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Abstract
Vegetationfires across the tropics emit fine particulatematter (PM2.5) to the atmosphere, degrading
regional air quality and impacting humanhealth. Extensive vegetation fires occur regularly across the
Amazon basin, but there have been no detailed assessments of the impacts on air quality or human
health.We used updated exposure-response relationships and a regional climate-chemistrymodel,
evaluated against a comprehensive set of observational data, to provide thefirst in-depth assessment of
the potential public health benefits due tofire prevention across the AmazonBasin.We focused on
2012, a year with emissions similar to the 11-year average (2008 to 2018). Vegetationfires contributed
>80%of simulated dry seasonmean surface PM2.5 in thewesternAmazon region particularly in
Bolivia and Brazilian states of Rondônia, Acre, andMatoGrosso.We estimate that the prevention of
vegetation fires would have averted 16 800 (95UI: 16 300–17 400) premature deaths and 641 000
(95UI: 551 900–741 300) disability adjusted life years (DALYs) across SouthAmerica, with 26%of the
avoided health burden locatedwithin the AmazonBasin. The health benefits offire prevention in the
Amazon are comparable to those found in Equatorial Asia.

1. Introduction

Vegetation and peatfires are an important source of particularmatter (PM) and trace gases to the atmosphere,
which can degrade regional air quality and adversely impact human health. Ambient PM2.5 (PMwith an
aerodynamicmedian diameter less than 2.5μm) is a leading risk factor contributing tomortality,morbidity and
reduced life expectancy (Cohen et al 2017, Apte et al 2018). Exposure to PM2.5 from vegetation and peatfires is
estimated to cause 179 000–339 000 premature deaths each year, equivalent to 5%of the present-day global
burden of disease due to ambient PM2.5 exposure (Johnston et al 2012, Lelieveld et al 2015). Fires in tropical and
sub-tropical regions are responsible for 90%of global PM2.5fire emissions (Wiedinmyer et al 2011, VanDer
Werf et al 2017), andfires are the dominant source of PMpollution acrossmuch of the tropics (Johnston et al
2012, Lelieveld et al 2015).

Fires in the tropics are influenced by both climate and land-use change (Heald and Spracklen 2015). Drought
increases the incidence offire in the Amazon (Arãgao et al 2008, da Silva et al 2018, Aragão et al 2018). Fire is used
across the tropics to clear forest and other vegetation and prepare land for agriculture. In the Amazon,fire
emissions are greater in years with higher deforestation rates (Arãgao et al 2008, Reddington et al 2015).
Deforestation and forest degradation (Morgan et al 2019b) result in a fragmented forest landscape that is
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increasingly prone tofire (Cano-Crespo et al 2015, Alencar et al 2015). Deforestation also alters regional climate,
increasing local temperatures (Baker and Spracklen 2019) and reducing regional rainfall (Spracklen et al 2012,
Spracklen andGarcia-Carreras 2015, Zemp et al 2017). Smoke from fires further reduces rainfall through
interactionswith clouds and radiation (Kolusu et al 2015, Archer-Nicholls et al 2016, Liu et al 2020). Positive
feedbacks between deforestation, drought, fire and smoke exacerbate the potential for tipping points in the
Amazon climate (Nepstad et al 2008, Lovejoy andNobre 2018).

Vegetation fires are the dominant source of PMover the Amazon (Martin et al 2010,Mishra et al 2015). The
Amazon exhibits a strong seasonal cycle in vegetation fires and consequently PMconcentrations (Martin et al
2010). During thewet seasonwhen there is littlefire activity, PM2.5 concentrations across central Amazonia can
be as low as 1.5μgm−3 (Artaxo et al 2013). In contrast, during the dry season (August–October)when there are a
large number of vegetation fires, regional dry seasonmean PM2.5 concentrations can exceed 30μgm

−3 (Artaxo
et al 2013, Reddington et al 2016, Reddington et al 2019b)with dailymean peak concentrations exceeding
100μgm−3 (Brito et al 2014). Globalmodelling studies confirm thatfires are a dominant source of regional
PM2.5 concentrations across the Amazon during the dry season (Johnston et al 2012, Lelieveld et al 2015,
Reddington et al 2015, Reddington et al 2016, Reddington et al 2019b).

There is strong evidence of acute adverse health outcomes due to exposure to PM fromAmazonfires.
Positive associations between PM from vegetation fires and increased hospital admissions for respiratory health
in children and the elderly have been demonstrated in the southernAmazon (Ignotti et al 2010,DoCarmo et al
2013,Machado-Silva et al 2020). PM fromfires has also been found to exacerbate respiratory health in children
and the elderly to a greater extent during drought years (Smith et al 2014,Machado-Silva et al 2020). The
relationship between respiratory health and PM from fires has also been highlighted by positive associations
between reduced peak expiratory flow in schoolchildren and increased PMduring the dry season (Jacobson et al
2012, Jacobson et al 2014). Toxicology analysis has demonstrated PM fromAmazonfires results inDNAdamage
in human lung cells (deOliveira Alves et al 2017), shedding light on themechanisms bywhich exposure to PM
fromvegetation fires adversely impact human health.

