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Delayed meal timing after exercise is associated with reduced appetite and 1 

energy intake in adolescents with obesity 2 

 3 

Abstract 4 

Background. While the beneficial effects of exercise on appetite might depend on its timing during 5 

the day or relative to a meal, this remains poorly explored in youth.  6 

Objectives. To examine the importance of meal timing (+30vs.+90minutes) after performing exercise 7 

on energy intake, appetite and food reward in adolescents with obesity.  8 

Methods. Eighteen adolescents with obesity randomly completed 3 conditions: i) lunch (12:00pm) set 9 

30min after a rest session (11:00am); ii) lunch (12:00pm) set 30min after an exercise session (11:00 10 

am)(MEAL-30); iii) lunch (01:00pm) set 90min after an exercise session (11:00am)(MEAL-90). Lunch 11 

and dinner ad libitum energy intake was assessed, food reward (LFPQ) assessed before and after lunch, 12 

and before dinner, appetite sensations were assessed at regular intervals.  13 

Results. Energy intake was lower at MEAL-90 than MEAL-30 and CON at lunch (p<0.05 and p<0.01, 14 

respectively) and lunch+dinner combined(p<0.001). A decrease in intake (g) of protein, fat and 15 

carbohydrate was observed. Post-exercise hunger was lower on MEAL-90 compared with CON. No 16 

condition effects were found at lunch for food reward.  17 

Conclusions. Delaying the timing of the meal after exercise might help affect energy balance by 18 

decreasing ad libitum energy intake without increasing hunger and by improving satiety in adolescents 19 

with obesity.  20 

 21 
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Clinical Trial reference: NCT03968458 23 
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Introduction  25 

While practitioners and clinicians constantly work on the improvement of their weight loss 26 

interventions, trying to identify the best exercise characteristics (modality, intensity, duration, etc.) to 27 

prescribe, the need to also consider the timing of exercise has been recently suggested 1. Recent 28 

studies effectively show that the beneficial effects of exercise might also depend on its timing during 29 

the day or its delay/position regarding a meal 1. Some studies for instance showed that performing 30 

acute exercise one to three hours after a meal could enhance the glycemic response in patients with 31 

type II diabetes 2–5 while others showed a better postprandial lipemia response when exercise was 32 

performed immediately before the meal 6–8.  33 

Looking at the alarming progression of overweight and obesity among children and adolescents, it 34 

seems necessary to deepen our understanding on the effects of exercise on overall energy balance, in 35 

order to optimize our weight loss strategies. It is now clear that physical exercise does not only impact 36 

energy expenditure, it also affects energy intake and appetite control in youth and adolescents with 37 

obesity 9. The current literature mainly investigated the effect of exercise duration 10,11, intensity 12–14 38 

or modality 15 on subsequent food intake, appetite sensations or food reward, while the potential role 39 

played by the timing of exercise remains poorly explored 16.  40 

In 2017, Mathieu and collaborators assessed the effects of exercising immediately before or after a 41 

lunch meal in primary school children on overall energy balance 17. Although they did not observe any 42 

difference on energy intake between conditions (before or after the meal), their results highlight the 43 

beneficial effect of performing pre-meal moderate-to-vigorous over low-intensity exercise on 44 

subsequent energy intake 17. More recently, similar results were obtained among adolescents with 45 

obesity whose energy intake and food reward remained unchanged whether the adolescents 46 

performed 30 min of cycling exercise (65% VO2peak) immediately before or after their lunch meal 18. 47 

Interestingly, others investigated the potential effect of the delay between an acute exercise bout and 48 

the following meal on energy intake and appetite. In their work, Albert and colleagues compared the 49 

effects of exercising (treadmill running at 70% VO2max) 45 min or 180 min before lunch, in normal 50 
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weight adolescents 19. The authors observed an 11% reduction of the adolescents’ ad libitum energy 51 

intake and a 23% decrease in fat intake when the exercise was performed 45 min before lunch, 52 

compared to 180 min. Moreover, there were no difference in terms of appetite sensations and no 53 

energy compensation at the following snack or dinner.  Our research group recently examined the 54 

effect of the exercise-meal delay on energy intake, appetite and food reward among adolescents with 55 

obesity 20. According to our results, a 30-min cycling exercise bout (65% VO2max) performed 60 min 56 

before lunch favored a 14% reduction of ad libitum energy intake while the same exercise performed 57 

180 min before lunch did not affect the adolescents’ energy intake. While appetite sensations (hunger, 58 

fullness, prospective food consumption and desire to eat) did not differ between conditions, our 59 

results also showed a significantly lower pre-meal explicit liking for high-fat relative to low-fat foods 60 

when the exercise was set close to the meal, suggesting the implication of the food reward system 20. 61 

Altogether, these results seem to show a beneficial effect of exercising close to a meal on overall 62 

energy balance in adolescents.  63 

Although these studies compared exercises of similar characteristics (e.g. duration, modality, 64 

intensity), their metabolic demand might have been different due to their divergent delay from 65 

breakfast, which might have important implications when it comes to subsequent energy intake. 66 

Indeed, it has been shown that the metabolic activity during exercise, particularly the contribution of 67 

the energy substrates, is different depending on the delay between a breakfast and this exercise 21. 68 

