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Abstract
Particulate matter (PM) emissions from vegetation and peat fires in Equatorial Asia cause poor
regional air quality. Burning is greatest during drought years, resulting in strong inter-annual
variability in emissions. We make the first consistent estimate of the emissions, air quality and
public health impacts of Equatorial Asian fires during 2004–2015. The largest dry season
(August—October) emissions occurred in 2015, with PM emissions estimated as 9.4 Tg, more than
triple the average dry season emission (2.7 Tg). Fires in Sumatra and Kalimantan caused 94% of
PM emissions from fires in Equatorial Asia. Peat combustion in Indonesian peatlands contributed
45% of PM emissions, with a greater contribution of 68% in 2015. We used the WRF-chem model
to simulate dry season PM for the 6 biggest fire years during this period (2004, 2006, 2009, 2012,
2014, 2015). The model reproduces PM concentrations from a measurement network across
Malaysia and Indonesia, suggesting our PM emissions are realistic. We estimate long-term
exposure to PM resulted in 44 040 excess deaths in 2015, with more than 15 000 excess deaths
annually in 2004, 2006, and 2009. Exposure to PM from dry season fires resulted in an estimated
131 700 excess deaths during 2004–2015. Our work highlights that Indonesian vegetation and peat
fires frequently cause adverse impacts to public health across the region.

1. Introduction

Vegetation and peat fires in Equatorial Asia contrib-
ute to climate change (Page et al 2002, Tosca et al
2013) and poor regional air quality (Field et al 2009,
Reddington et al 2014, Lee et al 2017). Fires are influ-
enced by climate, land-use and land management
(van der Werf et al 2008, Page and Hooijer 2016),
and air quality degradation is greatest in dry years
when the most extensive fires occur (Marlier et al
2012, Koplitz et al 2016, Crippa et al 2016). Large-
scale deforestation, forest degradation and agricul-
tural development have increased the occurrence of
fire (Sloan et al 2017) and extensive fires are no longer
restricted to drought years (Gaveau et al 2014). How-
ever, the air quality impact of fires outside of drought

years has not been studied. Here we develop a new
fire emissions estimate for Equatorial Asia and make
a consistent estimate of the impacts of fire on air qual-
ity and health during 2004–2015.

Tropical peatlands store large amounts of organic
carbon in peat soils (Page et al 2002, 2011). Fires on
peatland can burn into the peat and combust substan-
tial amounts of biomass (Hu et al 2018, Roulston et al
2018). The majority of peatland fires occur on defor-
ested land (Cattau et al 2016, Miettinen et al 2017,
Adrianto et al 2019) or during deforestation (Adri-
anto et al 2020). Drainage canals established dur-
ing plantation development lower the water table,
increasing the chances of the peat burning (Wösten
et al 2008). Peat fires also have higher emission factors
for many atmospheric pollutants than vegetation
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fires (Hu et al 2018, Kiely et al 2019). Together these
factors result in peat fires contributing 71%–86% of
fire emissions in Equatorial Asia (Heil et al 2007, Kiely
et al 2019).

Fire emission inventories combine uncertainties
in area burned, fuel loads, biomass consumption and
pollutant-specific emission factors, resulting in sub-
stantial overall uncertainty (Reddington et al 2016).
Emissions estimates from Indonesian fires are partic-
ularly uncertain (Liu et al 2020), due to difficulties in
diagnosing peat burn depth and uncertainties around
emission factors from peat combustion (Page et al
2002, VanDerWerf et al 2010, Kiely et al 2019).Many
previous studies scaled particulatematter (PM) emis-
sions to improve simulated atmospheric concentra-
tions in comparison to observations (Reddington et al
2016).

In Equatorial Asia, fires occur predominantly in
the dry season (August to October) and particularly
during periods of drought, often associated with El
Niño events, such as those in 1982–1983, 1997–1998,
2006 and 2015 (Ballhorn et al 2009, Wooster et al
2012, Field et al 2016). Recent work has also high-
lighted the role played by the Indian Ocean Dipole
(Pan et al 2018). In 2015, an estimated 6–9.1 Tg
PM was emitted from Indonesian fires (Wooster et al
2018, Jayarathne et al 2018, Kiely et al 2019). Climate
change may lead to increased frequency of extreme El
Niño events (Cai et al 2014) and increased future fire
activity (Yin et al 2016).

