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Abstract 

 

The canonical Hedgehog (Hh) signalling pathway is essential for vertebrate development and 

its uncontrolled activation is a common occurrence in human cancers. Hh signalling converges 

in the modification of a family of transcription factors, GLI1, GLI2 and GLI3, to orchestrate a 

cell type and context-specific transcriptional response. Despite binding to very similar 

responsive elements, the GLI family members can exert diverse and even opposing functions. 

A recent article by Tolosa et al. (Biochem. J. 477, 3131-3145, 2020) reveals an unexpected 

layer of complexity, through physical and functional interaction between GLI1 and GLI2. This 

commentary discusses the biological significance of the findings and incorporates them into 

an updated “GLI code”. 

 

  



The Hedgehog (Hh) signalling pathway has essential roles in patterning of the 

dorsoventral aspect of the central nervous system, digit specification, vasculogenesis, 

angiogenesis and lung branching in the vertebrate embryo (1). Postnatally, Hh signalling 

remains active in many stem and rapid proliferating progenitor cells, with constitutive activation 

often linked to tumourigenesis (1). The membrane protein PTCH1, which is the receptor for 

all three Hh ligands (SHH, IHH, and DHH), represses the G protein-coupled receptor 

Smoothened (SMO) in their absence. Binding of a Hh protein to PTCH1 relieves this inhibition, 

allowing SMO accumulation in the primary cilium and activation of the GLI family of 

transcription factors, composed of GLI1, GLI2 and GLI3. GLI2 and GLI3 are constitutively 

expressed, and the balance of their full length, transcriptional activator forms versus their 

processed, transcriptional repressor forms is regulated by signals from SMO. In contrast, GLI1 

lacks a repressor domain and its expression is only induced by GLI2 and GLI3, upon their 

activation. GLI1 acts as a transcriptional activator in concert with GLI2 to further amplify the 

Hh signal (2). Ruiz i Altaba’s group coined the term “GLI code” to convey the diverse functions 

of the three vertebrate GLI isoforms (Fig. 1) (3). In this model, GLI1 is exclusively a 

transcriptional activator; however, research in the past decade has shown a darker side of 

GLI1, uncovering its potential to serve as a transcriptional repressor of selected genes, such 

as ANO1, CDH1, AQP1 and SOCS1 (4-6). How can GLI1 mechanistically act as a repressor? 

Unlike its siblings GLI2 and GLI3, which encode four clusters of phosphorylation sites that are 

initially modified by PKA, subsequently becoming substrates for GSK3 and CK1, followed by 

ubiquitylation and partial proteasomal degradation, GLI1 has a reduced number of 

phosphorylation sites and no degron motifs (7, 8). GLI1 has been only found in full length form, 

and a repressive function could be explained by acquisition of such through physical 

interaction with the repressor form of GLI2 or GLI3. The possibility of the formation of 

heterodimers among the GLI family members has also been suggested by sporadic evidence 

of synergy between GLI1 and GLI2, despite the ability of all three isoforms to bind to the same 

responsive elements in the promoters of target genes, containing the canonical GLI binding 

sequence (GBS) GACCACCCA or slight variations of it (9-11). Indeed, all essential 

transcriptional functions of GLI2 can be replaced by GLI1 when expressed from the GLI2 

locus, and GLI1 is not essential for embryonic development. However, the role of GLI1 in 

maintaining cancer cells phenotype and/or in maintaining a stem-like state suggests a gain of 

function during tumour formation and progression that cannot totally be replaced by GLI2. A 

novel study by Tolosa et al. (6) sheds new light onto these questions and offers mechanistic 

explanations for the exceptions to the GLI code. 

The authors set out to investigate the nature of the cooperativity of GLI1 and GLI2 in 

the regulation of selected cancer-relevant genes that regulate cell growth (MYCN, CNND1, 

CNND2, E2F1 and CDK2) and survival (BCL2, XIAP, BIRC5) in pancreatic cancer cells and 



two non-transformed cell lines. In addition, they compared their transcriptional activity towards 

two GLI hallmark target genes, PTCH1 and PTCH2. The central question of the study was to 

distinguish whether dependence of GLI1 and GLI2 for expression of specific target genes is 

competitive in nature. Could only one of the two GLI isoforms binding to the same genomic 

elements at any given time, or could they function synergistically, through co-occupancy of 

the same promoters? 