The substrate oxidation during exercise, especially the rate of carbohydrate oxidation has been 69 

associated with subsequent energy intake 22, particularly in adults with obesity 23,24. Investigating the 70 

effect of the timing of exercise on appetite and energy intake needs to consider not only its delay with 71 

the following meal but also the time interval between exercise and the previous food intake.   72 

In that context, the aim was to examine the importance of meal timing (+30 or +90 minutes) after 73 

performing exercise on energy intake, appetite and food reward in adolescents with obesity. 74 

 75 

Materials and methods 76 
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Participants 77 

Eighteen adolescents with obesity (according to 25) aged 12-15 years (Tanner stage 3-4) were enrolled 78 

in this study (12 boys (12.6 ± 1.2 years) and 6 girls (13.0 ± 1.6 years)). They were recruited through the 79 

local Pediatric Obesity Center (Tza Nou, La Bourboule, France), based on the following main inclusion 80 

criteria: i) to be free of any medication known to influence appetite or metabolism; ii) to be free of 81 

any contraindication to physical activity; iii) to be classified as physically inactive (taking part in less 82 

than 2 hours of physical activity per week as assessed using the International Physical Activity 83 

Questionnaire –IPAQ 26). This study was conducted in accordance with the Helsinki declaration and all 84 

the adolescents and their legal representative received information sheets and signed consent forms 85 

as requested by the local ethical authorities (Human Ethical Committee authorization reference: 2019-86 

A00530-57; Clinical Trial reference: NCT03968458). 87 

1.1. Design 88 

After a preliminary medical inclusion visit performed by a pediatrician to control for the ability of the 89 

adolescents to complete the study, they were asked to perform a maximal aerobic test and their body 90 

composition was assessed by dual-energy x-ray absorptiometry (DXA). The adolescents thereafter 91 

completed the three following experimental sessions (one week apart) in randomized order: i) lunch 92 

(at 12:00pm) set 30 min after a rest session (at 11:00 am) ii) lunch (at 12:00pm) set 30 min after an 93 

exercise session (at 11:00am; MEAL-30); iii) lunch (at 1:00pm) set 90 min after an exercise session (at 94 

11:00am; MEAL-90). On the three occasions, participants received a standardized breakfast (08:00am) 95 

and were asked to remain at rest (CON) or to cycle for 30 min at 11:00am and eat either 30 min (on 96 

MEAL-30; lunch at 12:00pm) or 90 min (on MEAL-90; lunch at 1:00pm) after exercise. Dinner was 97 

provided to the adolescents at 6:30pm. They were asked to complete the Leeds Food Preference 98 

Questionnaire (LFPQ) 27 before and after the lunch meal and before dinner. Lunch and dinner energy 99 

intake were assessed via ad libitum buffet-style meals. Appetite sensations were measured at regular 100 

intervals throughout the day. Outside the experimental conditions and between the two ad libitum 101 

test meals, the adolescents stayed in the laboratory, devoid of any food cues, and were requested not 102 
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to engage in any moderate-to-vigorous physical activity and mainly completed sedentary activities 103 

such as reading, homework or board games. Figure 1 details the whole design of the study.  104 

…………………………………………………………Figure 1…………………………………………………………………………………….. 105 

1.2. Anthropometric characteristics and body composition 106 

Body mass and height were measured wearing light clothing while bare-footed, using a digital scale 107 

and a standard wall-mounted stadiometer, respectively. Body mass index (BMI) was calculated as 108 

body mass (kg) divided by height squared (m²) and the sex and age dependent French reference curves 109 

were used to obtain the BMI percentile 28. Fat mass (FM) and fat-free mass (FFM) were assessed by 110 

dual-energy X-ray absorptiometry (DXA) following standardized procedures (QDR4500A scanner, 111 

Hologic, Waltham, MA, USA). These measurements were obtained during the preliminary visit by a 112 

trained technician.   113 

1.3. Peak oxygen uptake test (V̇O2peak) 114 

Each adolescent performed a V̇O2peak test on a traditional ergometer 29. The initial power was set at 115 

30W during 3 minutes, followed by a 15W increment every minute until exhaustion. The adolescents 116 

were strongly encouraged by the experimenters throughout the test to perform their maximal effort. 117 

Maximal criteria were: heart rate >90% of the theoretical maximum heart rate (210 − 0.65 × age), 118 

respiratory exchange ratio (RER = V̇CO2/V̇O2) > 1.1 and/or V̇O2 plateau. Cardiac electrical activity 119 

(Ultima SeriesTM, Saint Paul, MN) and heart rate (Polar V800) were monitored and the test was 120 

coupled with a measurement of breath-by-breath gas exchanges (BreezeSuite Software, Saint Paul, 121 