PM less than 2.5 µm in aerodynamic diameter
(PM2.5) has been associated with adverse health
impacts and premature mortality (Emmanuel 2000,
Cohen et al 2017). The World Health Organisation
recommends that 24-hour mean PM2.5 concentra-
tions exceeding 25 µg m−3 could be detrimental to
health; regions of Indonesia, Malaysia and Singapore
frequently experience concentrations greater than
this limit due to smoke from fires (Marlier et al 2012,
Crippa et al 2016, Lee et al 2017).

Previous studies that have estimated the prema-
ture mortality attributable to exposure to PM2.5 from
fires across Equatorial Asia, have focused on El Niño
years, when fire emissions are greatest (Johnston et al
2012, Sahani et al 2014, Crippa et al 2016, Koplitz
et al 2016). Marlier et al (2012) estimated that fires
in 1997 resulted in 10 800 excess premature deaths
from cardiovascular mortality. For the 2015 haze
event, Crippa et al (2016) found that long term expos-
ure resulted in 75 600 excess premature mortalit-
ies (from respiratory, pulmonary and heart diseases,
lung cancer and stroke). Koplitz et al (2016) estim-
ated prematuremortality from all causes with 100 300
excess deaths in 2015 and 37 600 premature deaths
in 2006.

Different methods of calculating PM emissions,
concentrations and health effects, complicate com-
parisons across years. Here we use a consistent meth-
odology to provide a multi-year comparison of fire

emissions, population exposure to PMand excess pre-
mature mortality for Equatorial Asia between 2004
and 2015. Through studying a wide range of years we
provide new information on the interannual variab-
ility and long-term impacts of fire on air quality and
human health in Equatorial Asia.

2. Methods

In this study, we calculate emissions from Equatorial
Asian fires for 2004–2015. We then use a regional
air quality model to simulate PM concentrations for
the 6 biggest dry-season fire episodes during this
period. We evaluate simulated PM against observa-
tions across Indonesia and Malaysia. Finally, we use
the simulated PM2.5 to estimate the public health
impacts of exposure to the particulate pollution.

2.1. Fire emissions
Fire emissions are from FINNpeatSM, described in
detail in Kiely et al (2019) and summarised briefly
here. FINNpeatSM includes vegetation fire emis-
sions from FINNv1.5 (Wiedinmyer et al 2011).When
MODIS fire hotspots are detected on peatland (World
Resources Institute 2017) we assume that fires burn
into the peat. Emissions from peat fires are estimated
from the burn area, peat burn depth, peat density and
emission factors (EF). We assume 100 ha of surface
burned area for each fire hotspot (as in FINNv1.5),
but only 40 ha of peat burn to account for the fact
that not all surface fires on peatland will burn into
the peat. We estimate the burn depth of the peat
based on daily soil moisture from the European Space
Agency (ESA CCI SMv04.4) averaged to 2◦ degree
resolution (Liu et al 2012, Dorigo et al 2017, Gruber
et al 2017). We assume peat burn depth scales lin-
early with soil moisture between a maximum burn
depth of 37 cm (averaged from Page et al 2002, Usup
et al 2004, Ballhorn et al 2009) when soil moisture is
low (< 0.15 m3 m−3) and a minimum burn depth
of 5 cm when soil moisture is high (>0.25 m3 m−3).
Emission factors (EF) for peat burning are taken as an
average of previous studies of burning of Indonesian
peat(Christian et al 2003, Hatch et al 2015, Stock-
well et al 2016, Nara et al 2017, Wooster et al 2018,
Jayarathne et al 2018, Roulston et al 2018). The (EF)
for PM2.5 used for peat fires (22.3 g kg−1) is larger
than in other fire emission inventories, such as the
Global Fire Emissions Database (GFED4s) and the
Global Fire Assimilation System (GFAS) which both
use 9.1 g kg−1 (Van Der Werf et al 2010, Kaiser et al
2012).

