
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 12/12 pp370–383
DOI: 10 .26599 /TST.2020 .9010012
V o l u m e 2 6, N u m b e r 3, J u n e 2 0 2 1

C The author(s) 2021. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

More Bang for Your Buck: Boosting Performance with
Capped Power Consumption

Juan Chen�, Xinxin Qi, Feihao Wu, Jianbin Fang, Yong Dong, Yuan Yuan, Zheng Wang, and Keqin Li

Abstract: Achieving faster performance without increasing power and energy consumption for computing systems is

an outstanding challenge. This paper develops a novel resource allocation scheme for memory-bound applications

running on High-Performance Computing (HPC) clusters, aiming to improve application performance without

breaching peak power constraints and total energy consumption. Our scheme estimates how the number of

processor cores and CPU frequency setting affects the application performance. It then uses the estimate to

provide additional compute nodes to memory-bound applications if it is profitable to do so. We implement and apply

our algorithm to 12 representative benchmarks from the NAS parallel benchmark and HPC Challenge (HPCC)

benchmark suites and evaluate it on a representative HPC cluster. Experimental results show that our approach can

effectively mitigate memory contention to improve application performance, and it achieves this without significantly

increasing the peak power and overall energy consumption. Our approach obtains on average 12.69% performance

improvement over the default resource allocation strategy, but uses 7.06% less total power, which translates into

17.77% energy savings.

Key words: energy efficiency; high-performance computing; performance boost; power control; processor frequency

scaling

1 Introduction

High-Performance Computing (HPC) systems capability
is increasingly constrained by their power consumption,
and this will become worse due to the end of
Dennard scaling[1, 2]. However, HPC users want a higher
performance to run the more complex model or larger
datasets. As such, there is a vital need to find ways
� Juan Chen, Xinxin Qi, Feihao Wu, Jianbin Fang, Yong Dong,

and Yuan Yuan are with the College of Computer, National
University of Defense Technology, Changsha 410073, China.
E-mail: juanchen@nudt.edu.cn; qixinxin19@nudt.edu.cn;
wufeihao16@nudt.edu.cn; j.fang@nudt.edu.cn; yongdong@
nudt.edu.cn; yuanyuan@nudt.edu.cn.
� Zheng Wang is with the College of Computer, University of

Leeds, London LS2 9JT, UK. E-mail: z.wang5@leeds.ac.uk.
�Keqin Li is with the School of Science and Engineering, State

University of New York, New York, NY 12561, USA. E-mail:
lik@newpaltz.edu.
�To whom correspondence should be addressed.

Manuscript received: 2020-03-25; accepted: 2020-04-02

to boost the efficiency of HPC applications without
increasing power consumption significantly.

Power and performance optimization for HPC systems
is certainly not a new research topic. There is
considerable work on designing innovative compute
architecture for better energy efficiency for HPC
systems[3–11]. Other work utilizes a software-based
resource scheduling approach by carefully determining
the computation resource settings, such as the number
of assigned compute nodes and processor frequency to
match the workload to improve application performance
under a power constraint[12, 13]. A key advantage of a
software-based approach is that it is readily deployable
on existing hardware as no hardware modification is
required[14, 15].

The allocation of computing resources, such as
computing nodes or Control Processing Unit (CPU)
cores, is essential for power and performance
optimization. Current resource allocation strategies



Juan Chen et al.: More Bang for Your Buck: Boosting Performance with Capped Power Consumption 371

aimed at maximizing system use, i.e., no additional
computing nodes would be allocated unless the processor
cores of existing nodes have been fully utilized.
Despite these techniques, they do not offer the optimal
performance for memory-bound applications by using as
few computing nodes as possible to limit the overall
power consumption. As we can see in this paper,
maximizing processor core usage can lead to serious
memory contention, which in turn leads to sub-optimal
performance. Because the memory sub-system is
now becoming a bottleneck of HPC systems[16, 17], we
need a better resource allocation strategy to effectively
tackle the memory contention problem to achieve higher
performance.

This work aims at developing a new approach for
HPC resource allocation, specifically targeting memory-
bound data-parallel applications. Our insight is that
instead of maximizing processor utilization, one can
allocate additional computing nodes to reduce memory
contention. If we can do this, we can then free some
processor cores (as well as reduce the number of parallel
processes) on a node to reduce memory contention to
improve memory-bound workload performance.

However, translating this high-level idea into a
practical system is non-trivial. A key challenge is to
determine the optimal number of computing nodes to
be allocated to an application, for a given number of
user-requested processes. If we allocate too few or too
many computing nodes, we either will be unable to gain
much, or the extra power consumption will outweigh the
benefit. Also, our scheduling decision would need to
ensure that additional computing nodes will not generate
substantially more power consumption as compared to
the default approach. To overcome these challenges, we
need a new technique to accurately model the application
behavior to drive a precise resource allocation strategy.

In this paper, we present a novel HPC resource
allocation strategy, which aims to boost the application
performance without significantly compromising
the power consumption budget for memory-bound
workloads. We achieve this by firstly characterizing the
application workload behavior based on offline profiling
information (Section 3.1). The workload characteristics
and profiling information are used to decide how many
computing nodes the target application will be run. We
then propose a new technique for modeling the subtle
interactions between application performance, power
consumption, compute nodes, memory bandwidth
congestion, and CPU clock frequency. The model

is then used as a method to change the number of
allocated computing nodes and the CPU frequency to
fit the hardware configuration to the workload behavior.
Specifically, if the target application is perceived to
be a memory-bound workload, we reduce the CPU
frequency to lower the system’s power consumption, as
the bottleneck is on memory assessment.

We apply our approach to 12 representative Message
Passing Interface (MPI) benchmarks from the NAS
parallel benchmark and HPC Challenge (HPCC)
benchmark suites. Our evaluation platform is an
HPC cluster with 20 cores per node. Experimental
results show that our approach achieves on average a
12.69% performance improvement over the conventional
resource allocation strategy, but uses 7.06% less total
power, which translates into 17.77% energy savings.

This paper makes the following technical
contributions:

(1) We show that by allocating additional computing
nodes with appropriate CPU frequency settings, one
can boost application performance without increasing
power consumption of the system for memory-bound
workloads (Section 2.2).

(2) We present a novel technique for capturing
interactions between workload characteristics and
computation resource allocation and CPU settings
(Section 3.1).

(3) We present a novel algorithm for scheduling and
configuring resource allocation at the application level,
showing how performance can be enhanced without
infringing the overall power consumption constraint
(Section 3.2).