MN), that determined V̇O2 and V̇CO2. Volumes and gases were calibrated before each test. V̇O2peak was 122 

defined as the average of the last 30 s of exercise before exhaustion. 123 

1.4. Experimental conditions 124 

Rest condition (CON): During this condition, the adolescents were asked to remain quiet and were not 125 

allowed to engage in any physical activity. They were asked to stay seated on a comfortable chair (30 126 
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min) between 11:00am and 11:30am, not being allowed to talk, read, watch TV or to complete any 127 

intellectual tasks. Energy expenditure was assessed during the 30-min rest period using portable 128 

indirect calorimetry (K4b², COSMED Inc., Rome, Italy).  129 

Lunch condition 30 min after exercise (MEAL-30): Between 11:00am and 11:30am, the participants 130 

performed a 30-min moderate-intensity exercise bout (65% VO2peak) on a cycle ergometer. The 131 

intensity was controlled by heart rate records (Polar V800) using the results from the maximal aerobic 132 

capacity testing. Exercise-induced energy expenditure was calculated based on the results obtained 133 

during the maximal oxygen uptake test.  134 

Lunch condition 90 min after exercise (MEAL-90): The adolescents performed the same exercise bout 135 

as MEAL-30 and at the same time, but the ad libitum lunch meal was served at 1:00pm (90 min after 136 

the end of the exercise).  137 

1.5. Energy intake 138 

At 08:00am, the adolescents consumed a standardized calibrated breakfast (500 kcal) respecting the 139 

recommendations for their age (composition:  bread (50 g), butter (10 g), marmalade (15 g), yoghurt 140 

(125 g) or semi-skimmed milk (20 cl), fruit or fruit juice (20 cl)). Lunch and dinner meals were served 141 

ad libitum using a buffet-type meal. The content of the buffets was determined using a food 142 

preference and habits questionnaire filled in by the adolescents during the inclusion visit, as previously 143 

described  30. Top rated items as well as disliked items and items liked but not usually consumed were 144 

excluded to avoid over-, under- and occasional consumption. The lunch menu was beef steak, pasta, 145 

mustard, cheese, yoghurt, compote, fruits and bread. The dinner menu was ham/turkey, beans, 146 

mashed potato, cheese, yoghurt, compote, fruits and bread. Food items were presented in abundance 147 

and the adolescents were told to eat until comfortably full. Adolescents made their choices and 148 

composed their trays individually before joining their habitual table (5 adolescents per table). Lunch 149 

and dinner were served in a quiet environment free of music, cellphones or television. Food items 150 

were weighed by the experimenters before and after each meal. Energy intake and macronutrient 151 
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composition (proportion of fat, carbohydrate and protein) were calculated using the software Bilnut 152 

4.0. This methodology has been previously validated and published 30. Lunch and total relative energy 153 

intake (REI) were calculated such as: energy intake – exercise-induced energy expenditure.   154 

1.6. Subjective appetite sensations 155 

Appetite sensations were collected at regular intervals throughout the day using visual analogue scales 156 

(150-mm scales) 31. Adolescents had to report their hunger, fullness, desire to eat (DTE) and 157 

prospective food consumption (PFC) before and immediately after breakfast, prior and after rest 158 

(CON) or exercise (MEAL-30 and MEAL-90), before and immediately after lunch, 30 min and 60 min 159 

after lunch, before and immediately after dinner.  160 

1.7. Food liking and wanting 161 

The Leeds Food Preference Questionnaire, described in greater methodological detail by Dalton and 162 

Finlayson 32, provided measures of food preference and food reward. The adolescents were presented 163 

with a culturally (food items and language) adapted version of the LFPQ following the recent 164 

recommendations from Oustric and collaborators 33. Participants were presented with an array of 165 

pictures of individual food items common in the diet. Foods were chosen by the local research team 166 

from a validated database to be either predominantly high (>50% energy) or low (<20% energy) in fat 167 

but similar in familiarity, protein content, palatability and suitable for the study population. The LFPQ 168 

has been deployed in a range of research 32 including a recent exercise/appetite trial in young French 169 

males 34 and adolescents  20,35,36.  170 

Explicit liking was measured by participants rating the extent to which they like each food (“How 171 

pleasant would it be to taste this food now?”). The food images were presented individually, in a 172 

randomized order and participants made their ratings using a 100-mm VAS. Implicit wanting was 173 

assessed using a forced choice methodology in which the food images were paired so that every image 174 

from each of the four food types was compared to every other type over 96 trials (food pairs). 175 

Participants were instructed to respond as quickly and accurately as they could to indicate the food 176 
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they want to eat the most at that time (“Which food do you most want to eat now?”). Reaction times 177 

for all responses were covertly recorded and used to compute mean response times for each food 178 

type after adjusting for frequency of selection.  179 

Responses on the LFPQ were used to compute mean scores for high-fat, low-fat, sweet or savoury 180 

food types (and different fat-taste combinations). Fat bias scores were calculated as the difference 181 

between the high-fat scores and the low-fat scores, with positive values indicating greater liking or 182 

wanting for high-fat relative to low-fat foods and negative values indicating greater liking or wanting 183 

for low-fat relative to high-fat foods. Sweet bias scores were calculated as the difference between the 184 

sweet and savoury scores, with positive values indicating greater liking or wanting for sweet relative 185 

to savoury foods and negative values indicating greater liking or wanting for savoury relative to sweet 186 

foods.  187 

1.8. Statistical analysis 188 

Statistical analyses were performed using Stata software, Version 13 (StataCorp, College Station, TX, 189 