2.2. WRF-chem
WRF-chemv3.7.1 was used to simulate PM concen-
trations across Equatorial Asia (figure 1). The model
has been run at 30 km resolution with 33 vertical
levels, between the surface and 50 hPa. We used
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Figure 1. The WRF-chem model domain and locations of
observations. Areas of peatland are shaded in purple.

the model to simulate the 6 dry-seasons (August–
October) with the greatest fire emissions over the
2004 to 2015 period: 2004, 2006, 2009, 2012, 2014
and 2015. Our domain excludes West Papua, where
fires occurred in 2015 (Lohberger et al 2017). All sim-
ulations included a 14 day spin up for chemistry at
the start of the time period, and with a 24 hour
spin up for meteorology every 15–16 day using
National Centre Environmental Prediction Global
Forecast System (NCEP 2007). In between the met-
eorology was free running, to allow the model to
simulate impacts of fire smoke on meteorology. The
MOZART (Model for Ozone and Related Chem-
ical Tracers, version 4; Emmons et al 2010) chem-
istry scheme was used to calculate gas-phase reac-
tions, with MOSAIC (Model for Simulating Aero-
sol Interactions and Chemistry; Zaveri et al 2008,
Hodzic and Knote 2014) used to represent aerosol
processes, separated into 4 bins; 0.039–0.156 µm,
0.156–0.625 µm, 0.625–2.5 µm and 2.5–10 µm. SOA
formation from fires in the model is calculated as
4% of the fire emitted CO based on Spracklen et al
(2011). A more complete model description can be
found in the supplement (table S1 (available online
at stacks.iop.org/ERL/15/094054/mmedia)).

Anthropogenic emissions are from EDGAR-
HTAP2 (Janssens-Maenhout et al 2015) for 2010,
biogenic emissions are from MEGAN (Model of
Emissions of Gases and Aerosols from Nature; Guen-
ther et al 2006). Following Kiely et al (2019), we inject
half of the fire emissions at the surface with the rest
spread throughout the boundary layer. For each year,
model simulations were completed with and without
fire emissions. The contribution of fires to PM con-
centrations is calculated as the difference between the
simulations with and without fire.

2.3. Observations
Hourly measurements of PM10 (mass concentration
of particulatematter < 10µmaerodynamic diameter)
are available from a network of 53 surface sites across

Malaysia (Mead et al 2018) for all the periods of this
study (figure 1). Hourly PM10 is also available from
Pekanbaru in Indonesia for 2013 and 2015, and from
Bukit Kototabang in Indonesia for 2004, 2006 and
2009. Weekly averaged PM10 measurements are avail-
able from six sites in Indonesia for 2014 and 2015.
Hourly measurements of PM2.5 from 5 locations in
Singapore are available for 2014 and 2015, and are
averaged to give mean concentrations for Singapore.

Measurements of PM are mainly from urban loc-
ations away from the locations of fires. To estimate
the PMconcentrations from fire at eachmeasurement
location we subtract the background PM concentra-
tion during months with little fire (months when
PM2.5 fire emissions are <0.1 Tg month−1 across
Indonesia).

We averaged hourly data to give daily means, and
calculated the fractional bias (FB), Pearson correla-
tion (r), the normalized mean bias factor (NMBF)
and normalizedmean absolute error factor (NMAEF)
(Yu et al 2006) to evaluate the model (supplementary
methods).

2.4. Population weighted PM2.5

Populationweighted PM2.5 (PW), ametric of popula-
tion exposure to PM2.5 concentrations, was calculated
as,

PW=
∑ Ci∗Pi

Ptot

where Ci is the PM2.5 concentration and Pi is the pop-
ulation of grid cell i, and Ptot is the total popula-
tion of the domain. The population data is from the
Gridded Population of theWorld, Version 4 (GPWv4)
(Center for International Earth Science Information
Network andNASA Socioeconomic Data and Applic-
ations Center 2016). The total population within
the domain is 477 million, with 255 million in the
Indonesian part of the domain (total Indonesian pop-
ulation is 263 million).