2 Background and Overview

2.1 Problem scope

Our work tackles the question of resource allocation
for distributed HPC workloads. We target typical HPC
environments where the user job is submitted to a
job queue. As part of the job submission, the user
may specify the number of processes required. We
are interested in developing a resource scheduler for
mapping requested resources (i.e., the number of parallel
processes) to compute nodes in this work. A default
strategy for the problem would be to allocate the minimal
number of compute nodes to run one parallel process on
a physical core. However, as we will show in this paper,
such an approach often leads to sub-optimal performance
for memory-intensive applications. Our goal is to



372 Tsinghua Science and Technology, June 2021, 26(3): 370–383

determine the optimal number of compute nodes and
the processor clock frequency of each compute node to
reduce the running time of memory-bound applications,
while at the same time to cap the peak power and energy
consumption as the default strategy.

2.2 Motivating example

Considering scheduling bt and cg from the NAS MPI
parallel benchmark suite on an HPC cluster where each
computing node has 20 processor cores (see Section 4.1),
in this example, we assume that a user requests to run
bt and cg with 169 and 128 processes respectively and
both benchmarks run with the class D input.

2.2.1 Room for performance improvement
Figure 1 shows how the number of compute nodes
affects application performance. The baseline here is
to maximize the processor utilization, i.e., using the
minimum number of compute nodes where each parallel
process runs on a physical processor core. With this
baseline strategy, on our evaluation platform, we would
allocate 9 and 7 compute nodes respectively to bt and
cg. In this example, we experimentally allocate one and
two extra compute nodes to the applications but keep the
number of parallel processes unchanged (which will be
evenly distributed across compute nodes).

While running the same number of parallel
processes on more distributed machines incurs a higher
communication latency, both applications benefit from
improved parallel processes distribution. We believe that
the performance improvement is due to less memory
contention between parallel processes. To verify our
hypothesis, we use Intel VTune Amplifier to profile how
often CPU was stalled on the main memory (DRAM) on
a single computing node. This lower-is-better metric is
known as DRAM bound, which captures the computing
node’s RAM contention. Figure 2 shows how DRAM
bound on a single node and the total memory traffic
under different node allocation policies. Using more
compute nodes can lead to a lower DRAM bound value,

Fig. 1 Performance improvement when adding additional
computing nodes without using extra parallel processes.

Fig. 2 How memory traffic on the master node changes
when the number of computing nodes increases.

which suggests that increasing the number of compute
nodes for these two applications can reduce the memory
contention and the frequency of CPU stalls. The less
memory contention and CPU stalls thus lead to improved
running times. However, the sweet spot for computing
node allocations varies across applications. For bt, using
two additional nodes leads to better performance, but
this would lead to slowdown for cg when using just one
additional node.

2.2.2 Power & energy consumption
Figure 3 compares the total peak power of different
number of nodes and different frequencies. The red dash
line denotes the target total power value of 2.6 GHz under
N nodes. Program bt consumes 2076 W at 2.6 GHz
under nine nodes (N = 9). When one and two nodes
are added, the total peak power increases to 2184
and 2305 W, respectively. To constrain the total power
consumption, we have to lower the CPU frequency.
Frequencies 2.4 and 2.2 GHz are set for one and two
increased nodes, respectively. This diagram shows that
although using additional compute nodes results in a
significant increase in total power, by scaling down
processor frequencies the total power can be constrained
to be at the original level. Figure 4 compares energy
consumption when the program runs with the same
number of processes but uses different computing
nodes and CPU frequencies. Without changing the CPU
frequency, using more computing nodes is likely to lead

Fig. 3 Total peak power on multiple nodes changes when
the number of nodes increases. The red dash line denotes the
target total power value of 2.6 GHz under N nodes.



Juan Chen et al.: More Bang for Your Buck: Boosting Performance with Capped Power Consumption 373

Fig. 4 Total energy consumption on different CPU
frequencies when using different number of compute nodes.
The red dash line denotes the target total energy consumption
of 2.6 GHz under N nodes.

to an increase in energy consumption. However, we
can achieve faster job completion time with less energy
consumption by carefully tuning the CPU frequency
and the additional number of computing nodes. The
optimum CPU frequency, however, depends on the
number of computing nodes and the program.

To summarize, running examples have shown that
achieving better performance without increasing the
power consumption and energy usage by the use of
additional compute nodes is possible. However, the
optimum number of compute nodes and the CPU
frequency setting depend on both user-specific resource
requirements and workload characteristics. In the
remainder of this paper, we show how an adaptive
resource scheduler can be developed to perform compute
resource allocation to boost the application performance
without increasing the total power consumption and
energy consumption.

2.3 Overview of our approach

Our approach is implemented on an HPC cluster as part
of the central job scheduler used. This is completely
automated, and no modification to the application source
code is required. To determine the compute resources to
use for a job that is ready to run, our approach takes as
input the program binary, input data, and user-supplied
requirement the number of parallel processes in our case.
It then determines the number of compute nodes to be
provided to the job and the CPU’s clock frequency to be
used across allocated machines.

To determine the optimal hardware resource allocation
and frequency settings, we first profile the application as
part of the strategy for resource allocation to capture
the memory and CPU characteristics of the target
application (Section 3.1). Specifically, VTune is used to
collect the memory trace and performance metrics of the
target application from a single node, and we use Intel

Running Average Power Limit (RAPL) to take power
measurements from all computing nodes. Then, under
different allocation strategies, the profiling information
is used to estimate the performance gain and energy
consumption to find the optimum setting (Section 3.1).
Finally, we actively analyze the instantaneous power
readings to dynamically adjust the CPU frequency to cap
the peak power of each computing node (Section 3.2) .

3 Our Approach

The heart of our approach is a set of functions for
modeling how the resource allocation and frequency
setting affect the application’s performance and power
consumption.

3.1 Power and performance modeling

The overall goal of our power-performance model is to
improve the program performance without increasing
the total power consumption. It achieves this by finding
the relationship of energy consumption of allocated
computing nodes, CPU frequencies, and parallel
execution time. The application execution time, T , and
the energy consumption of N allocated computing
nodes depend on three parameters: the number of
computing nodes, N , the processor frequency, fi , and
the application characteristics (memory-bound or not
in this paper). With these notations in place, our
optimization goal can be formulated as

min T .N;�N; fi ; BN /

s.t �PC C�P� 6 0

�PC > 0

�P� 6 0

(1)

where �PC denotes the increased power due to �N
nodes in addition to the one given by the default resource
allocation policy. Specifically, the default policy would
assign N computing nodes with all processor cores of
a node to be completely used and run at the highest
CPU frequency fmax. We use �P� to denote the power
savings resulted from the scaling down of the CPU
frequency.