US). The sample size estimation was determined according to (i) CONSORT 2010 statement, extension 190 

to randomized pilot and feasibility trials (Eldridge et al. CONSORT 2010 statement: extension to 191 

randomized pilot and feasibility trials. Pilot and Feasibility Studies (2016) 2:64) and (ii) Cohen’s 192 

recommendations 37 who has defined effect-size bounds as : small (ES: 0.2), medium (ES: 0.5) and large 193 

(ES: 0.8, “‘grossly perceptible and therefore large”). So, with 15 patients by condition, an effect-size 194 

around 1 can be highlighted for a two-sided type I error at 1.7% (correction due to multiple 195 

comparisons), a statistical power greater than 80% and an intra-class correlation coefficient at 0.5 to 196 

take into account between and within participant variability. All tests were two-sided, with a Type I 197 

error set at 0.05. Continuous data was expressed as mean ± standard deviation (SD) or median 198 

[interquartile range] according to statistical distribution. The assumption of normality was assessed 199 

by using the Shapiro-Wilk test. Daily (total) area under the curve (AUC) were calculated using the 200 

trapezoidal method. Random-effects models for repeated data were performed to compare three 201 
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conditions (i) considering the following fixed effects: time, condition and time x condition interaction, 202 

and (ii) taking into account between and within participant variability (subject as random-effect). A 203 

Sidak’s type I error correction was applied to perform multiple comparisons. As proposed by some 204 

statisticians 38,39 a particular focus will be also given to the magnitude of differences, in addition to 205 

inferential statistical tests expressed using p-values. The normality of residuals from these models was 206 

studied using the Shapiro-Wilk test. When appropriate, a logarithmic transformation was proposed to 207 

achieve the normality of dependent outcome. 208 

 209 

2. Results 210 

Eighteen adolescents with obesity participated in this study. Their mean age was 12.7 ± 1.3 years, 211 

body weight was 88.9 ± 23.6 kg (with a BMI of 33.3 ± 6.5 kg/m2 (z-BMI 2.2 ± 0.4), with a percentage of 212 

body fat mass of 37.6 ± 5.0 % and a FFM of 53.1 ± 12.5 kg. 213 

The adolescents had a V̇O2peak of 21.8 ± 4.6 ml/min/kg. Energy expenditure induced by the exercise 214 

(total duration 30 min) was significantly higher compared to the 30-min resting energy expenditure 215 

(168.8 ± 43.6 kcal and 46.9 ± 14.9 kcal, respectively; p<0.001).  216 

Table 1 details the results related to absolute and relative energy intake. At lunch, absolute ad libitum 217 

energy intake was significantly lower in MEAL-90 than MEAL-30 and CON (p<0.05 and p<0.01, 218 

respectively) and in MEAL-30 than CON (p<0.05). Dinner ad libitum energy intake was significantly 219 

lower in MEAL-90 compared with MEAL-30 (p<0.01) with no difference between the exercise 220 

conditions and CON. Total daily absolute ad libitum energy intake was significantly lower in MEAL-90 221 

compared with both CON and MEAL-30 (p<0.001).  222 

REI at lunch was significantly higher in CON compared with MEAL-30 and MEAL-90 (p<0.05 and 223 

p<0.001, respectively) and total REI was significantly higher in CON compared with MEAL-90 (p<0.001). 224 

Both lunch (p<0.05) and total REI (p<0.001) were significantly lower in MEAL-90 than MEAL-30.  225 
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………………………………………………………………Table 1………………………………………………………………………………. 226 

The lunch and total absolute intake of protein, fat were significantly lower in MEAL-90 compared with 227 

both CON (p<0.01 and p<0.05, respectively) and MEAL-30 (p<0.01 and p<0.05, respectively) while their 228 

intake at dinner was significantly lower in MEAL-90 compared with MEAL-30 (p<0.05). The absolute 229 

intake of CHO was significantly lower in MEAL-90 compared with CON at lunch (p<0.05) and 230 

significantly higher in MEAL-30 compared with CON at dinner (p<0.05). Total absolute CHO intake was 231 

only significantly lower in MEAL-90 compared with CON (p<0.05). No significant difference was 232 

observed between conditions regarding the relative intake of each macronutrient. Table 2 details 233 

these results.    234 

………………………………………………………………Table 2………………………………………………………………………………… 235 

Figure 2 presents the results related to appetite sensations. Fasting hunger, fullness, PFC and DTE did 236 

not differ between conditions. After the standardized breakfast, significant differences between 237 

conditions were found: hunger and DTE were higher in MEAL-30 than MEAL-90 (p=0.003 and p=0.02), 238 

respectively) and CON (p=0.010 and p=0.016, respectively), while PFC was greater in MEAL-30 than 239 

MEAL-90 only (p=0.021). Before exercise, hunger was significantly lower during both exercise 240 

conditions than during CON (p<0.001 for both). After exercise, this difference remained significant 241 

only between CON and MEAL-90 (p=0.004). Immediately before lunch, hunger and PFC were 242 

significantly lower in MEAL-30 compared with CON (p=0.036 and p=0.041, respectively). Post-lunch 243 

sensations were similar between conditions. Pre-dinner hunger was lower during both exercise 244 

conditions compared with CON (p=0.006 for MEAL-30 and p=0.003 for MEAL-90). Pre-dinner fullness 245 

was greater in MEAL-30 and MEAL-90 compared with CON (p=0.006 and p=0.003, respectively). 246 