2.5. Mortality
The long term premature mortality was calculated
using the simulated annual mean PM2.5, with and
without fire emissions. PM2.5 from August from the
simulationwith no fires was used to represent January
to July and November to December. Anthropogenic
emissions in the tropics have little seasonal variation,
and this method has been used previously to estim-
ate population exposure to fires (Crippa et al 2016,
Koplitz et al 2016).

Premature mortality per year, M, from disease j in
grid cell i was calculated as,

Mij = PiIj
(
RRjc − 1

)
/RRjc

where Pi is the population in i, Ij is the baseline mor-
tality rate (deaths year−1) for j, and RRjc is the relat-
ive risk for j at PM2.5 concentration, c (µg m−3). The
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Figure 2.Monthly primary PM2.5 fire emissions from Indonesia between 2004 and 2015, from the FINNv1.5, GFED4s and
FINNpeatSM inventories. Grey shaded regions show the dry season (August–October) each year. Dry season primary PM2.5

emissions (Tg) from FINNpeatSM are shown at the top of the figure.

baseline mortality rates and the population age com-
position are from the GBD2017 (Institute for Health
Metrics and Evaluation 2019), and the relative risks
are taken from the Global Exposure Mortality Model
(GEMM) (Burnett et al 2018) for non–accidental
mortality (non–communicable disease and lower res-
piratory infections). The GEMM exposure function
was calculated using the relationship between long-
term exposure to outdoor PM2.5 concentrations and
mortality, from studies across many countries. The
GEMM exposure function was chosen as it incorpor-
ates data from a study in China where PM concen-
trations are regularly high, as is the case in Equat-
orial Asia. Mean, upper and lower uncertainty inter-
vals from the GEMMhave been used to producemor-
tality estimates with a 95% uncertainty interval. Pop-
ulation count, population age, and baseline mortality
rateswere kept constant for 2004–2015 to estimate the
variation due to changes in exposure only.

To explore differences with previous studies, we
also estimate mortality following the method used
in Koplitz et al (2016), where the baseline mortality
for all causes increases by 1% for every 1 µg m−3

increase in annual mean PM2.5 concentrations below
50 µg m−3.

3. Results and discussion

3.1. Emissions
The greatest fire emissions occur between August and
October each year, with a secondary peak in Janu-
ary to April (figure 2). The largest dry season emis-
sions occurred in 2015, followed by 2006, 2009 and
2004. All of these years experiencedmonthly total fire
emissions that were greater than 1 standard deviation

above the long-termmonthly mean. Other years with
total dry season emissions above the median were
2012 and 2014.

Table 1 compares dry season (August to October)
burned area, biomass consumption and emissions
for FINNpeatSM and GFED4s inventories (van der
Werf et al 2017). Averaged across 2004–2015, FIN-
NpeatSM has a greater burned area compared to
GFED4s (fractional bias, FB= 1.01). Dry matter fuel
consumption is more comparable (FB = 0.15) due
to greater average dry matter consumption per unit
area burned in GFED4s (15 189 g m−2) compared
to FINNpeatSM (6476 g m−2), as a result of greater
average peat burn depth in GFED4s. Peat makes up
half of the average dry matter consumption in GFED,
compared to a quarter of the dry matter consump-
tion in FINNpeatSM. The average emissions of CO
and CO2 are similar (FB=−0.04 and FB= 0.07) for
the two inventories, while FINNpeatSM has greater
dry season PM2.5 emissions (FB = 0.48) (table 1),
due to higher PM2.5 EF for peat combustion applied
in FINNpeatSM (22.3 g kg−1) compared to GFED4s
(9.1 g kg−1). The total emissions from fires depends
on the percentage of peat burned, as well as the
overall dry matter consumption (see supplementary
results).