Despite studies demonstrating the impact of PM from fires on human health there have been no regional
assessments quantifying the potential health burden using high resolutionmodels. Previous studies of PM from
vegetation fires have focused on the impacts onAmazonianweather and climate through aerosol-radiation and
aerosol-cloud interactions (Zhang et al 2008, Zhang et al 2009,Wu et al 2011, Kolusu et al 2015, Archer-Nicholls
et al 2016, Thornhill et al 2018, Liu et al 2020). Health burden assessment of the degraded air quality caused by
Amazonfires have been restricted to coarse resolution globalmodels (>100 kmhorizontal resolution)
(Johnston et al 2012, Lelieveld et al 2015, Reddington et al 2015, Nawaz andHenze 2020)with limited in-depth
analysis at a regional scales at finer resolutions. In comparison, Equatorial Asia, where vegetation and peatfires
also result in poor regional air quality, has been studied in detail (Huang et al 2013, Reddington et al 2014, Kim
et al 2015,Marlier et al 2015, Kiely et al 2019) and there are numerous assessments of the health burden.
Reddington et al (2019a) found that the elimination of vegetation fires would avert 8 000 premature deaths
annually across Southeast Asia (Myanmar, Thailand, Laos, Cambodia, andVietnam).Marlier et al (2019) found
the elimination offires across Equatorial Asia (Indonesia,Malaysia, and Singapore) had the potential to avert
24 000 premature deaths per year. Similarly, Kiely et al (2020) estimated that the prevention offires across
Indonesia would avert an average of 15 000 premature deaths annually in 2004, 2006, and 2009. A number of
studies focused on 2015, when drought conditions caused extensive fires and amajor haze event, resulting in an
estimated 44 000–100 300 prematuremortalities across Equatorial Asia (Crippa et al 2016, Koplitz et al 2016,
Kiely et al 2020). Herewe quantify the impact of vegetation fires in SouthAmerica on regional air quality and
human burden of disease, with a focus on the Amazon.We used a high spatial resolution regional climate-
chemistrymodel, evaluated against a comprehensive set of observational data to improve understanding of the
magnitude and spatial distribution of simulated air pollutants fromvegetation fires.We then used exposure-
response relationships to provide an in-depth assessment of the burden of disease associatedwith exposure to
PM2.5 from vegetation fires. Ourfindings provide advancement on previous air quality and health assessments
within this region by combining a state-of-the-art high resolution climate-chemistrymodel with newly
established exposure-response relationships.

2.Methods

2.1.Model description
Weused theWeather Research andForecasting online-coupledChemistrymodel (WRF–Chem) version 3.7.1
(Grell et al 2005). Themodel domain coversmost of SouthAmerica (figure 1)with a horizontal resolution of
30 km, extending vertically from the surface to 10hPa.Details ofmodel setup are shown in supplementary table 1 is
available online at stacks.iop.org/ERC/2/095001/mmedia.
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Gas-phase chemistry is calculated using the extendedModel forOzone andRelatedChemical Tracers,
version 4 (MOZART-4) (Emmons et al 2010, Knote et al 2014). Aerosol chemistry andmicrophysics is simulated
using an updatedModel for Simulating Aerosol Interaction andChemistry (MOSAIC)with aqueous chemistry
and four sectional discrete aerosol size bins: 0.039–0.156μm, 0.156–0.625μm, 0.625–2.5μm, 2.5–10μm
(Zaveri et al 2008,Hodzic andKnote 2014). An updated volatility basis setmechanismwas also included for
secondary organic aerosol (SOA) formation (Knote et al 2015).

Microphysics is simulated using theMorrison 2-moment scheme (Morrison et al 2009) and theGrell 3D
parameterisation is used for simulating convection (Grell andDévényi 2002). Initial and boundary chemistry
and aerosol conditionswere taken from6-hourly simulation data from theMOZART-4/Goddard Earth
Observing SystemModel version 5 (GEOS5) (NCAR2019). Initial and boundarymeteorological conditions
were taken from the EuropeanCentre forMedium–RangeWeather Forecasts (ECMWF) global reanalysis
(Dee et al 2011)

Duringmodel simulations, we nudged themeteorological components, horizontal and vertical wind,
potential temperature andwater vapourmixing ratio, to ECMWF re-analysis in allmodel levels above the
planetary boundary layer over 6 h.

2.2.Model simulations
WRF-Chem simulationswere conducted for the year 2012 at horizontal resolution of 30 km.We focused on the
dry season (defined here as August 1st toOctober 31st)when vegetation fires aremost active.We performed
simulations fromApril toDecember, discarding the firstmonth asmodel spin-up.We performed two types of
simulations: one simulation excluding fire emissions (‘fire_off’) and one simulation including vegetation fire
emissions (‘fire_on’). The contribution offires to PM2.5 was calculated as the difference in concentrations
between these two simulations.

2.2.1. Non-fire emissions
Anthropogenic emissionswere taken from the EmissionDatabase forGlobal Atmospheric Researchwith Task
Force onHemispheric Transport of Air Pollution (EDGAR-HTAP) version 2.2 for the year 2010 at 0.1°×0.1°
horizontal resolution (Janssens-Maenhout et al 2015). A diurnal cycle was applied to anthropogenic emissions
based onOlivier et al (2003). Biogenic volatile organic compound (VOC) and dust emissionswere both
calculated online by theModel of Emissions ofGases andAerosol fromNature (MEGAN) (Guenther et al 2006)
and throughGoddardGlobal OzoneChemistry Aerosol Radiation andTransport (GOCART)withAir Force
Weather Agency (AFWA)modification (Chin et al 2000), respectively.

Figure 1.TheWRF-Chemmodel domain used in the study and associated land cover classification depicted by theMODIS Land
Cover TypeData Product (MCD12Q1) International Geosphere-Biosphere Programme (IGBP). Flight tracks during the SAMBBA
campaign are shown (Phase 1: 13–23 September; blue line, andPhase 2: 23 September–3October 2012; red line). The eastern
(4.5–15 °S, 43–50 °W) andwestern (6–12 °S, 54–68.5 °W) domains used for flight track evaluation are shownwith black boxes. The
location of the PortoVelho ground station is represented by a solid black triangle. Locations of AERONET stations are shown by the
black crosses: PortoVelhoUNIR (8.84 °S, 63.94 °W), Alta Floresta (9.87 °S, 56.10 °W), Rio Branco (9.96 °S, 67.87 °W), Cuiabá-
Miranda (15.73 °S, 56.02 °W) and Santa CruzUTEPSA (17.77 °S, 63.20 °W).White circles show the locations of annual PM2.5

measurements from theWHOdatabase.
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2.2.2. Fire emissions
Weusedfire emissions from the Fire Inventory fromNCAR (FINN) version 1.5 (Wiedinmyer et al 2011) (see list
of emissions species in supplementary table 2). Daily emissions are estimated on a 1 km2 grid based on the
location and timing of activefires taken from theModerate Resolution Imaging Spectroradiometer (MODIS)
Fire andThermal Anomalies Product (Giglio et al 2003). Eachfire count is assigned a burned area (0.75 km2 for
grassland and savannah and 1 km2 for other land covers). To account formissing fire retrievals due to cloud
cover, FINNaverages fire emissions over two days, assuming that the detected burned areawill be half the
original size the following day (Wiedinmyer et al 2011, Pereira et al 2016). Trace gas and aerosol emissions are
calculated using emission factors (Akagi et al 2011, 2013, Yokelson et al 2013) in conjunctionwithMODIS Land
Cover Type andVegetationContinuous Fields. Fire emissions are emittedwith a diurnal cycle that peaks in the
early afternoon (local-time) based onGiglio (2007).