Regarding pre-dinner DTE and PFC, only MEAL-90 was significantly lower than CON (p=0.006 and 247 

p=0.005, respectively). Concerning the daily AUC (Figure 2), relative to CON, hunger and DTE were 248 

significantly lower in MEAL-30 (p=0.019 and p=0.05, respectively) and MEAL-90 (p=0.034 and p=0.031, 249 

respectively).   250 
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………………………………………………………………………Figure 2…………………………………………………………………….. 251 

 252 

As detailed in Table 3, there was a significant condition effect for pre-dinner explicit liking fat bias 253 

(p=0.004), with explicit liking for high-fat foods being lower in MEAL-90 compared with both CON 254 

(p=0.001) and MEAL-30 (p=0.004). While explicit liking taste bias significantly decreased in response 255 

to the lunch meal during the CON condition (p<0.001), this significant meal effect disappeared during 256 

both exercise conditions, without a meal x condition interaction. Implicit wanting taste bias 257 

significantly increased in response to the lunch test meal during MEAL-90 (p=0.04), and no meal effect 258 

was observed in CON and MEAL-30.  259 

……………………………………………………………………….Table 3……………………………………………………………………….. 260 

Discussion 261 

The timing of exercise relative to a meal has been recently highlighted for its influence on energy 262 

intake and appetite control 1,16, with some recent studies suggesting a better effect of acute exercise 263 

performed close to a meal on energy intake and appetite in both adolescents who are lean 19 and 264 

adolescents with obesity 20.  However these studies did not consider the potential impact of the delay 265 

between the exercise and the previous breakfast intake. It has been shown that this delay will impact 266 

the metabolic nature of exercise such as the substrates used 21, which might, in turn, differently affect 267 

subsequent energy intake 22–24. In that context, the aim of the present study was to investigate the 268 

effect of exercise performed at the same delay from breakfast on energy intake, appetite sensations 269 

and food reward at the following lunch set either 30 or 90 min after exercise in adolescents with 270 

obesity.   271 

According to our results, both exercise conditions (MEAL-30 and MEAL-90) led to significantly lower 272 

absolute energy intake at lunch compare to CON. This is in line with previous studies in similar 273 

populations showing reduced subsequent intake in response to acute exercise set at the same time of 274 

the morning 12,14,20,40. Interestingly, absolute energy intake was also significantly lower in MEAL-90 275 

compared with MEAL-30, suggesting a greater anorexigenic effect when exercise does not 276 
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immediately precede the meal. Additionally, total and dinner absolute energy intake were lower 277 

during MEAL-90 only, with total daily energy intake reduced by 12% (250 kcal/day) and 16% (352 278 

kcal/day) compared with CON and MEAL-30, respectively. These results are reinforced by a lower 279 

lunch relative energy intake after MEAL-30 compared with CON and lower lunch and total REI during 280 

MEAL-90 compared with both MEAL-30 and CON. Importantly, while most of the available evidence 281 

supports the anorexigenic effect of intensive exercise 13,35,41,42, our results reinforce more recent work 282 

also observing reduced food intake in response to moderate-to-vigorous exercise in adolescents and 283 

children with obesity 40,40.  284 

While available evidence indicates the beneficial effect of exercising close to a meal on subsequent 285 

energy intake 19,20, our results seem to suggest that more than the exercise-meal delay itself, the 286 

interval between the exercise and the following eating episode is of importance.    287 

A balanced buffet meal offering several items selected to avoid any over-, under- or occasional-288 

consumption (as previously validated 30) was offered to adolescents which provided the opportunity 289 

to also assess their macronutrient intake. While none of the relative intake of fat, protein and 290 

carbohydrate were found different between conditions, their absolute consumption at lunch was 291 

reduced only in MEAL-90 compared with CON, and compared with MEAL-30 for protein and lipid. 292 

Interestingly, the absolute intake of carbohydrate at dinner increased in MEAL-30 compared with the 293 

two other conditions. The macronutrient responses observed in MEAL-90 seem in line with Albert et 294 

al. in lean adolescents 19 and with our previous study in adolescents with obesity 20, showing reduced 295 

absolute macronutrient intake after moderate exercise set at the end of the morning. The current 296 

study however missed to find similar results in MEAL-30, suggesting here the potential importance of 297 

the delay between the exercise and the previous eating episode (breakfast). Indeed, in these previous 298 

studies, the appetitive responses to exercise set at different times of the morning, and then at 299 

different delays from breakfast, were compared, meaning that despite similar duration, modality and 300 

intensity, the exercise was not of similar metabolic and energetic load 21, which might explain our 301 
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results. Unfortunately, it was not possible in the present study to measure the substrate oxidation 302 

during exercise and at rest. Furthermore, it remains difficult to reach a consensus regarding the effect 303 

of acute exercise on macronutrient intake in lean adolescents and in adolescents with obesity based 304 

on the available evidence 42.  305 

Regarding the adolescents’ subjective appetite sensations, our results show a lower daily (AUC) 306 

hunger and desire to eat in both exercise conditions compared with CON. Although pre-lunch hunger 307 