GFED4s uses MODIS burned area (Giglio et al
2013), whereas FINNpeatSM applies a 1 km2 burned
area to detected hotspots. Previous studies have also
found that this method results in FINN having a
larger burned area than other emissions inventor-
ies in Asia (Vongruang et al 2017), while Liu et al
(2020) suggest thick haze in Indonesia in 2015 pre-
vented detection of fires and thatMODIS burned area
may be underestimated by 93%. In FINNpeatSM,
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average burn depth is 7.3 ± 3.7 cm, compared
to 10.8 ± 4.8 cm in GFED4s. These estimates are
lower than many burn depths recorded in the field
(Ballhorn et al 2009, Stockwell et al 2016), however
field measurements are likely to be taken at large
fires where burn depths may be deeper than average
(Stockwell et al 2016).

There is a strong correlation between the dry
season emissions simulated by FINNpeatSM and
GFED4s (r = 0.87–0.98 for different pollutants,
supplementary results), although GFED4s emis-
sions have greater interannual variability (figure
S1), due to greater variability in peat burn depth
(figure S2). Emissions are a product of burned
area, burn depth and emissions factors. Compens-
ating differences amongst these variables mean
that two emission datasets can predict similar
emissions for different reasons. Measurements of
burned area, burn depth, and emission factors
are needed to help further constrain the emission
models.

Figure 3 compares the spatial pattern of aver-
age dry season PM2.5 emissions in FINNpeatSM
and GFED4s. In both datasets South Sumatra and
Kalimantan are responsible for the majority of fire
emissions, with Sumatra accounting for 33%–42%
of PM2.5 emissions and Kalimantan accounting for
52–63%, in agreement with previous studies (Kim
et al 2015, Wooster et al 2018).

3.2. Model evaluation
Without fire emissions, the model greatly under-
estimates PM concentrations across Malaysia and
Indonesia (NMBF = −3.72) and the temporal vari-
ability across the sites with daily data is poorly
simulated (r = 0.27). When fire emissions are
included, themodel still underestimates observed PM
(NMBF = −0.47), although the temporal variability
is better simulated (r= 0.51) (figure S3). Most meas-
urements are in urban locations and issues resolv-
ing urban-scale pollution are likely to contribute to
model underestimation. To overcome this we estim-
ated fire-derived PM from the observations by sub-
tracting measured PM concentrations during peri-
ods without fire (see Methods), and compared with
the simulated PM concentration from fires (the dif-
ference between simulations with and without fires).
Figure 4 shows the comparison of simulated and
observed fire-derived PM at each site. Across all
years, the simulation of fire-derived PM is unbiased
(NMBF = 0.14) and the model has reasonable skill
in simulating the temporal variability at each site
(r= 0.43), although there is year to year and site to site
variability (see supplementary results). The NMAEF
and FB for the comparison of fires derived PM are
also low for each year (NMAEF = 1.07, FB = −0.02;
figure S4). Our model skill in comparison against
PM10 observations at 52 sites is similar to a previ-
ous comparison byCrippa et al (2016)who reported a

Figure 3. Average dry season (August—October) PM2.5

emissions (g/m2) during 2004–2015 for (a) FINNpeatSM
and (b) GFED4s. Emissions are plotted at a resolution of
0.5◦. The percentage of emissions from Sumatra and
Kalimantan are shown next to the regions.

NMBF of −0.24 for comparison against PM10 obser-
vations at two sites in 2015.

3.3. PM2.5 exposure
Table 2 gives the average PM2.5 concentration across
the domain and the population-weighted PM2.5

exposure for Equatorial Asia due to emissions from
fires. PM2.5 and population-weighted PM2.5 concen-
trations are greatest in 2015. In 2004 and 2012 there is
greater average population weighted PM2.5 from fires
than for 2009, despite 2004 and 2012 having lower
total PM2.5 fire emissions. This is due to there being
more fires in Sumatra in 2012 than in 2009, close to
populated areas. Despite having lower emissions than
Kalimantan, fires in Sumatra can expose a greater
population to poor air quality (Reddington et al 2014,
Kim et al 2015, Marlier et al 2015, Koplitz et al 2016).
We estimated a population-weighted smoke exposure
over July to October of 8.8 µg m−3 in 2006 (com-
pared to 8 µg m−3 simulated by Koplitz et al (2016))
and 25.6 µg m−3 in 2015 (compared to 19 µg m−3 by
Koplitz et al (2016)).