Table 1 lists all the parameters used by our model and
their descriptions. P cpu.fi / is the energy consumption
of a single CPU on one computing node, which depends
on the processor frequency, fi . Pmem is the energy
consumption of one computing node for the memory
sub-system. We observe that Pmem is relatively stable
(with a variance of less than 2%) for a given program,
regardless of the number of computing nodes to be used.



374 Tsinghua Science and Technology, June 2021, 26(3): 370–383

Table 1 Parameters used by our power-performance model.
Notation Description
c Number of processor cores on each computing node
n Number of processes
N Number of assigned computing nodes with the

default resource allocation strategy
�N Number of computing nodes to be increased
bi .t/ Memory traffic of computing node i at time t
BN .t/ Average value of bi .t/ for N nodes, 0 6 i 6 N

BN Maximum value of BN .t/, 0 6 t 6 T where T
represents program running time on N nodes

B Physical memory bandwidth on a single computing
node

˛ Threshold for the ratio of memory traffic to memory
bandwidth

fmax Maximum CPU clock frequency
fmin Minimum CPU clock frequency
fi Processor clock frequency, which satisfies fmin 6

fi 6 fmax

P cpu.fi / Power consumption of one CPU core with clock
frequency fi

P
cpu
idle Power consumption for each CPU core in the idle

state, which equals k � P cpu.fmax/

Pmem Power consumption of DRAM on one computing
node

P other Power consumption of compoents other than the
CPU and DRAM on one computing node

As such, we set Pmem to be a constant value for a given
program.

3.1.1 Memory behaviour characterization
Suppose we allocate N computing nodes to run a
parallel program. Assume at time t (0 6 t 6 T ), the
memory traffic on each node is b1.t/, b2.t/; : : : ; bN .t/,
respectively. The average memory traffic per node,
BN .t/, can then be calculated as

BN .t/ D

PN
iD1 bi .t/

N
(2)

We use the maximum value of BN .t/ across all
sample periods to denote the peak memory traffic of
the target program. The peak memory traffic, BN , is
denoted as

BN D max
06t6T

BN .t/ (3)

Let B denote the memory bandwidth of a computing
node. We consider the closer the peak memory traffic,
BN , to the bandwidth, B , the more memory-intensive
the application. We consider an application to be
memory-bound if BN /B is greater than a threshold,
˛. In this work, we only try to provide memory-bound
applications with extra computing nodes to reduce

memory contention. Given this setting, one may come
up with the following intuitive condition:

N � BN D .N C�N/ � B.NC�N/ (4)

However, Eq. (4) is not satisfied with a memory-
bound program. As Fig. 2 suggests, the more nodes,
the heavier the total memory traffic will be. Note that
the total memory traffic of N nodes is less than that of
N C 1 nodes. In other words, N � BN is usually smaller
than the demand for the total memory traffic under
memory-bound cases. When sufficient computing nodes
are provided (�N perf), we can minimize the memory
contention. As such, we have the following formulation:

N �

�
bound
˛
�BN

�
D .N C�N perf/�B.NC�N perf/ (5)

where bound denotes the degree of memory contention.
We use VTune in this work to count the bound value for
each program, but other profiling tools can also be used.
For example, running sp with 169 processes on 9 of our
computing nodes gives a bound value of 0.401. As such,
the performance improvement, �N perf, as a result of
using additional computing nodes can be modeled as

�N perf
D
N � . bound

˛
� BN /

B.NC�N perf/

�N:

3.1.2 Performance modeling
For memory-bound programs, the increased memory
traffic per node after adding extra computing nodes can
be calculated as

BNC�N perf D ˛ � B (6)

The maximum number of extra computing nodes,
�N perf, that will be profitable sill, can be defined as

�N perf
D

N �

�
bound
˛
� BN

�
˛ � B

�N
(7)

3.1.3 Power modeling
Since the current multi-core design often does not
provide voltage scaling on a per-processor core basis,
using extra computing nodes will increase the energy
consumption even some of the cores are not utilized, if
we do not scale down the CPU frequency. Recall that
our goal is to ensure the total power consumption of
(N C�N ) computing nodes does not surpass that of N
computing nodes with a CPU frequency of fmax. This
constraint can be defined as
n�P cpu.fmax/C .N � c � n/ � P

cpu
idle C P

mem
�NC

P other
�N > n � P cpu.fmid/C ..N C�N/ � c � n/�

P
cpu
idleCP

mem
�.NC�N/CP other

� .NC�N/ (8)



Juan Chen et al.: More Bang for Your Buck: Boosting Performance with Capped Power Consumption 375

where
P

cpu
idle D k � P

cpu.fmax/:

Here, the left term of Formula (8) represents the default
allocation policy for N nodes. The right term represents
our strategy for using (N C �N ) nodes. In Formula
(8), we assume �N numbers of nodes will lead to
�N � c � P

cpu
idle power consumption for idle cores.

We also assume the memory power consumption is a
constant value, Pmem. In order to keep the total power
consumption at a similar level as the N allocation
scheme, all n busy processor cores frequencies have
to be scaled down from fmax to fmid. As such, we take
the average of fmax and fmin as fmid.

Using Formula (8), we have the maximum value of
�N , namely �N power, as

�N power
D

n � .P cpu.fmax/ � P
cpu.fmid//

c � k � P cpu.fmax/C Pmem C P other (9)

Take the power consumption into consideration, the
number of extra computing nodes to use will need to fall
into the range of [0, �N power].
3.1.4 Putting together
Considering both the power and performance constraints,
the additional profitable computing nodes �N will be

�N 2 Œ0;�N perf� \ Œ0;�N power� (10)
To maximize the performance boost, we take the

maximum number of this interval in Formula (10). Then,
we can achieve the optimal �N �:

�N � D maxfŒ0;�N perf� \ Œ0;�N power�g (11)
In Formula (8), let �N D �N �, we have
n�P cpu.fmax/C.N �c�n/� P

cpu
idle C P

mem
�NC

P other
�N >n�P cpu.fi /C..NC�N

�/�c�n/�

P
cpu
idleCP

mem
�.NC�N �/CP other

�.NC�N �/

(12)
where P cpu.fmid/ is replaced by P cpu.fi /. Then, we
have

P cpu.fi /6
n�P cpu.fmax/��N

�.c �P
cpu
idleCP

mem �P other/

n
(13)

Let the initial optimal processor frequency f � be
defined in such a way that

P cpu.f �/ D maxfP cpu.fi /g (14)
The adjustable frequency range for a parallel program

running on our supercomputer system is Œfmin; fmax�with
0.1 GHz as the scale. In Table 2, the initial optimal
frequency f � can be found out to make P cpu.f �/

most approach to maxfP cpu.fi /g. In the section of
experiments, we show the detailed value for Table 2
for our experimental platform.