and PFC were significantly lower in MEAL-30 compared with CON, which could have contributed to 308 

the lower observed ad libitum energy intake, they remained unchanged in MEAL-90 while the 309 

decreased food consumption was even more pronounced. This inconsistency between appetite 310 

sensations and energy intake reinforce the previously described uncoupling effect of exercise between 311 

these sensations and food consumption 43. Interestingly however, post-lunch sensations were 312 

identical between exercise conditions, suggesting a similar satiating effect of lunch meals despite 313 

lower intakes in MEAL-30 and particularly in MEAL-90, limiting any potential subsequent 314 

compensatory responses. This is even reinforced by the significantly reduced food intake observed at 315 

dinner in MEAL-90. This is of particular importance since energy deficits, especially when induced by 316 

reduced energy intake, have been shown to generate a subsequent compensatory rise in food intake, 317 

with physical exercise limiting or avoiding such a compensation 34,44.   318 

Some recent studies have highlighted the importance of considering the effect of exercise on food 319 

reward to better understand its impact on subsequent energy intake in adolescents with obesity 35. 320 

We also assessed whether the liking and wanting for food could be impacted by the delay between 321 

eating episodes and exercise in this population. In 2018, Miguet and colleagues observed reduced 322 

relative preference for fat and sweet taste, and implicit wanting for high-fat foods (also using the 323 

LFPQ) in response to an ad libitum meal set 30 minutes after a 16-minute cycling high intensity interval 324 

exercise in a similar population 35. According to the present results, none of the pre or post lunch 325 

components of liking and wanting were different between conditions. These results are contradictive 326 
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with those from Miguet et al. (2018), especially regarding our MEAL-30 condition that had the same 327 

delay between the exercise and the meal. However, the exercise intensities were different (high 328 

intensity intermittent exercise vs. moderate intensity continuous exercise), reinforcing once more the 329 

importance of the exercise intensity in the subsequent control of energy intake. Interestingly, we can 330 

see here a significantly lower explicit liking for high-fat food immediately before dinner in MEAL-90 331 

compared with the two others, which might contribute to the observed reduced dinner ad libitum 332 

food intake. Our results are however also in contradiction with some recently published from our 333 

group, showing different food reward responses depending on exercise-meal timing in adolescents 334 

with obesity 20. A lower pre-meal explicit liking for high-fat relative to low-fat foods was observed 335 

when the adolescents performed 30 min of moderate intensity cycling 60 min before lunch compared 336 

with the same exercise performed 180 min before lunch 20. The different LFPQ timing between MEAL-337 

90 and the two other conditions must be considered when interpreting our results. Indeed, food 338 

reward was assessed pre- and post- lunch meaning that its delay from exercise was different, which 339 

might have affected the results.  Although there is a growing interest in the effect of exercise on food 340 

reward in this population, evidence remains too limited to draw any conclusion and further studies 341 

using standardized designs are needed.  342 

The present results must be interpreted in light of some limitations. First, as for the other published 343 

studies examining the timing of exercise relative to a meal 16,17,19,20, the lack of direct evaluation of the 344 

adolescents’ oxygen consumption and substrate oxidation using indirect calorimeters, as well as the 345 

lack of a lean control group to examine the potential weight status effect, are the two main limitations. 346 

Although the laboratory-based nature of this work constitutes a strength as it allows a better control 347 

of the adolescents’ activity and intake, it might also not be representative of their habitual daily free-348 

living setting, such as the school setting for instance, as previously underlined by Mathieu et al. in 349 

healthy adolescents 17. Finally, the lack of tracking of the adolescents’ food intake over 24 to 48 hours 350 

for practical reasons also limits the interpretation of our results 12.  351 
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In line with the present work, another potential important factor, while not addressed in the current 352 

study, is the timing of exercise (and food intake) with regards to circadian/diurnal rhythms. Emerging 353 

evidence suggests that the timing of exercise 45,46 (and food intake 47,48) impact body weight regulation. 354 

Any effects observed from exercise-meal delays may be a result of an interaction with 355 

circadian/diurnal oscillations occurring relative to sleep/wake times. Future studies should propose a 356 

more complete and integrative exploration of the chronobiologic regulations of energy intake and 357 

overall energy metabolism in such adolescents with obesity. Indeed, not only the timings of exercise 358 

and /or energy intake should be considered, but also their interactions with the adolescents’ sleep, to 359 

better understand and potentially regulate their 24-hour circadian rhythm 49,50. Some key physiological 360 

actors of this circadian clock, such as ghrelin and leptin for instance, who are particularly involved in 361 

the control of appetite and respondents to sleep and exercise should be mainly considered 51.   362 

 363 

Conclusion 364 

To conclude, the present study reinforces the interest in the timing of exercise relative to a meal to 365 

affect overall energy balance in youth with obesity; highlighting the importance of the time interval 366 

between both the exercise and the previous eating episode, and the exercise and the following meal. 367 

According to these results, delaying the timing of the meal after exercise might help reduce energy 368 

balance by decreasing ad libitum energy intake without increasing hunger and by improving satiety in 369 

adolescents with obesity. Future studies should question the importance of the exercise-meal timing 370 

on the longer term. While further acute and chronic studies are needed, these results contribute to 371 

the current limited body of evidence in the area and seem important in order to optimize weight loss 372 

strategies.  373 
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Table legends 389 