Fires increase exposure to PM2.5 concentrations
above the WHO recommended limit of 25 µg m−3
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Figure 4. Box plot showing (a) the normalized mean bias factor (NMBF) and (b) the correlation coefficient (r) between simulated
and measured fire-derived PM concentration. NMBF and r have been calculated at each of the sites in Malaysia and Indonesia. The
box plots show the mean value as a triangle, the median as the middle of the box, the box showing the upper and lower quartiles
and the whiskers showing the range of values without outliers. The mean NMBF and r across all sites is given on the plots.
Measured fire-derived PM10 is estimated at each site by subtracting measured PM10 from periods without fire (see Methods).

Table 2. The average simulated PM2.5 concentration over Indonesia and population weighted PM2.5 concentration from fires over
August to October; the number of people exposed to PM2.5 > 25 µg m−3 for at least half the days in August to October due to fires; the
mortality, years of life lost (YLL) and disability adjusted life years (DALY) resulting from exposure to PM2.5 from fires in each year
(calculated using GEMM). Descriptions of the calculation of YLL and DALY are in the supplement. The upper and lower estimates are
shown in brackets.

Year Average PM2.5

(µg m−3)
Average
population-
weighted PM2.5

(µg m−3)

People exposed
to PM2.5 > 25 µg
m−3 for at least
half the days
(million people)

Mortality
(deaths)

YLL (years) DALY (years)

2004 14.3 5.7 30.0 16 219
(12 562–20 191)

392 761
(303 728–489 295)

637 727
(456 836–856 074)

2006 21.0 8.8 51.7 22 088
(17 145–27 427)

532 655
(412 927–661 631)

867 220
(622 619–1 161 097)

2009 15.4 5.2 22.2 16 656
(12 868–20 768)

404 715
(312 146–505 219)

654 733
(468 340–879 776)

2012 11.7 5.2 26.7 14 573
(11 287–18 132)

353 026
(273 043–439 511)

573, 084
(410 643–768 854)

2014 11.7 4.7 27.9 13 705
(10 598–17 085)

333 931
(257 964–416 406)

541 086
(387 007–727 671)

2015 65.8 25.6 66.5 44 041
(34 672–53 948)

1 057 573
(832 357–1 294 657)

1 725 203
(1 256 322–2 278 572)

(World Health Organization 2005) (figure 5). In 2015
fires resulted in an average of 20 million people being
exposed to a daily PM2.5 concentration > 150 µg m−3

(figure 5(a)), and 66.5 million people being exposed
to daily PM2.5 concentrations > 25 µgm−3 for at least
one in two days duringAugust–October (figure 5(b)).
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Figure 5. Population exposure to poor air quality. (a) The average population per day exposed to 24-hr PM2.5 concentrations
above levels shown on x axis, for simulation with fires (solid lines) and without fires (dashed lines). (b) The number of people
exposed to 24-hr PM2.5 concentrations over 25 µg m−3 for at least half the days in August–October.

Figure 6. Excess premature mortality due to exposure to PM2.5 from fires. The upper and lower 95% uncertainty interval for the
total domain is shown as black lines. Triangles show comparison against previous studies as well as an estimate using our PM
exposure combined with the health function used by Koplitz et al (2016).

Crippa et al (2016) found that 69 million people
in Equatorial Asia were exposed to unhealthy air
quality for one day in two in 2015, and Mead et al
(2018) found that 26 million people in Malaysia were
exposed to PM10 levels above the WHO recommen-
ded limit of 50 µg m−3. For other years we estim-
ate 22.2–51.7 million people were exposed to PM2.5

concentrations above 25 µg m−3 for one day in two
(figure 5(b)). The majority of people exposed to poor
air quality from fires live in Indonesia (51%–80% of
people exposed) and Malaysia (15–30%).

3.4. Public health impacts
Table 2 shows the estimated excess premature mor-
tality, years of life lost, and disability affected life
years across the domain resulting from expos-
ure to PM2.5 from fires. For each year studied,
exposure to PM2.5 from fires resulted in over
13 000 excess premature deaths, 300 000 years
of life lost and 500 000 disability affected life
years.