Buoyancy due tofire plumes can cause rapid injection offire emissions above the ground surface (e.g.,
Fromm et al 2000).WRF-Chem can simulate this plume-rise from fires (e.g., Freitas et al 2007). However,
previousmodelling studies of Amazonfires during the dry season of 2012 shows thismethod overestimates the
height offire plumes (Archer-Nicholls et al 2015, Archer-Nicholls et al 2016). Observational work also found
very little evidence of extensive elevated layers during the same simulation period, suggesting little evidence of
pyroconvection (Darbyshire et al 2019).We therefore inject vegetation fire emissions evenly throughout the
boundary layer (BL) (e.g., Dentener et al 2006), as supported by analysis of plume heights over the Amazon
(Marenco et al 2016, Gonzalez-Alonso et al 2019).

Table 1 shows annual and dry season organic carbon (OC) and black carbon (BC) emissions fromFINNv1.5
summed over ourmodelling domain. Emissions are dominated byOC,which contributes 90%ofOC+BC
emissions. In 2012, domainwide annualOC+BC emissions were 4 Tg a−1, approximately 17%greater than
the 11-y (2008 to 2018) average (3.4 Tg a−1). The domain contributes 17%of globalfire BC+OCemissions
during 2008 to 2018 (figure 2(d)), highlighting the importance offires in this region. Emissions are dominated by
dry season fires, which account for 65%of annualOC emissions over the 11-y average. Fire emissions are
greatest in southern areas of theAmazon (figures 2(a), (b))which are undergoing land-use change. During 2008
to 2018, theAmazon accounted for 66% (72%) of annual (dry season) domain total OC emissions (table 1).
Compared to the 11-y average, fire emissions in 2012were enhanced across the Brazilian and PeruvianAmazon,
butwere lower across the Bolivian Amazon (figure 2(c)). Emissionswere also higher in the easternCerrado
region of Brazil in 2012 compared to the 11-y average, as supported by observed enhancement inCerrado active
fires in this region (supplementary figure 1). Previouswork comparing FINN (v1.5) to theGlobal Fire
Assimilation System (GFAS) (Kaiser et al 2012) andGlobal Fire EmissionsDataset (GFED) (v4s) (VanDerWerf
et al 2017) in 2012, showed that emissions datasets had broadly similar spatial patterns of BC andOCemissions
over theAmazon region. Emissions in FINNwere greater compared toGFED andGFAS over western regions
and lower compared to other datasets over eastern regions (Reddington et al 2019b). Comparison against
measured aerosol concentrations suggested thatGFED andGFAS emissionsmay be underestimated in the
westernAmazon and all emission datasetsmay underestimate in the easternAmazon (Reddington et al 2019b).

2.3.Measurements
Weevaluate ourWRF-Chem simulations against a comprehensive set of observational datasets from surface and
aircraft collected as part of the SouthAmerican Biomass Burning Analysis (SAMBBA)field campaign, which
took place over the southernAmazon in September andOctober 2012 (Johnson et al 2016, Reddington et al
2019b).We compliment SAMBBAobservationswith additional surface and satellitemeasurements.

2.3.1. Statistical methods
In order to compareWRF-Chem tomeasurements, we linearly interpolatedmodel output to the time and
location ofmeasured data. Comparison to aerosolmassmeasurements was conducted using simulatedmass
within the instrument detection ranges.Model evaluationwas quantified using Pearson correlation coefficient
(r), mean bias (MB) and normalisedmean bias factor (NMBF) (Yu et al 2006):

Table 1.Domainwide andAmazon Basin annual and dry season (August–October) total organic carbon (OC) and black carbon (BC)
emissions fromFINN (v1.5). Emissions in 2012 are compared against the 11-y (2008 to 2018) average in parentheses.

Emission species Annual domain (Tg a−1) Dry season domain (Tg a−1) AmazonBasin annual Amazon Basin dry season

OC 3.6 (3.1) 2.6 (2.0) 2.4 (2.1) 1.8 (1.5)
BC 0.4 (0.3) 0.3 (0.2) 0.3 (0.2) 0.2 (0.2)
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whereM andO are themodel and observation value at location and timestep i.MB shows the deviation of the
model to observation in the same units. NMBF is unitless and is interpreted as a factorNMBF+1 bywhich the
model under or overestimates the observation.

2.3.2. Surfacemeasurements
Weused surface particulatematter (PM)measurements from a forested site in south-western Amazon 5 km
upwind from the city of PortoVelho (population of around 500 000) (Brito et al 2014) (figure 1). Composition
resolved aerosolmass are available from anAethalometer (Magee Scientific,model AE30) and an aerosol
chemical speciationmonitor (ACSM). TheAethalometermeasured equivalent black carbon (BC) at a 5 min
resolution, while theACSMmeasured ammonium (NH4), nitrate (NO3), sulfate (SO4), chloride (Cl) and
organicmass concentration in the 75–650 nm size range at a 30 min resolution.Measurements fromboth
instruments were available from6th September to 1stOctober 2012.Details regardingmeasurement
uncertainty for both instruments can be found in Brito et al (2014) andReddington et al (2019b). PM2.5mass
concentrations from a gravimetric filter analysis were used fromMay toOctober 2012, with a temporal
resolution ranging 1 to∼7 days (Artaxo et al 2013). Annualmean PM2.5measurements for 2012were taken from

Figure 2.Annual organic carbon (OC)fire emissions fromFINNv1.5 for (a) 2008 to 2018 average, (b) 2012, (c) 2012minus 2008–2018
average. The black polygon in a-cmarks theAmazon Basin. Black boxes in a-c are thewestern and eastern regions used in this analysis.
(d)Domainwide annualOC emissions (bars) and the fraction of global fire emissions (OC+BC) contributed by the domain (black
line). FINN emissions have been gridded to 0.5°×0.5° resolution.
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theWorldHealthOrganisation (WHO)Ambient AirQualityDatabase 2018Update (WHO2018) (figure 1).
TheWHOdatabase is compiled such that PM2.5 are representative of annualmean city and town level
concentrations usingmeasurements fromurban background locations. For consistency, PM2.5 concentrations
were estimated using PM10:PM2.5 conversion factors at locationswhere PM10measurements were only
available (WHO2018).We usedWHOPM2.5measurements fromBrazil, Bolivia, Colombia, Ecuador, Peru,
Paraguay andUruguay (supplementary table 3).