Table 1: Absolute and Relative Energy Intake in response the three conditions. 390 

Table 2: Macronutrient Intake in response the three conditions. 391 

Table 3: Pre- and Post-test meal food reward on the three experimental conditions 392 

 393 

 394 

Figures legends 395 

Figure 1 : Study design 396 

Figure 2 : Daily appetite sensations and AUC for hunger, fullness, prospective food consumption and 397 

desire to eat 398 

  399 
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Table 1: Absolute and Relative Energy Intake in response the three conditions.  400 

CON: control condition; MEAL-30: Test meal 30 min after exercise; MEAL-90: Test meal 90 min after exercise; SD: Standard 401 
Deviation; ES: Effect Size; *p<0.05 vs. CON ; **p<0.01 vs. CON ; ***p<0.001 vs. CON ; ap<0.05 MEAL-30 vs. MEAL-90 ; 402 
bp<0.01 MEAL-30 vs. MEAL-90 ; cp<0.001 MEAL-30 vs. MEAL-90; ES: post hoc effect size 403 

  404 

  CON MEAL-30 MEAL-90 
p 

ES 

 

  Mean (SD) Mean (SD) Mean (SD) CON vs.  MEAL-30 CON vs.  MEAL-90 

MEAL-30 vs.  

MEAL-90 

E
n

e
rg

y
 I

n
ta

k
e

 

(k
ca

l)
 

Lunch 1380 (185) 1347 (313)* 1168 (234)**a 0.0143 -0.12[-0.60, 0.35] -0.71[-1.19, -0.24] 0.59[0.11, 1.06] 

Dinner 796 (294) 931 (260) 748 (245)b 0.0363 0.48[0.00, 0.96] -0.20[-0.67, 0.28] 0.68[0.20, 1.15] 

Total 2175 (330) 2277 (476) 1925 (360)***c 0.0001 0.27[-0.21, 0.74] -0.80[-1.28, -0.33] 1.07[0.59, 1.54] 

R
e

la
ti

v
e

 E
n

e
rg

y
 

In
ta

k
e

 (
k

ca
l)

 

Lunch 1337 (188) 1172 (313)* 1006 (246)***a 0.0003 -0.56[-1.03, -0.08] -1.08[-1.56, -0.61] 0.52[0.04, 1.00] 

Total 2119 (332) 2110 (489) 1755 (366)***c <0.0001 -0.11[-0.58, 0.37] -1.16[-1.63, -0.68] 1.06[0.59, 1.54] 



20 

 

Table 2: Macronutrient Intake in response the three conditions. 405 

   CON MEAL-30 MEAL-90 
p 

ES 

 

  Mean (SD) Mean (SD) Mean (SD) 

CON vs.  MEAL-30 CON vs.  MEAL-90 MEAL-30 vs.  

MEAL-90 

P
ro

te
in

s 
(g

)  Lunch 73.8 (11.5) 71.9 (17.2) 60.7 (13.9)**b 0.0059 -0.13[-0.61, 0.34] -0.76[-1.24, -0.29] 0.63[0.15, 1.10] 

Dinner 42.0 (18.4) 46.8 (14.4) 37.2 (13.2)a 0.1811 0.25[-0.22, 0.73] -0.30[-0.78, 0.17] 0.56[0.08, 1.03] 

Total 115.9 (22.6) 118.7 (23.8) 98.8 (19.4)***c 0.0007 0.08[-0.40, 0.55] -0.85[-1.32, -0.37] 0.93[0.45, 1.40] 

P
ro

te
in

s 
(%

)  Lunch 21.5 (2.3) 21.4 (3.0) 20.8 (2.3) 0.5108 0.05[-0.42, 0.53] -0.07[-0.55, 0.40] 0.23[-0.25, 0.70] 

Dinner 20.8 (5.2) 19.9 (3.1) 20.1 (3.6) 0.8811 0.17[-0.31, 0.64] 0.01[-0.46, 0.49] -0.06[-0.53, 0.42] 

Total 21.3 (2.5) 21.0 (2.0) 20.6 (2.3) 0.6248 0.10[-0.38, 0.58] -0.05[-0.53, 0.42] 0.14[-0.33, 0.62] 

Li
p

id
s 

(g
)  Lunch 45.4 (9.6) 45.0 (14.2) 38.1 (12.5)*a 0.0146 -0.06[-0.53, 0.42] -0.54[-1.01, -0.06] 0.48[0.06, 1.01] 

Dinner 28.8 (19.0) 33.8 (15.1) 26.1 (14.3)a 0.0642 0.33[-0.15, 0.80] -0.18[-0.66, 0.30] 0.51[0.03, 0.98] 

Total 74.3 (18.0) 78.8 (19.9) 65.8 (19.1)*b 0.0123 0.25[-0.23, 0.72] -0.54[-1.01, -0.06] 0.79[0.31, 1.26] 

Li
p

id
s 

(%
)  

Lunch 29.8 (5.8) 30.3 (8.0) 29.2 (7.3) 0.1910 0.05[-0.42, 0.53] -0.07[-0.55, 0.40] 0.13[-0.35, 0.60] 