Table 2 Model parameters for single-core power estimation.
CPU frequency (GHz) P cpu.fi / (W)
fmax P cpu.fmax/

fmax ��f P cpu.fmax ��f /

fmax � 2 ��f P cpu.fmax � 2 ��f /

: : : . . .
fmin P cpu.fmin/

Besides the optimal �N � and f �, we also calculate
power consumption of a single CPU after adding nodes
Pfi

, as shown in Eq. (14). With f � as the initial
frequency and Pfi

as a power limit value, we use RAPL
to perform power capping. RAPL provides a series of
Model Specific Register (MSR) interfaces, such as power
limit, time window, clamp bit, etc., to perform power
limiting by specifying these interfaces.

3.2 Resource allocation

Our resource allocation scheme is described in
Algorithm 1. This algorithm obtains nearly optimal
values for a given program, �N and f �, for parallel
performance boost without any increase in total power.

The algorithm’s input parameters include the
maximum/minimum CPU frequencies fmax/fmin,
physical memory bandwidth B , the threshold for
memory traffic to physical memory bandwidth ratio
˛, the default allocated node number N , the number
of processes n, and the number of cores per node c.
The outputs are the optimum number of increased
computing nodes for the given program �N � and

Algorithm 1 Resource scheduling algorithm
Input: Processor frequency levels fmin; : : : ; fmax; physical

memory bandwidth B; memory bandwidth bound ratio ˛; for
a given parallel program, the number of assigned computing
nodes N under the default resource allocation strategy;
number of processes n; and number of cores per node c;

Output: Number of increased computing nodes �N�; the
uniform processor frequency f �; and the target power Ptarget

for RAPL.
1: Measure actual power P cpu.fi / with different frequencies

and P cpu
idle ;

2: Run the program and get profiling data by VTune and then
determine the values of BN and bound;

3: Calculate �N perf by Eq. (7);
4: During the program runs, we use RAPL to measure one-node

memory power Pmem and a single-node peak power PN ;
5: Calculate �N power by Eq. (9);
6: Calculate �N� by Eq. (11);

7: Ptarget D PN �
N

N C�N�
;

8: Get P cpu.f �/ by Eq. (14) and choose a most appropriate
clock frequency f � by Table 2 as the initial frequency;

9: End.



376 Tsinghua Science and Technology, June 2021, 26(3): 370–383

uniform processor frequency f �.
Our resource allocation scheme works as follows:
Firstly, we measure all the platform related parameters

including all power values in Table 2 under different
frequency levels and P cpu

idle . Even if at the same frequency
level, the actual power consumption of different
applications could be different. Actual power is closely
related to the utilization rate of CPUs. The power values
listed in Table 2 are the power measured under the nearly
maximum processor utilization rate.

Secondly, we run the program and obtain
corresponding parameters by performance profile
data and power profile data. Performance related
profile data for the given program include BN and
bound. Power related profile data refer to Pmem and the
single-node peak power PN . PN is used to calculate
the objective total power. By Eqs. (7) and (9), we can
calculate �N perf and �N power. The optimal number
of increased nodes �N � is obtained by Eq. (11). At
the same time, by Eq. (14), P cpu.f �/ is calculated.
According to Table 2, the initial optimal frequency f �

is decided.
Characterizing the applications via profiling does

not restrict our approach, as most scientific computing
applications usually run many times. Even if the profile-
based approach consumes a great deal of time on data
profiling, we can still benefit from the later process.

Finally, we get the target power Ptarget, PN �
N

N C�N �
, which is used to control power by RAPL as

the given power limit value.
According to this algorithm, to obtain a better optimal

frequency setting, we run the program again for real-
time power limiting. We use RAPL to ensure that the
average power does not surpass Ptarget by automatically

adjusting the frequency. In this case, a good starting
point could be provided by the initial optimal f � given
by our model. In Section 5, we show how our model can
effectively support this endeavor.

4 Experimental Setup

4.1 Platform and benchmarks

Hardware. We evaluate our approach with 64
computing nodes on an HPC cluster. Each of the
computing nodes has 64 GB DDR4 RAM and two
Intel Haswell 10-core E5-2660v3 processors running
at 2.6 GHz. The multi-core processor supports Dynamic
Voltage and Frequency Scale (DVFS) with 15 states,
from 1.2 to 2.6 GHz at a step of 0.1 GHz. Thermal
Design Power (TDP) for this processor is 105 W.
Each computing node supports RAPL for power
measurement. We disable hyperthreading to obtain stable
performance.

Benchmarks. We use 12 MPI benchmarks from
the NAS parallel benchmark suite and HPCC[18] suite.
Table 3 lists the benchmarks used in our evaluation.

Software. Each computing node runs CentOS 7.4
with Linux kernel 3.10. We rely on the local Operating
System (OS) to schedule processes and do not bind tasks
to specific cores. All the benchmarks are compiled with
gcc 4.8.5 with “-O3” as the compiler option and run with
openmpi 4.0.0.

4.2 Evaluation methodology

Memory tracing. We use VTune[19] to collect the
memory trace with a sample rate of one second by
running the program on the master node of a cluster.
We take the weighted average of the memory histogram
produced by VTune as the memory traffic value, i.e., BN

Table 3 Algorithm results for about ten compute nodes.
Benchmark Type N �N� f � Performance boost (%) Power saving (%) Energy saving (%)
sp.D.169 Memory-bound 9 2 1.2 13.98 2.75 16.22

RandomAccess.160 Memory-bound 8 1 1.2 9.80 0.35 11.27
mg.D.128 Memory-bound 7 1 1.9 18.63 0.40 18.73

STREAM.160 Memory-bound 8 1 1.7 10.19 2.42 8.84
DGEMM.160 Memory-bound 8 2 1.5 18.82 2.12 19.85

cg.D.128 Memory-bound 7 2 1.2 –3.34 2.90 –0.29
bt.D.169 Memory-bound 9 1 1.8 –1.98 4.27 2.26
lu.D.128 Memory-bound 7 0 2.6 0 0 0
ft.D.128 CPU-bound 7 0 2.6 0 0 0
FFT.160 CPU-bound 8 0 2.6 0 0 0

PRANTS.160 CPU-bound 8 0 2.6 0 0 0
ep.D.128 CPU-bound 7 0 2.6 0 0 0



Juan Chen et al.: More Bang for Your Buck: Boosting Performance with Capped Power Consumption 377

in Eq. (3). For example, Fig. 5 shows the memory traffic
histogram of benchmark sp with BN D 51:76GB/s.
Later we show that this strategy is effective in capturing
the memory characteristics of a program.

