012). Morphometric indices of body condition in birds: a review. Journal of Ornithology, 153, 1-22.

Lande, R., Engen, S. \& Saether, B.-E. (2003). Stochastic population dynamics in ecology and conservation. Oxford University Press, Oxford, UK.

Larsson, K., Van der Jeugd, H.P., Van der Veen, I.T. \& Forslund, P. (1998). Body size declines despite positive directional selection on heritable size traits in a barnacle goose population. Evolution, 52, 1169-1184.

Layton-Matthews, K., Hansen, B.B., Grøtan, V., Fuglei, E. \& Loonen, M.J.J.E. (2019a). Contrasting consequences of climate change for migratory geese: predation, density dependence and carryover effects offset benefits of high-arctic warming. Global Change Biology, 26, 642-657.

Layton-Matthews, K., Loonen, M.J.J.E., Hansen, B.B., Saether, B.-E., Coste, C.F.D. \& Grøtan, V. (2019b). Density-dependent population dynamics of a high Arctic capital breeder, the barnacle goose Journal of Animal Ecology, 88, 1191-1201.

Le Moullec, M., Buchwal, A., van der Wal, R., Sandal, L. \& Hansen, B.B. (2019). Annual ring growth of a widespread high arctic shrub reflects past fluctuations in community-level plant biomass. Journal of Ecology, 107, 436-451.

Lindholm, A., Gauthier, G. \& Desrochers, A. (1994). Effects of hatch date and food supply on gosling growth in arctic-nesting Greater Snow Geese. Condor, 96, 898-908.

Loonen, M.J.J.E., Oosterbeek, K. \& Drent, R. (1997). Variation in growth of young and adult size in barnacle geese Branta leucopsis: evidence for density dependence. Ardea, 85, 177192.

Loonen, M.J.J.E., Tombre, I.M. \& Mehlum, F. (1998). Development of an arctic barnacle goose colony: interactions between density and predation. Norsk Polarinstitutt Skrifter, 200, 6780.

Madsen, J. \& Cracknell, G. (1999). Goose populations of the Western Palearctic: a review of status and distribution. National Environmental Research Institute, Denmark and Wetlands International, Wageningen, The Netherlands.

Madsen, J., Tamstorf, M., Klaassen, M., Eide, N., Glahder, C., Rigét, F. et al. (2007). Effects of snow cover on the timing and success of reproduction in high-Arctic pink-footed geese Anser brachyrhynchus. Polar Biology, 30, 1363-1372.

Maldonado-Chaparro, A.A., Blumstein, D.T., Armitage, K.B. \& Childs, D.Z. (2018). Transient LTRE analysis reveals the demographic and trait-mediated processes that buffer population growth. Ecology letters, 21, 1693-1703.

McCarthy, M.A. \& Masters, P. (2005). Profiting from prior information in Bayesian analyses of ecological data. Journal of Applied Ecology, 42, 1012-1019.

McLean, N., Lawson, C.R., Leech, D.I. \& van de Pol, M. (2016). Predicting when climate-driven phenotypic change affects population dynamics. Ecology Letters, 19, 595-608.

McLean, N.M., van der Jeugd, H.P., Van Turnhout, C.A., Lefcheck, J.S. \& Van de Pol, M. (2020). Reduced avian body condition due to global warming has little reproductive or population consequences. Oikos.

Menu, S., Gauthier, G. \& Reed, A. (2005). Survival of young greater snow geese (Chen caerulescens atlantica) during fall migration. The $A u k, 122,479-496$.

Metcalf, C.J.E., Ellner, S.P., Childs, D.Z., Salguero-Gómez, R., Merow, C., McMahon, S.M. et al. (2015). Statistical modelling of annual variation for inference on stochastic population dynamics using Integral Projection Models. Methods in Ecology and Evolution, 6, 10071017.

Owen, M. \& Black, J.M. (1989). Factors affecting the survival of Barnacle Geese on migration from the breeding grounds. Journal of Animal Ecology, 58, 603-617.

Ozgul, A., Childs, D.Z., Oli, M.K., Armitage, K.B., Blumstein, D.T., Olson, L.E. et al. (2010). Coupled dynamics of body mass and population growth in response to environmental change. Nature, 466, 482.

Ozgul, A., Tuljapurkar, S., Benton, T.G., Pemberton, J.M., Clutton-Brock, T.H. \& Coulson, T. (2009). The Dynamics of Phenotypic Change and the Shrinking Sheep of St. Kilda. Science, 325, 464-467.