2.3.3. Aircraft measurements
Weused aerosolmeasurements taken during flights of the Facility for AirborneAtmosphericMeasurements
(FAAM)BAe-146 research aircraft as part of the SAMBBA campaign (Johnson et al 2016,Darbyshire et al 2019,
Reddington et al 2019b).Measurements included organic aerosol (OA) in the 50–750 nm size range from an
aerosolmass spectrometer (AMS) (Canagaratna et al 2007, Allan et al 2014) and refractive BC taken from a
single-particle soot photometer (SP2) (Stephens et al 2003, Allan et al 2014). FAAM flight track paths are shown
infigure 1. Following Johnson et al (2016) andReddington et al (2019b), we split analysis of profile
measurements into SAMBBAPhase 1 (13–22 September 2012;flights 1–8) and Phase 2 (23 September–3
October; flights 9–20), and bywestern region and eastern region (figure 1).We note, however, the smaller
number offlights in the eastern region (one full flight and sections of threeflights) compared to thewestern
region (14 fullflights and sections of 5flights). To avoid additional data biases, data were removedwhen the
FAAMaircraft were sampling in-plumes andwithin clouds, seeDarbyshire et al (2019) formore details.

2.3.4. Aerosol optical depthmeasurements
Weused spectral columnar aerosol optical depth (AOD) data from theAerosol RoboticNetwork (AERONET)
Cimel sun photometers (Holben et al 1998).We usedVersion 3 Level 2 cloud-screened and quality-assured
daytime average AODdata (Giles et al 2019), retrieved at 500 nmatfive stations located across theAmazonBasin
(figure 1).Measurements were taken at 12:00UTC.

Satellite-derived AODwas obtained fromModerate resolution Imaging Spectroradiometer (MODIS) on
Aqua (MYD04_L2) andTerra (MOD04_L2) satellites. Collection 6.1, level 2, AODwas acquired at 550 nm for
the dataset ‘Dark TargetDeep BlueCombined’ (Levy et al 2013). Swaths of 10 km (at nadir)were resampled to
0.1°×0.1° resolution. Data were aggregated to dailymeans. Because daytime overpass times are different for
both Terra (10:30 LT) andAqua (13:30 LT), we usedmodel simulated AODaveraged between both overpass
times and evaluated only on days when satellite data were available.

2.3.5. Radiosondemeasurements
Weused radiosondemeasurements of potential temperature, watermixing ratio, relative humidity, wind speed
and direction taken from theUniversity ofWyoming database of radiosondemeasurements (http://weather.
uwyo.edu/upperair/sounding.html). Atmospheric sounding datawere obtained at 12:00UTC at 3 stations
within the AmazonBasin: PortoVelhoUNIR, Alta Floresta andCuiabá-Miranda. At all 3 locations,WRF-Chem
performs reasonably at simulating key atmospheric variables potential temperature, watermixing ratio, relative
humidity, wind speed and direction (NMBF=−0.24 to 0.14, r=0.7 to 0.99) during the dry season
(supplementary figure 2).

2.4.Health burden calculation
Weused simulated annualmean surface PM2.5 concentrations to quantify the health impact due tofires through
the disease burden attributable to air pollution exposure. To estimate annualmean PM2.5 we assumed simulated
concentrations inMay andDecember are representative of January–April, when fire emissions are also low.

Using population attributable fractions of relative risk taken fromassociational epidemiology, intervention–
driven variations in exposure (i.e., population exposure including and excluding vegetation fires)were used to
predict associated variations in health burden outcomes. The population attributable fraction (PAF)was
estimated as a function of population (P) and the relative risk (RR) of exposure:

( ) ( )/= ´ -PAF P RR RR1 2EXP EXP

TheRRwas estimated through theGlobal ExposureMortalityModel (GEMM) (Burnett et al 2018).We used
theGEMMfor non–accidentalmortality (non–communicable disease, NCD, plus lower respiratory infections,
LRI), using parameters including theChina cohort, with age–specificmodifiers for adults over 25 years of age in
5–year intervals. TheGEMMfunctions havemean, lower, and upper uncertainty intervals. The theoretical
minimum-risk exposure level for theGEMMfunctions is 2.4μgm–3. The toxicity of PM2.5 was treated as
homogenouswith no differences for source, shape, or chemical composition, due to a lack of associations
among epidemiological studies.
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The effect of air pollution is known to be significantly different formorbidity andmortality from
cardiovascular outcomes (IHDand STR) (Cohen et al 2017), and the relative risks from equation (1)were
adjusted by equation (2) (RRadjusted)when estimating years livedwith disability (YLD). The ratio for IHD and
STRmorbidity were 0.141 and 0.553 from theGBD2016 (Cohen et al 2017), based on data from three cohort
studies (Miller et al 2007, Puett et al 2009, Lipsett et al 2011)

( )= ´ - +RR ratio RR ratio 1 3EXP adjusted EXP,

Prematuremortality (MORT), years of life lost (YLL), and years livedwith disability (YLD) per health
outcome, age bracket, and grid cell were estimated as a function of the PAF and corresponding baselinemortality
(IMORT), YLL (IYLL), and YLD (IYLD) following equations (3)–(5), respectively.