The greatest number of excess deaths resulting
from fires was in 2015.We estimate exposure to PM2.5

8
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Figure 7. The total dry season PM2.5 emissions (primary emissions and SOA formation) from fires against (a) the
population-weighted PM2.5, and (b) the total mortality from exposure to PM2.5 from fires. Error bars show the upper and lower
estimates of mortality. The gradient of the linear least squares regression is given on the plot. The Pearson’s correlation is 0.987 for
(a) and 0.997 for (b).

from fires caused 44 000 excess deaths in 2015, less
than 75 600 excess deaths estimated by Crippa et al
(2016) or the 100 300 excess deaths estimated by
Koplitz et al (2016). This difference is due to dif-
ferent methods of estimating the health impacts of
exposure to PM2.5. Koplitz et al (2016) applied a 1%
increase in baseline mortality for all causes of non-
accidental death, for every 1 µg m−3 increase in
annual mean PM2.5 concentration. When we apply
the same function with our simulated PM concen-
trations we estimate 106 000 premature mortalities in
2015, similar to that estimated by Koplitz et al (2016).
In 2006, we estimate exposure to smoke from fires
results in 22 100 premature mortalities, greater that
the 6 000 excess deaths from cardiovascular mortal-
ity estimated by Marlier et al (2012) but less than
the 37 600 deaths estimated by Koplitz et al (2016).
Using the same relative risk as Koplitz et al (2016),
we estimate 42 520 excess premature deaths from the
2006 fires, similar to their estimate. This compar-
ison suggests that the largest uncertainty in health
impacts is due to uncertainty in exposure response
function (i.e. the sensitivity of health to PM expos-
ure) rather than uncertainty in emissions or PM con-
centrations. Kushta et al (2018) also found that the
majority of uncertainty in long termmortality estim-
ates for Europe is related to the relative risk func-
tion. For China, Giani et al (2020) found that the
uncertainty in the PM concentrations and the relative
risk function contributed similarly to overall uncer-
tainty, increasing the range of estimated mortality
when both uncertainties were considered. Similar to
this study, they found using a different relative risk
function led to a much greater difference in estim-
ated mortality, outside the 95% confidence interval.
There may also be mortalities from exposure to fire
related air pollution which have not been considered
in our study. Jayachandran (2013) suggests that the
pollution from the 1997 fires in Indonesia may result
in early-life mortality, while we have only calculated
health impacts for adults.

Figure 6 shows the regional distribution of excess
mortality due to PM2.5 exposure from fires. The
largest mortality occurs in Sumatra, with 38% of the
totalmortalities due to PM2.5 exposure from fire. This
is due to a large population with close proximity to
the fires. Kalimantan, which has a higher proportion
of the PM2.5 emissions than Sumatra (table 1), has
an average of 23% of the total mortalities. Averaged
across the years, Malaysia accounts for 18% of the
mortalities and Singapore accounts for 4%.

Figure 7 shows the annual mean population-
weighted PM2.5 and the annual mortality resulting
from exposure to PM2.5 from fires as a function of
particulate emission (primary PM2.5 emissions and
SOA formation; seeMethods) from fires. For the years
we have studied there is a linear relationship between
particulate emission and population-weighted PM2.5

(r = 0.99) and between emission and estimated pre-
mature mortality (r = 0.99). For each Tg of partic-
ulates emitted from fires, population weighted PM2.5

increases by 2.1µgm−3, and excess annual premature
mortality increases by 2940.