Energy measurement. We use powergov[20] to
measure processor power consumption and memory
power consumption. Powergov uses RAPL to modelthe
power consumption for processor and memory. We
use mlc[21] to measure memory bandwidth and memory
access delay under the various memory traffic conditions.
We measure the CPU consumption under different
frequency settings on a per-core level. Table 4 gives the
measured per-core power consumption under different
CPU frequencies. For memory power consumption,
our experiments on real hardware show that the

Fig. 5 Memory traffic histogram for benchmark sp.

Table 4 Single-core power and corresponding CPU
frequencies.

CPU frequency
(GHz) P cpu.fi /

CPU frequency
(GHz) P cpu.fi /

2:6 7:8 2:5 7:7

2:4 7:5 2:3 7:3

2:2 7:1 2:1 7:0

2:0 6:8 1:9 6:7

1:8 6:4 1:7 6:2

1:6 6:1 1:5 6:0

1:4 5:9 1:3 5:8

1:2 5:7

memory power consumption is constant as the CPU
frequency changes. Power consumption of the rest
system component, i.e., P other, is around 25 W, which is
obtained through RAPL.

Performance report. We run each model on each
input to collect performance profile data and power
profile data until the 95% confidence bound per model
per input is less than 5%. On average, we run each
benchmark three times for each evaluation setting and
remove obvious outliers. Then, we report the average
performance across multiple runs.

5 Experimental Result
5.1 Overall result

Table 3 shows the performance improvement over the
default resource allocation strategy when using our
approach. It also gives the number of compute nodes
and CPU frequency settings given by our analysis. Here,
column “�N �” shows the number of additional nodes
for each benchmark.

Overall, our approach significantly improves the
performance of memory-bound applications. It achieves
on average 9.44% improvement for the seven memory-
bound benchmarks, but using less 2.17% total power
consumption. This translates to an average 10.98%
reduction in energy consumption. Our approach
improves the performance for most of the memory-
bound applications (up to 18.82%) without incurring
power consumption increase.

We also evaluated our approach using a larger dataset
with a larger number of parallel processes using 30
computing nodes. The results are given in Table 5 where
our approach delivers a performance improvement of
up to 12.69% for the seven memory-bound benchmarks,
with an average total savings of 7.06% for power and

Table 5 Algorithm results for about 30 compute nodes.
Benchmark Type N �N� f � Performance boost (%) Power saving (%) Energy saving (%)

sp.E.529 Memory-bound 27 4 1.9 10.36 8.02 16.23
RandomAccess.512 Memory-bound 26 1 1.2 21.11 11.19 30.37

mg.E.512 Memory-bound 26 5 1.8 13.00 8.72 20.45
STREAM.512 Memory-bound 26 3 1.9 13.70 0.35 14.73
DGEMM.512 Memory-bound 26 4 2.2 10.24 –1.21 8.24

cg.E.512 Memory-bound 26 3 1.9 3.14 11.18 13.25
bt.E.529 Memory-bound 27 2 2.0 17.31 11.20 24.50
lu.E.529 Memory-bound 27 0 2.6 0 0 0
ft.E.512 CPU-bound 26 0 2.6 0 0 0
FFT.512 CPU-bound 26 0 2.6 0 0 0

PRANTS.512 CPU-bound 26 0 2.6 0 0 0
ep.E.529 CPU-bound 27 0 2.6 0 0 0



378 Tsinghua Science and Technology, June 2021, 26(3): 370–383

17.77% energy consumption.

5.2 Impact of using more nodes

Figure 6 shows using more nodes to run programs can
reduce the execution time when the CPU frequency
is fixed at 2.6 GHz. The performance improvement
depends on the degree of memory contention. The higher
the memory contention is, the better the performance
improvement could be achieved by adding more nodes.
However, using more nodes will increase the total power
consumption.

Figure 7 shows the details of the increase of
power consumption in percentage when all processor
frequencies are 2.6 GHz.

5.3 Bandwidth comparison

We compare the sum of memory traffic on N compute
nodes and that on (N C�N ) compute nodes in Fig. 8.

Fig. 6 Parallel time reduction due to add one or more nodes.

Fig. 7 Details of the increase of power consumption in
percentage when all processor frequencies are 2.6 GHz.

Fig. 8 Memory traffics of N nodes and (N+���N*) nodes.

All the memory traffic values in Fig. 8 adopt the
weighted memory bandwidth based on VTune memory
traffic histogram (Fig. 5). For each group of columns,
the left one represents the memory traffic sum on N
nodes and the right one shows the memory traffic sum on
(N C�N �) nodes. �N � is determined by model PPC.
For memory-bound applications, memory bandwidth
congestion on N nodes is usually more serious than
that on (N C�N �) nodes. So, memory traffic sum we
measured on N nodes is usually lower than memory
bandwidth the program actually demands. With the
increase of nodes, memory bandwidth congestion starts
to be relieved. Memory traffic sum we measured on
(N C�N �) nodes will be closer to memory bandwidth
demands, larger than memory traffic sum we measured
on N nodes.

5.4 Result using power limit

After calculating the optimal number of compute nodes
�N � and the optimal frequency value f � with our
approach, we run seven memory-bound applications
with the fixed frequency f � and get the experimental
results as Fig. 9 and mark Case 0. Regarding the optimal
frequency value f � as the initial frequency of power
capping, seven memory-bound applications are executed
under RAPL power control (where the frequency is
dynamically scaled) and the experimental results are
recorded as Case 1. The frequency value under the

Fig. 9 Improvement of performance, and power and energy savings of NAS benchmarks. The further away from the centre,
the better the improvement.



Juan Chen et al.: More Bang for Your Buck: Boosting Performance with Capped Power Consumption 379

default resource allocation strategy fmax is regarded
as the initial frequency of power capping and seven
memory-bound programs are executed under RAPL
power control. The experimental results are recorded as
Case 2.