Dinner 30.0 (12.9) 31.3 (10.6) 29.7 (9.8) 0.0277 0.17[-0.31 0.64] 0.01[-0.46, 0.49] 0.15[-0.32, 0.63] 

Total 30.7 (5.8) 31.2 (4.8) 30.5 (5.7) 0.9655 0.10[-0.38, 0.58] -0.05[-0.53, 0.42] 0.15[-0.32, 0.63] 

C
H

O
 (

g
)  

Lunch 166.7 (39.4) 160.8 (52.8) 144.2 (34.6)* 0.1649 -0.14[-0.62, 0.33] -0.52[-0.99, -0.04] 0.37[-0.10, 0.85] 

Dinner 92.8 (31.5) 109.9 (31.5)* 91.9 (29.4)a 0.0269 0.52[0.04, 0.99] -0.036[-0.54, 0.41] 0.58[0.11, 1.06] 

Total 259.5 (56.1) 270.7 (70.0) 233.9 (49.7)a 0.0751 0.17[-0.31, 0.64] -0.45[-0.92, 0.03] 0.61[0.14, 1.09] 

C
H

O
 (

%
)  Lunch 48.0 (7.6) 47.5 (10.5) 49.5 (9.1) 0.2149 0.06[-0.53, 0.42] 0.15[-0.33, 0.62] -0.20[-0.68, 0.27] 

Dinner 49.7 (15.6) 48.9 (12.4) 50.7 (10.7) 0.0840 -0.01[-0.48, 0.47] 0.13[-0.34, 0.61] -0.14[-0.61, 0.34] 

Total 47.8 (7.4) 47.4 (6.1) 48.7 (7.3) 0.9547 -0.05[-0.53, 0.42] 0.14[-0.34, 0.61] -0.19[-0.67, 0.28] 

CON: control condition; MEAL-30: Test meal 30 minutes after exercise; MEAL-90: Test meal 90 minutes after exercise; SD: 406 
Standard Deviation; *p<0.05 vs. CON ; **p<0.01 vs. CON ; ***p<0.001 vs. CON ; ap<0.05 MEAL-30 vs. MEAL-90 ; bp<0.01 407 
MEAL-30 vs. MEAL-90 ; cp<0.001 MEAL-30 vs. MEAL-90; ES: Effect Size; CHO: Carbohydrates; ES: post hoc effect size. 408 

  409 
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Table 3: Pre- and Post-test meal food reward on the three experimental conditions 410 

  CON MEAL-30 MEAL-90 
p 

Interaction time x condition 

  Mean (SD) Mean (SD) Mean (SD) CON vs.  MEAL-30 CON vs.  MEAL-90 MEAL-30 vs.  MEAL-90 

Implicit Wanting        

Fat Bias        

Before lunch 22.32 (31.15) 19.96 (33.15) 22.80 (31.68) 0.78 
0.99 0.58 0.56 

After lunch 20.21 (45.58) 17.63 (48.49) 12.61 (29.50) 0.46 

p before vs. 

 after lunch 
0.88 0.80 0.90 

 0.00[-0.48-0.48] -0.13[-0.61-0.34] -0.14[-0.62-0.33] 

Before dinner 4.37 (64.45) 20.74 (19.89) 14.99 (26.63) 0.49    

Taste Bias        

Before lunch 31.60 (33.67) 34.17 (41.81) 24.90 (32.49) 0.76 
0.93 0.14 0.26 

After lunch 25.60 (54.02) 27.00 (67.00) 43.59 (30.79) 0.59 

p before vs.  

after lunch 
0.69 0.85 0.04 

 0.02[-0.45-0.50] 0.36[-0.11-0.84] 0.27[-0.20-0.75] 

Before dinner 38.24 (37.81) 40.40 (40.11) 42.30 (28.12) 0.98    

Explicit Liking        

Fat Bias        

Before lunch 10.02 (19.71) 12.52 (16.35) 10.53 (19.64) 0.34 
0.57 0.77 0.86 

After lunch 5.29 (9.39) 5.14 (10.66) 4.08 (9.25) 0.94 

p before vs. 

 after lunch 
0.27 0.03 0.11 

 -0.14[-0.61-0.34] -0.07[-0.55-0.40] 0.04[-0.43-0.52] 

Before dinner 11.35 (19.83) 9.04 (16.34) 2.44 (13.00)***b <0.001    

Taste Bias        

Before lunch 26.18 (20.37) 21.95 (23.03) 20.31 (22.89) 0.82 
0.10 0.25 0.74 

After lunch 12.78 (19.10) 18.08 (25.78) 14.47 (27.62) 0.73 

p before vs.  

after lunch 
<0.001 0.38 0.19 

 0.40[-0.07-0.88] 0.28[-0.19-0.76] -0.08[-0.56-0.40] 

Before dinner 24.00 (24.58) 21.40 (26.08) 20.76 (28.74) 0.99    

CON: control condition; MEAL-30: Test meal 30 min after exercise; MEAL-90: Test meal 90 min after exercise; SD: 411 
Standard Deviation; ***p<0.001 vs. CON; bp<0.01 MEAL-30 vs. MEAL-90 ; P values and Effect Size are presented for 412 
interactions. 413 

  414 
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