A linear relationship between emission and
exposure may not be expected; exposure to PM2.5

and resulting impacts on health depend on the loc-
ation and magnitude of the emissions, as well as
the atmospheric transport of pollution. However,
in Equatorial Asia, the location of fires and the dir-
ection of pollution transport varies little year to year.
Each year, dry season fires occur in similar regions of
Equatorial Asia (figure 3), consistent south-easterly
winds over South Kalimantan and Sumatra result in
similar atmospheric transport patterns (Chang and
Wang 2005, Heil et al 2007, Wang et al 2013, Lee
et al 2017), and the same areas are exposed to poor
air quality (figure S6). This leads to the strong lin-
earity between PM2.5 emissions, PM exposure, and
mortality. The sample size used here is small (n= 6),
however, our results indicate that it may be pos-
sible to make a simple estimate of PM exposure and
health impacts from emissions alone. We used the
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relationship between PM emission and mortality, to
estimate the health impacts from fires across 2004–
2015. Total August–October PM2.5 emissions from
2004 to 2015 were 44.8 Tg, resulting in an estimated
131 700 excess premature mortalities in this period.
We note the 6 years studied in detail resulted in a
combined total of 113 600 excess premature deaths.
We also used this relationship combined with the
particulate emission per unit area burned (table 1) to
estimate the premature mortality resulting from each
1 km2 of land burned. For 2004–2014, we estimate
0.25–0.33 deaths per km2 of burned area. For 2015,
we estimate 0.58 deaths km−2, due to the deeper
peat burn depth in that year. These numbers provide
an indication of the potential magnitude of public
health benefits from reductions in fire arising from
the moratorium on granting new concession licences
for industrial agriculture (Wijedasa et al 2018), peat-
land restoration (Harrison et al 2019) and fire man-
agement (Carmenta et al 2017, Jefferson et al 2020).

4. Conclusion

We combined a new method of calculating emissions
from peat fires (FINNpeatSM), a regional air qual-
ity model and a concentration-response function to
make the first consistent estimate of the impacts of
smoke from Equatorial Asian fires on human health
over the period 2004 to 2015. Over this period, FIN-
NpeatSM has a larger burned area but shallower peat
burn depth compared to GFED4s, leading to sim-
ilar biomass consumption, CO and CO2 emissions
for both inventories. We estimate average August–
October PM2.5 emissions were 2.7 Tg yr−1, 59%
greater than in the GFED4s dataset, largely due to
greater PM2.5 emission factors for peat combustion in
our estimates. We estimate that the largest fire emis-
sions occurred in 2015, due to the greater area burned
and deeper peat burn depth compared to other years.
Deeper peat burn depth is a result of low soil mois-
ture in 2015, confirming that soil moisture plays an
important role in controlling emissions from peat
fires. We estimate that 94% of PM2.5 emissions from
fire across Equatorial Asia are from Indonesian fires,
with 60%–82% due to fires in Kalimantan. Improv-
ing emission estimates requires better estimates of
both area burned and peat burn depth, including how
this varies with soil moisture. A detailed evaluation
against multiple in-situ and remote sensed data is
needed to constrain emissions and better understand
interannual variability.

We used the WRF-chem model to simulate
PM concentrations for the six years during 2004–
2015 with the largest fire emissions. Simulated
PM concentrations resulting from these fire emis-
sions reproduced measured concentrations across
Indonesia and Malaysia, supporting our new emis-
sions estimates. In contrast, previous studies have

resorted to scaling PM emissions to better match
surface concentrations (Koplitz et al 2016; Marlier
et al 2012). In 2015, we estimate fires exposed 66.5
million people to daily mean PM2.5 concentrations
exceeding the WHO limit of 25 µg m−3, for at least
half of the August to October period. Measurements
of PM2.5 concentrations in regions impacted by fires
are needed to evaluate these exposure estimates.

We used simulated PM2.5 to estimate the health
impact of fires across the different years. We estim-
ate that exposure to PM2.5 from fires resulted in 44
000 excess deaths in 2015, less than in previous stud-
ies due to the less sensitive relative risk function we
used. New analysis is needed to help constrain the
public health impacts of exposure to PM from fires. In
other years (2004, 2006, 2009 and 2012) we estimate
exposure to PM resulted in 14 000–22 000 premature
deaths annually, with a total of 131 700 premature
mortalities resulting from August-October fires dur-
ing 2004–2015. Our work confirms that smoke from
Indonesian fires regularly cause substantial impacts
on human health across the region. Unless further
action is taken to reduce fires, air pollution from
fires will continue to cause substantial health burden
across Equatorial Asia over the next decade (Marlier
et al 2019).
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