Figure 9 shows the performance, power, and energy
consumption changes of seven applications under three
scenarios (Case 0, Case 1, and Case 2) compared with
the default resource allocation strategy. The further away
from the center, the better performance improvement,
power savings, and energy savings an application has.
Combining these three graphs, we find that compared
with Case 1, Case 2 improves the performance most,
but it causes the worst power consumption, which is
not in line with the original intention of this paper. The
purpose of this paper is to improve the performance of
the applications under power constraints. However, to
improve the performance of the program at the cost
of causing, a lot of power consumption is not what
we advocate. Unlike Case 2, Case 1 strictly complies
with the power constraints, and the percentage of power
consumption reduction tends to zero, which maximizes
the performance of the application within the power
constraints.

Cases 0 and 1 are the recommended methods. Both
of them use the resource allocation strategy proposed
in this paper to find the optimal number of compute
nodes and frequency. The only difference is that RAPL
has been carried on to power capping in Case 1, which
achieves higher performance improvement. It is worth
emphasizing that both Cases 0 and 1 have applied our
approach proposed in this paper, which shows that this
algorithm is effective and necessary.

5.5 Using up all the cores of N CCC ���N* compute
nodes

Because our approach adds �N � nodes based on the
default resource allocation strategy, the number of
idle cores increases while the number of processes
remains unchanged, which reduces the utilization of
processors. Can we further utilize all the processor
cores (by increasing the number of processes) to further
improve program performance? Experimental results
show that for benchmark sp, RandomAccess, DGEMM,
and bt, using up all the cores of N C �N � nodes
leads to 7.77%, 2.98%, 9.65%, and 4.54% performance
improvement respectively compared to our approach
(Case 1). Power increases by 3.15%, –0.09%, 3.37%,
and 4.15%, respectively. Energy reduces by 0.06%,

0.52%, 6.21%, and 0.36%, respectively. But for
STREAM, the performance decreases by 21.30% and the
energy consumption increases by 16.11%. This result
shows that the number of used processor core has a great
impact on the performance of memory-bound programs.
However, our approach can achieve the performance
improvement of memory-bound programs under power
constraints.

5.6 Compared to the optimal performance

In this experiment, we enumerate all �N values from
1 to 4 and f � values from 1.2 to 2.6 GHz to find the
optimal �N � and f � for performance improvement
and power control. This optimal result by traversal
methods is denoted as optimal value in Fig. 10. Figures
10 and 11 compare the performance improvement by
our approach and that by optimal setting using 10 and
30 nodes, respectively. Table 6 lists two groups of
values for �N � and f � with our approach and optimal
setting, respectively. We can find the performance
improvement by our algorithm is competitive compared
to that by optimal setting. The performance improvement
difference between them for the whole 12 benchmarks
is 1.3% on average in Fig. 10 and 1.5% in Fig. 11,
respectively.

The power savings comparison of our approach and
optimal setting by traversal methods is shown in Figs. 12
and 13. The power savings difference between them for

Fig. 10 Performance improvement comparison of our
approach and optimal setting for 10 nodes.

Fig. 11 Performance improvement comparison of our
approach and optimal setting for 30 nodes.



380 Tsinghua Science and Technology, June 2021, 26(3): 370–383

Table 6 Extra nodes���N* and CPU frequency f * given by our approach and optimal settings.

Benchmark Type N �N� by ours �N� by optimal setting Frequency by
ours (GHz)

Frequency by optimal
setting (GHz)

sp Memory-bound 9 2 2 1.5 1.7
RandomAccess Memory-bound 8 1 1 1.8 1.8

mg Memory-bound 7 1 1 1.8 1.8
STREAM Memory-bound 8 1 1 1.8 1.9
DGEMM Memory-bound 8 2 2 1.2 1.4

cg Memory-bound 7 2 1 1.8 2.1
bt Memory-bound 9 1 1 2.3 2.4
lu Memory-bound 7 0 1 2.6 2.3
ft CPU-bound 7 0 0 2.6 2.6

FFT CPU-bound 8 0 0 2.6 2.6
PRANTS CPU-bound 8 0 0 2.6 2.6

ep CPU-bound 7 0 0 2.6 2.6

Fig. 12 Power savings given by our approach and optimal
settings for using 10 computing nodes.

Fig. 13 Power savings given by our approach and optimal
settings for using 30 computing nodes.

12 benchmarks for 10 nodes is 0.9% on average. By our
approach, programs mg and DGEMM get more power
savings compared to optimal settings. That is because
the processor frequency by our approach is a little lower
than that by the optimal setting.

6 Related Work

Energy consumption has become one of the most
important concerns in computing systems and HPC
in particular[13]. Several researchers have developed
techniques and systems to save energy with a slight
increase in execution time. Reference [22] used Duty
Cycle Modulation technology to save energy in MPI
applications and Ref. [23] used DVFS technology to

save energy in OpenMP applications. Reference [24]
found that combining DVFS and Duty Cycle Modulation
can get more energy savings. These approaches
saved processor energy consumption by scaling down
processor clock frequency with a modest increase in
execution time. The increase in execution time depends
on the accuracy of processor idle time prediction.
References [25, 26] used Near Threshold Computing
(NTC) to save processor energy consumption. Except
for saving processor energy consumption, Refs. [27, 28]
focused on how to reduce memory energy consumption.

Besides low-power techniques, power-constrained
problems for compute nodes are also focused.
References [29, 30] reasonably allocated power to CPU
and memory for performance improvement with the
power limits. The main idea is that the power demands
of the processor and memory are different for different
applications. According to applications’ characteristics,
they allocated power to CPU and memory to satisfy their
demand for performance and power. Furthermore, Refs.
[31,32] focused on a cluster. Firstly, when the power of a
cluster is limited, they needed to set the number of active
nodes according to an application’s scalability. Secondly,
they needed to allocate the power to compute nodes, and
also allocate the power to processor and memory in one
node ultimately. Finally, they improved the application’s
performance with power constraints.

Processor overclocking has been used to improve
energy efficiency. For some applications, Ref. [30] found
using turbo technology can achieve better performance
under power constraints. It changes the clock speed
of each socket (include turbo frequency), core use per
socket, hyperthreading, the number of sockets in use,
and the number of memory controllers in use to improve



Juan Chen et al.: More Bang for Your Buck: Boosting Performance with Capped Power Consumption 381

performance. Reference [33] found F-overclocking
technology can achieve greater energy efficiency than
DVFS, low voltage technology, and baseline. Reference
[34] also found Turbo Boost Technology would enhance
the application’s energy efficiency. This prior work is
thus complementary to our work and can be used to
control the CPU frequency when adding extra nodes.