( )= ´MORT PAF I 4MORT

( )= ´YLL PAF I 5YLL

( )= ´YLD PAF I 6YLD

Disability–adjusted life years (DALYs), i.e. the total loss of healthy life, was estimated as the total of YLL and
YLD:

( )= +DALYs YLL YLD 7

The rates ofMORT, YLL, YLD, andDALYswere calculated per 100,000 population.Mean estimates were
quantified in addition to upper and lower uncertainty intervals at the 95% confidence level. TheUnitedNations
adjusted population count dataset for 2015 at 0.25°×0.25° resolutionwas obtained from theGridded
Population of theWorld, Version 4 (GPWv4) (Doxsey-Whitfield et al 2015). Population age compositionwas
taken from theGBD2017 for 2015 for early–neonatal (0–6 days), late–neonatal (7–27 days), post–neonatal
(8–364 days), 1–4 years, 5 to 95 years in 5–year intervals, and 95 years plus (Global Burden ofDisease Study 2017,
2018). Shapefiles were used to aggregate results at the country and state level (Hijmans et al 2012).

The health impacts of PM2.5 depend non-linearly on exposure, with impacts starting to saturate at high
PM2.5 concentrations.We estimate the health benefits that would arise iffires were prevented, as the health
burden from a scenariowith fires (fire_on)minus the health burden froma scenariowithout fires (fire_off) (but
including other emission sources). This is described as the ‘subtraction’method (Kodros et al 2016, Conibear
et al 2018).

3. Results and discussion

3.1. Surface PM
Figure 3 showsmeasured and simulated surface aerosolmass concentrations at PortoVelho, a location heavily
influenced by vegetation fires. Before the dry season (May to July), measured PM2.5 concentrations are typically
less than 3μgm−3, peaking at 30–50μgm−3 in August and September, followed by a decline in earlyOctober
to less than 10μgm−3 (figure 3(a)). Themodel captures this seasonal cycle relatively well (r=0.57), but
overestimates concentrations (NMBF=0.72,MB=7.6μgm−3) largely due to an over prediction frommid-
August to September. Simulated PM2.5 concentrations are underestimated in early August, possibly due to
themissingfires at the start of the dry season in the FINNdataset (Reddington et al 2019b). Vegetation fires
contributed∼86% to simulated PM2.5 concentrations inAugust and September. In the simulationwithout fires,
PM2.5 concentrations remain below 3μgm−3 throughoutMay toDecember. At urban locations far from the
fires, themodel simulates annualmean surface PM2.5 concentrations towithin 25% (supplementary figure 3;
NMBF=−0.26,MB=−3.47μgm−3).

During the SAMBBA campaign,measured concentrations ofOA, BC and total aerosolmass show a decline
inmass concentrations towards the end of the dry season, from13th to 30th September 2012 (figure 3(b)).
Overall, themodel also overestimatesOA (NMBF=0.87), BC (NMBF=0.2) and total aerosolmass
(NMBF=0.87) in September (figure 3(b)). Themodel performs better during SAMBBAPhase 1 (OA
NMBF=0.36; BCNMBF=0.03; total aerosolmassNMBF=0.37), compared to Phase 2 (OA
NMBF=3.51; BCNMBF=0.60; total aerosolmassNMBF=3.05).Measured and simulated aerosolmass
(not shown) are dominated byOA (measured: 78.7%,model: 83.6%), with smaller contribution fromBC
(measured: 11.5%,model: 5.8%), and inorganics (NH4+NO3+Cl+SO4;measured: 9.8%,model: 10.6%).
Analysis ofOA:CO ratios in biomass burning smoke during the SAMBBA campaign suggests limited net gain of
OAmass from secondary processes within fire plumes (Brito et al 2014,Morgan et al 2019a).We alsofind limited
additionalmass due to SOA formation, with SOA contributing<15% to simulatedOAmass at PortoVelho.
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3.2. Vertical profile
Figure 4 shows simulated andmeasured vertical profiles ofOA andBCmass taken during the SAMBBAflight
campaign. Following previous studies (e.g., Archer-Nicholls et al 2015, Reddington et al 2019b), we separate
analysis into SAMBBAPhase 1 and Phase 2, and intowestern and eastern regions (section 2.3.3).Measured
aerosolmass concentrations are greater in the lower 2.5 km in thewest and the lower 4 km in the east, with
concentrations rapidly declining above. Simulated concentrations capture the shape of the observed vertical
profile (r�0.9), showing that distributing fire emissions through the BL is a reasonable assumption.

In thewesternAmazon, simulated BL concentrations of both BC andOA are in generally good agreement
with observations (NMBF�0.15).MeasuredOA andBC concentrations show a reduction between Phase
1(OA: 15μgm−3; BC: 1μgm−3) andPhase 2 (OA: 7μgm−3; BC: 0.6), consistent with the decline inmeasured
surface concentrations at PortoVelho (figure 3). Themodel simulates this reduction inOA (observations:
−56%;model:−58%) andBC (observations:−38%;model:−30%) concentrations, coinciding with the dry-to-
wet-season transition. Previousmodelling studies have struggled to simulate this observed reduction in the
westernAmazon, potentially due to poor simulation of wet removal of aerosols (Archer-Nicholls et al 2015,
Reddington et al 2019b).

For the eastern region, simulated concentrations in the BL are underestimated (OANMBF=−0.66; BC
NMBF=−6.32), consistent with a previous study (Reddington et al 2019b).Measured BC:OA ratios in the BL
are greater in the eastern region (0.16) compared to thewestern region (around 0.1). Thismay be caused by

Figure 3.Comparison of simulated andmeasured particulatematter concentrations at PortoVelho. (a)Time-series ofmean PM2.5

betweenMay andOctober 2012.Observed and simulated PM2.5 concentrations are averages overmeasurement sampling periods
ranging from1 to 7 d. (b)Hourlymean concentrations during the SAMBBA campaign (13th to 30th September 2012).Measurements
of OAbyACSM, BC equivalent by aethalometer, and totalmass includingACSMOA, nitrate, ammonium, chloride, sulfate and
aethalometer BC (OA+NO3+NH4+Chl+SO4+BC). Normalisedmean bias factors are provided overall (NMBF) and for
SAMBBAPhase 1 (NMBFP1) and Phase 2 (NMBFP2).
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higher BC emission factors offlaming savannahfires in eastern Cerrado regions relative to the smouldering
fires typical of tropical forestfires inwesternAmazon (Hodgson et al 2018,Darbyshire et al 2019). The
underestimation of BC in the eastern region (observed: 1.4μgm−3;model 0.2μgm−3)may partly be a result of
underrepresentation of emissions fromCerrado fires in eastern regions. However, we note the few flights were
undertaken in the eastern region compared towestern region (section 2.3.3).