Paniw, M., James, T., Archer, C.R., Roemer, G., Levin, S., Compagnoni, A. et al. (2019a). Global analysis reveals complex demographic responses of mammals to climate change. bioRxiv.

Paniw, M., Maag, N., Cozzi, G., Clutton-Brock, T. \& Ozgul, A. (2019b). Life history responses of meerkats to seasonal changes in extreme environments. Science, 363, 631-635.

Parker, K.L., Barboza, P.S. \& Gillingham, M.P. (2009). Nutrition integrates environmental responses of ungulates. Functional ecology, 23, 57-69.

Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst., 37, 637-669.

Plard, F., Gaillard, J.-M., Coulson, T., Hewison, A.M., Delorme, D., Warnant, C. et al. (2014). Mismatch between birth date and vegetation phenology slows the demography of roe deer. PLoS biology, 12.

Plard, F., Gaillard, J.-M., Coulson, T., Hewison, A.M., Douhard, M., Klein, F. et al. (2015). The influence of birth date via body mass on individual fitness in a long-lived mammal. Ecology, 96, 1516-1528.

Plummer, M. (2013). rjags: Bayesian graphical models using MCMC. R package version, 3 .
Post, E. \& Forchhammer, M.C. (2008). Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363, 2367-2373.

Post, E. \& Stenseth, N.C. (1999). Climatic variability, plant phenology, and northern ungulates. Ecology, 80, 1322-1339.

Post, E., Stenseth, N.C., Langvatn, R. \& Fromentin, J.-M. (1997). Global climate change and phenotypic variation among red deer cohorts. Proceedings of the Royal Society of London. Series B: Biological Sciences, 264, 1317-1324.

Reed, A. \& Plante, N. (1997). Decline in body mass, size, and condition of greater snow geese, 1975-94. The Journal of wildlife management, 413-419.

Reed, E.T., Gauthier, G. \& Giroux, J.-F. (2004). Effects of spring conditions on breeding propensity of greater snow goose females. Animal Biodiversity and Conservation, 27, 3546.

Rees, M. \& Ellner, S.P. (2009). Integral projection models for populations in temporally varying environments. Ecological Monographs, 79, 575-594.

Sainmont, J., Andersen, K.H., Varpe, Ø. \& Visser, A.W. (2014). Capital versus income breeding in a seasonal environment. The American Naturalist, 184, 466-476.

Schamber, J.L., Esler, D. \& Flint, P.L. (2009). Evaluating the validity of using unverified indices of body condition. Journal of Avian Biology, 40, 49-56.

Schaub, M., Jakober, H. \& Stauber, W. (2013). Strong contribution of immigration to local population regulation: evidence from a migratory passerine. Ecology, 94, 1828-1838.

Scheffer, M., Straile, D., van Nes, E.H. \& Hosper, H. (2001). Climatic warming causes regime shifts in lake food webs. Limnology and Oceanography, 46, 1780-1783.

Schmutz, J.A. (1993). Survival and pre-fledging body mass in juvenile Emperor Geese. The Condor, 95, 222-225.

Serreze, M.C. \& Barry, R.G. (2011). Processes and impacts of Arctic amplification: A research synthesis. Global Planetary Change, 77, 85-96.

Sæther, B.-E. (1997). Environmental stochasticity and population dynamics of large herbivores: a search for mechanisms. Trends in Ecology and Evolution, 12, 143-149.

Sæther, B.-E., Visser, M.E., Grøtan, V. \& Engen, S. (2016). Evidence for r-and K-selection in a wild bird population: a reciprocal link between ecology and evolution. Proceedings of the Royal Society B: Biological Sciences, 283, 20152411.

Tuljapurkar, S.D. (1982). Population dynamics in variable environments. III. Evolutionary dynamics of r-selection. Theoretical Population Biology, 21, 141-165.

Varpe, Ø., Jørgensen, C., Tarling, G.A. \& Fiksen, Ø. (2009). The adaptive value of energy storage and capital breeding in seasonal environments. Oikos, 118, 363-370.

Visser, M.D., Bruijning, M., Wright, S.J., Muller-Landau, H.C., Jongejans, E., Comita, L.S. et al. (2016). Functional traits as predictors of vital rates across the life cycle of tropical trees. Functional Ecology, 30, 168-180.

White, G.C. \& Burnham, K.P. (1999). Program MARK: survival estimation from populations of marked animals. Bird study, 46, S120-S139.

Wilson, S. \& Arcese, P. (2003). El Nino drives timing of breeding but not population growth in the song sparrow (Melospiza melodia). Proceedings of the National Academy of Sciences, 100, 11139-11142.