Using a cellular model of pancreatic cancer (PANC1 cells), Tolosa et al. first 

demonstrated that GLI1 can physically interact with GLI2 and that this interaction does not 

require DNA binding. Partial deletion analysis revealed that the interaction requires the highly 

conserved C2H2 zinc finger domain (ZFs 1-5) of both GLI1 and GLI2, and an additional N- or 

C-terminal stretch of GLI2. A previous study had also shown evidence of GLI2/GLI3 and 

GLI3/GLI3 physical association, but not of GLI1/GLI3 (12). In that study the first two zinc 

fingers of GLI3 (ZFs 1-2) where used as bait to pull down C-terminally deleted GLI2 and GLI3, 

in agreement with the new finding of the requirement of the ZF domain for heterodimerisation 

of GLI1 and GLI2. The ZFs 3-5 of GLI1 were shown to mediate most of the contact with DNA 

in a crystal of the GLI1 ZF domain complexed to DNA containing a GBS (13), supporting the 

findings of that ZFs 1-2 serve as protein-protein interaction domains instead. In addition, older 

studies revealed that the three GLI family members can also interact through their ZF domain 

with – and their transcriptional activity enhanced - another family of C2H2-zinc finger 

transcription factors called ZIC1, ZIC2, and ZIC3 (12, 14). Altogether, these findings show the 

existence of GLI family heterodimers, GLI-ZIC family heterodimers, and possibly GLI 

homodimers, adding a new layer of complexity to the GLI code (Fig. 2).  

These findings also raise new interesting questions. For example, it seems 

theoretically possible that GLI1 can also associate with the repressor form of GLI2 (GLI2R), 

which includes the ZF domain, since the interaction between GLI isoforms does not require 

the most C-terminal domain lost in GLI2R. If so, would GLI1 act as a transcriptional activator 

or a repressor? Would they display intermediate activities that could translate the morphogen 

gradient of Hh ligands in vivo? Understanding if the dimers are competent to bind DNA, and 

they display differential transcriptional activity compared to individual monomers, will be 

essential to answer these questions.  

In agreement with the idea that different homo or heterodimers could preferentially 

bind to specific promoters, depletion of GLI1 or GLI2 in PANC1 cells or in pancreatic cancer 

associated fibroblasts resulted in differential downregulation of a number of GLI-target genes. 

While cell growth and survival genes such as BCL2, MYCN and CCND1 were similarly 

affected by depletion of either GLI1 or GLI2, others showed a skewed preferential reduction 

in the absence of one of the two GLIs. Of relevance to HH signalling, expression of the 

receptor and negative regulator PTCH1 seems to be exclusively under the control of GLI1, 



while expression of the homolog PTCH2, without capacity to transduce the Hh signal, is under 

the control of both GLI isoforms. One can speculate that the negative feedback exerted as a 

consequence of PTCH1 induction would be confined to a high threshold of active GLI1 

transcriptional activators, to prevent early signal termination. 

In agreement with the relative sensitivity to GLI1 or GLI2 silencing, chromatin 

immunoprecipitation of GLI1 and GLI2 showed promoter occupancy in line with the observed 

transcriptional activity. The PTCH1 promoter contained bound GLI1 but much lower levels of 

GLI2, while similar levels of GLI1 and GLI2 were detected in promoters of genes partially 

regulated by both isoforms. Nonetheless, when endogenous GLI1 was depleted by siRNA, 

the occupancy of GLI2 in the BCL2, MYCN and CCND1 promoters was strongly reduced, 

indicating a promoter-specific synergistic function. This intriguing result could not be explained 

by changes in total GLI2 levels or by significant changes in nuclear trafficking of GLI2, because 

occupancy of the PTCH1 promoter by GLI2 in the same cells was unaffected. Instead, this 

suggests that those growth and survival genes (cancer-associated genes) could be 

preferentially targeted by a GLI1/GLI2 heterodimer. However, binding of a heterodimer to DNA 

has not been proven yet, and will require future identification of mutants that abolish GLI1-

GLI2 contact without disrupting their binding to DNA, or their individual transcriptional activity.  