3.3. AOD
Figure 5 shows dailymean simulated and observedAODat 500 nm (AOD500) betweenMay andDecember
2012 atfive AERONET stations located inwestern and southern AmazonBasin.Measured AOD500 is typically
<0.2 inMay and June, increasing to 0.4 to 1.5 inAugust and September, reducing to<0.2 inDecember. The
model captures this seasonal cycle relatively well (r=0.61 to 0.88).May toDecembermeanAOD500 is
overestimated inwestern locations (Rio Branco,NMBF=0.53, PortoVelhoUNIR (NMBF=0.47) and Santa
CruzUTEPSA (NMBF=0.47), andwell simulated compared tomore eastern locations: Alta Floresta
(NMBF=0.03) andCuiabá-Miranda (NMBF=−0.01).

Comparison against AODat 550 nm retrieved byMODIS (AOD550), confirms themodel overestimates in
thewesternAmazon and underestimates eastern regions (supplementary figure 4). AERONETAOD500 and
MODISAOD550 are found to comparewell (supplementary figure 5) despite the different wavelengths.

Figure 4.Mean observed (black circles) and simulated (coloured line) vertical profiles of OA andBC taken during the SAMBBA
aircraft campaign. (a)WesternAmazon during Phase 1 (Phase 1: 13–22 September 2012). (b)WesternAmazon during Phase 2 (Phase
2: 23 September–3October 2012). (c)EasternAmazon (Phase 2). Insetmaps show thewestern and eastern regions and flight paths (see
also figure 1). Error bars show the standard deviation of themeasurements. NMBF and correlation coefficient are shown for entire
vertical profile (NMBFALL and rALL), andwithin the PBL (NMBFBL and rBL).
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Evaluating againstMODIS separately over evergreen broadleaf forest and savannah (cerrado) biomes and across
thewestern and eastern regions shows an overall very small low bias inwestern forest bias regionswith an equally
small high bias in eastern cerrado regions (supplementary figure 6). The underestimation over savannah regions
is considerably less than the underestimate against the one aircraftflight in the east, suggesting comparison
against this one flightmay not be representative. However, Reddington et al (2019b) also found PMandAOD
were underestimated over regionswith savannah and grassland fires, possibly suggesting FINNunderestimates
fire emissions in these regions.

3.4. Fire impacts on simulated PM2.5 and burden of disease
Some previousmodelling studies of Amazon (Archer-Nicholls et al 2015, Johnson et al 2016) and other tropical
fires (see Reddington et al (2019b) for a review) underestimate AODand scale-up fire emissions to enable the
model tomatch observed AOD.Wefind a consistent evaluation of regional boundary layer PMconcentrations
andAOD,with a slight overestimation over forested regions in thewesternAmazon and underestimation over
savanna regions. Overall, simulated PM2.5 was typically within 25%ofmeasurements both close tofires in the
westernAmazon and in urban regions far from fires.We therefore chose not to alter fire emissions andwe use
PM2.5 concentrations from themodel runswith andwithout fire emissions to estimate impacts on human
health.

Figure 6 shows simulated surface dry season PM2.5 concentrations. Greatest dry season concentrations
(�45μgm−3) occur in the southern andwesternAmazon. Vegetation fires contribute up to 80%–95%of
simulated dry season PM2.5 concentrations, with contributions>60%overmost of the Brazilian Amazon,
Bolivia, andmuch of Peru and Paraguay.

Figure 7 shows the regional distribution of dry seasonmean simulated PM2.5 concentrations. Vegetation
fires increased regionalmean PM2.5 concentrations by 260%over the AmazonBasin in 2012, exposing

Figure 5.Dailymean observed (black circles) and simulated (coloured lines) aerosol optical depth (AOD) at 500 nmatfive AERONET
stations. (a)PortoVelhoUNIR (8.84 °S, 63.94 °W). (b)Alta Floresta (9.87 °S, 56.10 °W). (c)Rio Branco (9.96 °S, 67.87 °W).
(d)Cuiabá-Miranda (15.73 °S, 56.02 °W). (e) Santa CruzUTEPSA (17.77 °S, 63.20 °W).
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20million people to dry seasonmean concentrations above 10μgm−3 and 3.3million people to concentrations
over 25μgm−3. Similarly large increases are also simulated at the national scale for Peru (394%) andBolivia
(509%)where 7% (1.36million people) and 4% (0.42million people) are exposed to PM2.5 levels above
25μgm−3, respectively. Fires have amarked impact on annual concentrations and thus chronic exposure
(see also supplementary figure 7), increasing annualmean population-weighed PM2.5 concentrations by 35%
and 137% in Peru andBolivia, respectively (table 2). By comparison, vegetation fires increased the national

Figure 6. Simulated dry season (August toOctober) surface PM2.5 concentrations in 2012. (a)PM2.5 concentrations (b) percentage
contribution due to fires.

Figure 7. Simulated distribution of dry season (August toOctober) surface PM2.5 concentrations in 2012. (a)Amazon Basin, (b)Peru,
(c)Bolivia, and (d)Brazil. Histograms showmean PM2.5 distribution forWRF-Chem simulationswith (fire_on) andwithout (fire_off)
fire emissions, with vertical dashed lines representing the distributionmean for each simulation. The number of people exposed (in
millionsM) tomean concentrations above 25 (WHO24-h guideline) and 10 (WHOannual guideline)μgm−3 is also shown.
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regional dry seasonmean PM2.5 by a smaller amount in Brazil (148%) in 2012, exposing 14.4million people to
levels above 25μgm−3 in the dry season, increasing annualmean population-weighed PM2.5 concentrations
by 10%.