7 Conclusion

This paper has presented a novel resource allocation
scheme for HPC workloads, specifically targets memory-
bound data-parallel applications. Our approach exploits
a key observation that to improve performance, by
reducing the number of parallel processes on a single
host, one can reduce the memory contention. Unlike
prior work that aims to maximize the system utilization,
our approach judiciously allocates additional computing
nodes to run a fewer number of parallel processes on
a single node. Furthermore, to cap the total power
consumption, our approach automatically determines
the best CPU frequency to suit the CPU performance
with the memory throughput. We propose a set
of analytical models to estimate the profitability of
using additional compute nodes based on profiling
information. We evaluate our approach by applying
it on a high-performance cluster to 12 MPI benchmarks.
Experimental findings show that our approach improves
the performance of seven memory-bound applications by
12.69% on average, but using 7.06% less overall power
consumption, which translates into 17.77% energy
savings when compared to the default resource allocation
strategy.

Acknowledgment

This work was supported in part by the Advanced Research
Project of China (No. 31511010203) and the Research
Program of NUDT (No. ZK18-03-10).

References

[1] R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout,
E. Bassous, and A. R. LeBlanc, Design of ion-implanted
MOSFET’s with very small physical dimensions, IEEE
Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–268,
1974.

[2] M. Bohr, A 30 year retrospective on Dennard’s MOSFET
scaling paper, IEEE Solid-State Circuits Society Newsletter,
vol. 12, no. 1, pp. 11–13, 2007.

[3] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan,
and D. M. Tullsen, Single-ISA heterogeneous multi-
core architectures: The potential for processor power
reduction, in Proc. 36th Annu. IEEE/ACM Int. Symp.

Microarchitecture (MICRO 36), San Diego, CA, USA, 2003,
pp. 81–92.

[4] R. Kumar, V. Zyuban, and D. M. Tullsen, Interconnections
in multi-core architectures: Understanding mechanisms,
overheads and scaling, ACM SIGARCH Computer
Architecture News, vol. 33, no. 2, pp. 408–419, 2005.

[5] R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan,
Heterogeneous chip multiprocessors, Computer, vol. 38, no.
11, pp. 32–38, 2005.

[6] T. Heath, B. Diniz, E. V. Carrera, W. Meira, and R.
Bianchini, Energy conservation in heterogeneous server
clusters, in Proc. 10th ACM SIGPLAN Symp. Principles
and Practice of Parallel Programming, Chicago, IL, USA,
2005, pp. 186–195.

[7] Y. M. Li, K. Skadron, D. Brooks, and Z. G. Hu,
Performance, energy, and thermal considerations for SMT
and CMP architectures, in Proc. 11th Int. Symp. High-
Performance Computer Architecture, San Francisco, CA,
USA, 2005, pp. 71–82.

[8] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman,
R. Dreslinski, T. F. Wenisch, and S. Mahlke, Composite
cores: Pushing heterogeneity into a core, in 2012 45th
Annu. IEEE/ACM Int. Symp. Microarchitecture, Vancouver,
Canada, 2012, pp. 317–328

[9] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T.
Mitra, and S. Vishin, Hierarchical power management for
asymmetric multi-core in dark silicon era, in 2013 50th

ACM/EDAC/IEEE Design Automation Conf. (DAC), Austin,
TX, USA, 2013, pp. 1–9.

[10] J. Meng, K. Kawakami, and A. K. Coskun, Optimizing
energy efficiency of 3-D multicore systems with stacked
DRAM under power and thermal constraints, in Proc. 49th

Annu. Design Automation Conf., San Francisco, CA, USA,
2012, pp. 648–655.

[11] T. Cao, S. M. Blackburn, T. J. Gao, and K. S. McKinley, The
Yin and Yang of power and performance for asymmetric
hardware and managed software, in 2012 39th Annu. Int.
Symp. Computer Architecture (ISCA), Portland, OR, USA,
2012, pp. 225–236.

[12] N. Gholkar, F. Mueller, and B. Rountree, Power tuning HPC
jobs on power-constrained systems, in Proc. 2016 Int. Conf.
Parallel Architectures and Compilation, Haifa, Israel, 2016,
pp. 179–191.

[13] T. Patki, D. K. Lowenthal, A. Sasidharan, M. Maiterth,
B. L. Rountree, M. Schulz, and B. R. de Supinski,
Practical resource management in power-constrained, high
performance computing, in Proc. 24th Int. Symp. High-
Performance Parallel and Distributed Computing, Portland,
OR, USA, 2015, pp. 121–132.

[14] C. Isci, A. Buyuktosunoglu, C. Y. Cher, P. Bose, and M.
Martonosi, An analysis of efficient multi-core global power
management policies: Maximizing performance for a given
power budget, in 2006 39th Annu. IEEE/ACM Int. Symp.
Microarchitecture (MICRO’06), Orlando, FL, USA, 2006,
pp. 347–358.

[15] S. Pagani, J. J. Chen, and M. M. Li, Energy efficiency on
multi-core architectures with multiple voltage islands, IEEE
Transactions on Parallel and Distributed Systems, vol. 26,
no. 6, pp. 1608–1621, 2015.



382 Tsinghua Science and Technology, June 2021, 26(3): 370–383

[16] S. W. Williams, A. Waterman, and D. A. Patterson, Roofline:
An insightful visual performance model for multicore
architectures, Communications of the ACM, vol. 52, no.
4, pp. 65–76, 2009.

[17] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P.
Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker, J.
Shalf, S. W. Williams, and K. A. Yelick, The Landscape
of Parallel Computing Research: A View from Berkeley,
Electrical Engineering and Computer Sciences, Tech. Rep.
UCB/EECS-2006-183, University of California at Berkeley,
Berkeley, CA, USA, 2006.

[18] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner,
R. F. Lucas, R. Rabenseifner, and D. Takahashi, The
HPC Challenge (HPCC) benchmark suite, in Proc. 2006
ACM/IEEE Conf. Supercomputing (SC’06), Tampa, FL,
USA, 2006, p. 213.

[19] R. Jeffrey, Intel R VTuneTM Amplifier, https://software.
intel.com/en-us/articles/intel-system-studio-intel-vtune-
amplifier-platform-profiler-overview, 2018.