What does this novel information reveal about a potential biological role of the 

GLI1/GLI2 heterodimer? If heterodimers are competent to bind to DNA, as suggested by the 

lack of dissociation of the GLI1/GLI2 heterodimer by GANT61 and the functional and positional 

studies, they might fine-tune GLI transcriptional outputs. Another scenario is that GLI1/GLI2 

heterodimers differentially accumulate in the cell nucleus, either by increased nuclear shuttling 

or reduced exit, or have a different affinity to the Sufu chaperone (15). Furthermore, the 

heterodimers could be more resistant to phosphorylation by PKA, GSK3 and CK1, or less 

efficient ubiquitylation substrates. 

 All three GLI isoforms are substrates of extensive post-translational modifications 

(PTMs) that regulate their activity, stability, and subcellular localisation. In addition to the 

inhibitory phosphorylation by PKA, GSK3 and CK1, stimulation of their transcriptional activity 

by MEK, JNK, aPKC and other unknown kinases has been suggested (7, 16-18).  

Furthermore, acetylation, ubiquitylation and SUMOylation are known to regulate GLI activity 

and stability (19, 20). Does the dimerization of GLI transcription factors affect the repertoire of 

PTMs achievable? Is ciliary trafficking of GLI2 and GLI3 affected by potential dimerisation with 

each other? Finally, is dimerisation of GLIs a requirement for binding to DNA akin to bHLH 

type transcription factors clamping of DNA?  

 An oncogenic role for GLI1 and GLI2 has been reported by many independent studies 

in different cancer types. Only a selected group of malignancies – SHH-type medulloblastoma, 



basal cell carcinoma, and rhabdomyosarcoma - arise by constitutive activation of the 

canonical HH pathway through PTCH1, SMO, or SUFU mutations.  However, GLI1 is 

upregulated in many other cancer types and subtypes by SHH or IHH upregulation or by 

crosstalk with other cancer-associated signalling pathways, such as EGFR, IL6/STAT3, and 

TGF/SMAD signalling (3; 21-23). Silencing of GLI1 in cancer cells reduces cell proliferation 

and tumour growth, inhibits expression of stemness markers, and increases apoptosis (24-

27). In light of the new findings of Tolosa et al., an attractive hypothesis is that expression of 

some key oncogenic GLI1 target genes might not be achievable at a similar level by a 

redundant function of GLI2. 

 In summary, the new evidence indicates that the GLI code is much more complex than 

previously thought, through the existence of heterodimers of GLI in addition to GLI/ZIC dimers, 

whose characteristics are just beginning to be unveiled. Of particular interest is their role in 

tumorigenesis and the potential therapeutic effect of targeting the dimers interface.    
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Figure legends 

 

Figure 1. The canonical Hedgehog signalling response is mediated through the differential 

repressor and activator functions of the three GLI transcription factors. A concentration 

gradient of Hh ligands elicits step-wise changes in the modifications and processing of each 

isoform. Light blue rectangles represent the Zinc Finger (ZF) domain of GLIs, which mediate 

DNA binding to GLI-binding sequences (GBS) in the promoters of Hh-regulated genes.  

 

 

Figure 2. Updated model for the GLI code. The transcriptional output depends on the balance 

of the 1) expression level, 2) processing into repressor forms, 3) positive and negative 

posttranslational modifications, and 4) the presence of additional protein interactors. The 

gradient of Hh ligands regulates GLI1 expression and GLI2 and GLI3 PTMs and processing, 

while other signalling pathways activated by TGF- and EGFR alter the balance through 

upregulation of GLI2 and phosphorylation changes of GLI1 and GLI2. Based on the new 

findings of Tolosa et al. (6) and earlier reports, dimerization of GLI isoforms through their Zinc 

Finger (ZF) domain adds another level of transcriptional activity regulation. The proposed 

specific function of  various GLI homo- and heterodimers is indicated by their effects on target 

genes. GLI1/GLI2 dimers have been identified in (6). We propose the existence of other homo- 

and heterodimers (shaded shapes), based on reported biochemical interaction of the 

individual ZF domains, or unexpected functional outputs. Note: GLI1/GLI3 heterodimers are 

not included in the model because their ZF domains do not show interaction in the same 

assays. Light blue rectangles represent the Zinc Finger (ZF) domain of GLIs, which mediate 

binding to GBS elements and protein-protein interaction. 
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