Due to the proximity offires, western states of Brazil are impacted by fires disproportionately. Figure 8 shows
regional distribution of dry seasonmean simulated PM2.5 concentrations in fourwestern states of Brazil (Acre,
Amazonas,MatoGrosso, andRondônia) and the state of São Paulo in south-eastern Brazil. Vegetation fires
increase regional PM2.5 concentrations considerably inwestern states (296%–791%), exposing themajority of
state populations to dry seasonmean PM2.5 concentrations above 25μgm

−3 in Rondônia (53%) andAcre
(75%). Fires similarly increase annualmean population-weighted PM2.5 concentrations considerably in these
western states (59%–278%), highlighting the impact on chronic exposures. In contrast, exposure to unhealthy

Table 2.Annualmean population-weighted PM2.5

concentrations in 2012 forWRF-Chem simulation
(fire_on). Values in parentheses show the increase
to due vegetation fires.

Country Pop-weighted PM2.5 (μgm
−3)

Bolivia 4.1 (137%)
Brazil 10.3 (10%)
Peru 6.2 (35%)
Brazilian state

Acre 10.5 (222%)
Amazonas 9.2 (59%)
MatoGrosso 7.5 (168%)
Rondônia 10.4 (278%)
São Paulo 19.9 (5%)

Figure 8. Simulated distribution of regional dry season (August toOctober) surface PM2.5 concentrations in 2012 for five Brazilian
states. (a)Acre, (b)Amazonas, (c)MatoGrosso, (d)Rondônia, and (e) São Paulo.Histograms showmean PM2.5 distribution forWRF-
Chem simulationswith (fire_on) andwithout (fire_off)fire emissions, with vertical dashed lines representing the distributionmean
for each simulation. The number of people exposed (inmillionsM) tomean concentrations above 25 (WHO24-h guideline) and 10
(WHOannual guideline)μgm−3 is also shown.
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PM2.5 concentrations in outflow regions such as São Paulo is largely due to other anthropogenic emissionswith
fires playing a limited intermittent contribution. Nevertheless fires can contribute to very high concentrations in
outflow regions, leading to a 39% increase in dry season regionalmean concentrations and a 5% increase in
annualmean population-weighted concentrations in São Paulo.

Figure 9 shows the estimated reduction in the regional burden of disease that would occur if all vegetation
fires were prevented.We estimate that the prevention of vegetation fire emissions had the potential to avoid 641
00 (95UI: 551 900–741 300)DALYs and 16 800 (95UI: 16 300–17 400)premature deaths across our South
American domain in 2012.We found that approximately 26%of the avoidedDALYs (167 900 (95UI: 143
800–194 900)) and deaths (4 300 (95UI: 4 100–4 500 )) due tofire preventionwere located inside the Amazon
Basin. At the national level, preventing vegetation fires could have prevented 9 770 (95UI: 9 690–9 870)
prematuremortalities in Brazil, 1 467 (95UI: 1 340–1 590) in Peru and 1 195 (95UI: 985–1 410) in Bolivia
(table 3). Per capita health burdens remove population size dependence highlighting the impact offires on
public health. The per capita avoided heath burden is greatest in Bolivia (789 (95UI: 605–979)DALYs per
100 000 people) and Paraguay (644 (95UI: 531–772)DALYs per 100 000 people) followed by Brazil (597 (95UI:
524–680)DALYs per 100 000 people). Brazilian states of Rondônia, Acre, andMatoGrosso benefit themost
fromfire preventionwith 1300–1800DALYs per 100 000 people avoided (figure 9 and supplementary table 4).
High disease burden rates in thesewestern Brazilian states andwider AmazonBasin, highlights the adverse
impact of vegetation fires on regional public health.

Our estimated health impacts are consistent with previous estimates for SouthAmerica from globalmodels
but provide advancement due to the use of a high resolution regionalmodel and updated exposure-response
relationships. Johnston et al (2012) estimated preventingfires would avoid 10 000 premature deaths annually

Figure 9.The averted burden of disease due to the prevention of vegetation fires in 2012 using theGEMMNCD+LRI exposure-
response function. (a)Total averted disability-adjusted life years (DALYs), and (b) avertedDALYs as rate per 100,000 persons.

Table 3.Averted burden of disease due to the prevention of vegetation fires in 2012 using theGEMMNCD+LRI exposure-response
function. Values shown are estimates using the ‘substitution’method.

Country DALYs DALYs rate per 100 000 Mortality Mortality rate per 100 000

Argentina 55 065 (48 341–62 787) 121 (106–138) 1 806 (1 765–1849) 4 (4–4)
Bolivia 43 320 (33 246–53 764) 789 (605–979) 1 195 (985–1 409) 21.8 (18–26)
Brazil 385 173 (338 408 –438 639) 597 (524–680) 9 774 (9 686–9 865) 15.1 (15–15)
Chile 1 053 (910–1 219) 3 (3–4) 29 (29–29) 0.1 (0–0.1)
Colombia 34 096 (29 290–39 703) 124 (107–145) 866 (854–879) 3.2 (3–3.3)
Ecuador 32 394 (27 610–37 806) 256 (218–299) 861 (822–900) 7 (7–7)
Guyana 138 (121–159) 43 (37–49) 4 (4–4) 1 (1–1)
Paraguay 21 978 (18 139–26 371) 644 (531–772) 555 (503–613) 16.2 (15–18)
Peru 57 947 (47 378–69 587) 422 (345–506) 1 467 (1 336–1 591) 11 (10–12)
Suriname 289 (247–337) 58 (50–68) 8 (7–9) 1.6 (2–2)
Uruguay 2 293 (2 031–2 595) 120 (106–136) 83 (82–85) 4 (4–4)
Venezuela 7 186 (6 174–8 336) 34 (30–40) 195 (185–204) 1 (1–1)
Total 640 938 (551 892–741 303) — 16 845 (16 256–17 437) —

AmazonBasin: 168 000 (143 800–194 900) 4 300 (4 100–4 500)
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between 1997–2006. Reddington et al (2015) estimated prevention of vegetation fires would avert∼7000 to 9700
premature deaths annually between 2002–2011.