[20] M. Dimitrov, Intel R Power Governor, https://software.
intel.com/en-us/articles/intel-power-governor, 2012.

[21] V. Viswanathan, Intel R Memory Latency Checker v3.8,
https://software.intel.com/en-us/articles/intelr-memory-
latency-checker, 2013.

[22] B. Rountree, D. K. Lowenthal, B. R. de Supinski, M. Schulz,
V. W. Freeh, and T. Bletsch, Adagio: Making DVS practical
for complex HPC applications, in Proc. 23rd Int. Conf.
Supercomputing, New York, NY, USA, 2009, pp. 460–469.

[23] W. Wang, A. Porterfield, J. Cavazos, and S. Bhalachandra,
Using per-loop CPU clock modulation for energy efficiency
in OpenMP applications, presented at the 2015 44th Int.
Conf. Parallel Processing, Beijing, China, 2015, pp. 629–
638.

[24] S. Bhalachandra, A. Porterfield, S. L. Olivier, and J. F. Prins,
An adaptive core-specific runtime for energy efficiency,
peesented at 2017 IEEE Int. Parallel and Distributed
Processing Symp. (IPDPS), Orlando, FL, USA, 2017, pp.
947–956.

[25] I. Stamelakos, S. Xydis, G. Palermo, and C. Silvano,
Variation-aware voltage island formation for power efficient
near-threshold manycore architectures, presented at the
2014 19th Asia and South Pacific Design Automation Conf.
(ASP-DAC), Singapore, 2014, pp. 304–310.

[26] U. R. Karpuzcu, A. Sinkar, N. S. Kim, and J. Torrellas,
EnergySmart: Toward energy-efficient manycores for near-
threshold computing, presented at 2013 IEEE 19th Int.
Symp. High Performance Computer Architecture (HPCA),
Shenzhen, China, 2013, pp. 542–553.

[27] R. Begum, D. Werner, M. Hempstead, G. Prasad, and
G. Challen, Energy-performance trade-offs on energy-
constrained devices with multi-component DVFS, presented
at 2015 IEEE Int. Symp. Workload Characterization,
Atlanta, GA, USA, 2015, pp. 34–43.

[28] Q. X. Liu, M. Moreto, J. Abella, F. J. Cazorla, and M.
Valero, DReAM: An approach to estimate per-task DRAM
energy in multicore systems, ACM Transactions on Design
Automation of Electronic Systems, vol. 22, no. 1, p. 16,
2016.

[29] A. Tiwari, M. Schulz, and L. Carrington, Predicting
optimal power allocation for CPU and DRAM domains, in
2015 IEEE Int. Parallel and Distributed Processing Symp.
Workshop, Hyderabad, India, 2015, pp. 951–959.

[30] H. Z. Zhang and H. Hoffmann, Maximizing performance
under a power cap: A comparison of hardware, software,
and hybrid techniques, in Proc. 21st Int. Conf. Architectural
Support for Programming Languages and Operating
Systems (ASPLOS’16), Atlanta, GA, USA, 2016, pp. 545–
559.

[31] P. F. Zou, T. Allen, C. H. Davis, X. Z. Feng, and R.
Ge, CLIP: Cluster-level intelligent power coordination for
power-bounded systems, presented at the 2017 IEEE Int.
Conf. Cluster Computing (CLUSTER), Honolulu, HI, USA,
2017, pp. 541–551.

[32] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and
B. R. de Supinski, Exploring hardware overprovisioning in
power-constrained, high performance computing, in Proc.
27th Int. ACM Conf. Int. Conf. Supercomputing (ICS’13 ),
Eugene, OR, USA, 2013, pp. 173–182.

[33] D. Lo and C. Kozyrakis, Dynamic management of
TurboMode in modern multi-core chips, presented at
2014 IEEE 20th Int. Symp. High Performance Computer
Architecture (HPCA), Orlando, FL, USA, 2014, pp. 603–
613.

[34] H. B. Jang, J. Lee, J. Kong, T. Suh, and S. W. Chung,
Leveraging process variation for performance and energy:
In the perspective of overclocking, IEEE Transactions on
Computers, vol. 63, no. 5, pp. 1316–1322, 2014.

Juan Chen received the PhD degree
from National University of Defense
Technology, China in 2007. She is now an
associate professor at National University of
Defense Technology, China. Her research
interests focus on supercomputer systems
and energy-efficient software optimization
method.

Xinxin Qi received the BS degree from Sun
Yat-Sen University, China in 2019, and now
is a master student at National University of
Defense Technology. Her research interests
include high performance computing and
energy efficiency computing.



Juan Chen et al.: More Bang for Your Buck: Boosting Performance with Capped Power Consumption 383

Feihao Wu received the MS degree from
National University of Defense Technology
in 2018. His research interests include the
large scale parallel numerical simulation
and energy efficiency computing.

Jianbin Fang is an assistant professor in
computer science at NUDT. He obtained
the PhD degree from Delft University of
Technology in 2014. His research interests
include parallel programming for many-
cores, parallel compilers, performance
modeling, and scalable algorithms.

Yong Dong received the PhD degree from
National University of Defense Technology,
China in 2012. He is now an associate
professor at National University of Defense
Technology, China. His main research
interests include supercomputer systems
and storage systems.

Yuan Yuan received the PhD degree from
National University of Defense Technology,
China in 2011. He is now an associate
professor at National University of Defense
Technology, China. His research interests
include supercomputer systems and HPC
monitoring and diagnosis.

Zheng Wang received the PhD degree
in computer science from University of
Edinburgh, UK in 2011. He is an associate
professor at University of Leeds. His
research interests include the boundaries
of parallel program optimisation, systems
security, and applied machine learning. He
received four best paper awards for his work

on machine learning based compiler optimisation (PACT’10,
CGO’17, PACT’17, and CGO’19).

Keqin Li received the PhD degree in
computer science from the University of
Houston, USA in 1990. He is a SUNY
distinguished professor of computer
science at the State University of New
York and a distinguished professor at
Hunan University, China. His current
research interests include cloud computing,

fog computing and mobile edge computing, energy-efficient
computing and communication, embedded systems and cyber-
physical systems, heterogeneous computing systems, big data
computing, high-performance computing, CPU-GPU hybrid and
cooperative computing, computer architectures and systems,
computer networking, machine learning, and intelligent and soft
computing. He has published over 710 journal articles, book
chapters, and refereed conference papers, and has received several
best paper awards.