In contrast to the AmazonBasin and thewider SouthAmerican region, numerous air quality health
assessments due to vegetationfires have been conducted across Equatorial Asia.Marlier et al (2019) found the
prevention offires across Equatorial Asia (Indonesia,Malaysia, and Singapore)would avert 24 000 premature
deaths annually in the present-day. Using a similarWRF-Chem setup as used in this study, Reddington et al
(2019a) estimated the prevention offires would avoid 8,000 premature deaths annually across Southeast Asia
(Myanmar, Thailand, Laos, Cambodia, andVietnam) in the present-day. Using a similarWRF-Chem setup as
used in this study,Kiely et al (2020) found that the preventionof vegetation andpeatfireswould avert 15 000
premature deaths and 500 000DALYs annually in 2004, 2006, and 2009 across Equatorial Asia. Anumber of studies
focused on2015,where drought inducedfires resulted in amajor haze event across Equatorial Asia, and caused an
estimated 44 000–100 300prematuremortalities (Crippa et al 2016,Koplitz et al2016,Kiely et al 2020).

Calculated health burdens are sensitive to both simulated PMexposure and exposure-response relationships
(Ostro et al 2018, Burnett andCohen 2020). For the 2015 haze event in Equatorial Asia, Kiely et al (2020) found
that exposure-outcome associations have the largest influence on health impact estimates. Kiely et al (2020)used
the same exposure-outcome association as this study (GEMMNCD+LRI) and estimated 44,000 premature
deaths in 2015. In contrast, Koplitz et al (2016) used an exposure-outcome association based onwork from
Schwartz et al (2008), Anenberg et al (2012), Lepeule et al (2012), with a 1% in all-causemortality per 1μgm−3

increase in annual average PM2.5 concentrations. Koplitz et al (2016) estimated 100,300 premature deaths in
2015.WhenKiely et al (2020) used the same exposure-outcome association they estimated a similar premature
death estimate of 106,000 deaths in 2015.Marlier et al (2019) also used a similar exposure-outcome association
to that used inKoplitz et al (2016), based onwork fromVodonos et al (2018).

Both theVodonos et al (2018) exposure-outcome association and theGEMMNCD+LRI rely on
epidemiological studies from ambient PM2.5 exposure only, including some fromhigh-exposure locations, and
include all non‐accidental causes of death. The current integrated exposure-response (IER) association from
Global Burden ofDiseaseGBD2017 is based on studies of ambient and household air pollution, passive
smoking, and active smoking exposures and is cause-specific for six causes of death (Burnett et al 2014). The risk
responses of Vodonos et al (2018) and theGEMMNCD+LRI are similar for exposures up to 50μgm−3. At
exposures greater than 50μgm−3 these functions diverge, with theGEMMNCD+LRI riskflattening off at
higher concentrations. The IER has lower risks than either Vodonos et al (2018) and theGEMMNCD+LRI,
andflattens off at lower concentrations. For example, Nawaz andHenze (2020) estimated 4 407 premature
deaths per year on average between 2016 and 2019 in Brazil frombiomass burning derived ambient PM2.5,
which is approximately half of our estimate for Brazil in 2012, primarily due to their use of the IER from
GBD2016which has approximately half the attributable risks of theGEMMNCD+LRI that we used in this
study.

These large differences emphasise the need to reduce these uncertainties and for further epidemiological
studies fromhighly polluted regions of theworld (Burnett andCohen 2020, Pope et al 2020).We used the
GEMMNCD+LRI here to be consistent with the latest exposure-outcome associations for ambient PM2.5

exposure only, to include causes beyond that considered by the current IER in theGBD2017, and to be
conservative of risk estimates at higher exposures.

Fire emissions in the tropics depend on land-use change and climate conditions and can exhibit strong
interannual variability. Reddington et al (2015) found greater health impacts in years with greaterfires due to
drought or deforestation. Fire emissions in the Amazon in 2012were comparable to the 11-y average (figure 1).
Years withmore fires, due either to drought conditions or greater deforestation and land-use change, would
have greater emissions, PM concentrations and likely greater associated public health impacts. Futurework is
needed to understand the year to year variability in health impacts due to PM from fires in the region.

4. Conclusion

Weused a high-resolution regional air qualitymodel to assess the impacts of vegetation fires on regional South
American air quality and estimate the public health benefits resulting fromprevention offires.We studied 2012,
a yearwith emissions similar to the long-term (2008 to 2018) average. PM2.5 andAODwas evaluated against a
comprehensive set of surface, aircraft and satellitemeasurements, withmodel typicallymatchingmeasurements
within 25%. Fires are the dominant pollution source, contributingmore than 80%of surface PM2.5

concentrations across the southernAmazon during the dry season. Fires in the Amazon account for∼70%offire
emissions across our SouthAmerican domain and 12%of globalfire emissions.
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We found that the prevention of vegetation fires in the regionwould avert 641 000 (95UI: 551 900–741 300)
DALYs and 16 800 (95UI: 16 300–17 400) premature deaths due to the reduction in PM2.5 exposure across South
America. The greatest reduction in disease burden rates occurs in regions close to intense fire activity: Bolivia,
Paraguay, and thewestern states of Brazil, including Rondônia, Acre, andMatoGrosso, with 26%of the avoided
health burden locatedwithin the AmazonBasin.Wefind that exposure to PM from fires in the Amazon has a
similar public health impacts tofires in Equatorial Asia, which have beenmore extensively studied.Our analysis
highlights the substantial public health benefits that could be achieved through prevention of vegetation fires
across the Amazon. Futurework needs to quantify the air quality degradation specifically caused by fires
associatedwith deforestation and forest degradation, providing further evidence for the health benefits that
would result from reduced deforestation (Reddington et al 2015). The deforestation rate in theAmazon
increased from2014 to 2019withmore fires in 2019 compared to recent years (Barlow et al 2020). The future
frequency offire in theAmazonwill depend on land-use and climate change, with projected increases infire
occurrence of 20%–100%over the coming decades (Fonseca et al 2019). Achieving reductions infire in a hotter
and potentially drier Amazon (Boisier et al 2015)will require strong environmental governance.
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