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Balanced pure carving turns in alpine skiing1

Serguei S. Komissarov2

Department of Applied Mathematics3

The University of Leeds4

Leeds, LS2 9JT, UK5

Abstract6

In this paper we analyse the model of pure carving turns in alpine
skiing and snowboarding based on the usual assumption of approximate
balance between forces and torques acting on the skier during the turn.
The approximation of torque balance yields both lower and upper limits
on the skier speed, which depend only on the sidecut radius of skis and
the slope gradient. We use the model to simulate carving runs on slopes
of constant gradient and find that pure carving is possible only on slopes
of relatively small gradient, with the critical slope angle in the range
of 8◦ − 20◦. The exact value depends mostly on the coefficient of snow
friction and to a lesser degree on the sidecut radius of skis. Comparison
with the practice of ski racing shows that the upper speed limit and
the related upper limit on the slope gradient set by the model are too
restrictive and so must be the assumption of torque balance used in the
model. A more advanced theory is needed.

Keywords: alpine skiing, modelling, balance/stability, performance

7

Introduction8

When making their way down the hill, expert skiers execute complex coordi-9

nated body movements, often within a fraction of a second, which allow them to ski at10

speed and yet to remain in control. Their decisions are dictated by many factors, such11

as terrain, snow condition, equipment, etc. A ski racer faces additional challenges as12

a race course significantly reduces the freedom of choosing trajectory. There is a13

great deal of qualitative understanding of skiing techniques and race tactics based on14

the personal experiences of ski professionals, coaches and instructors (e.g. LeMaster,15

2010). However, this empirical knowledge is imprecise, very subjective and sometimes16

even subconscious, and this keeps the door open to misunderstanding, misconceptions17

and controversies.18
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Scientific approach can help to put the understanding of skiing on a more solid19

footing by using the well-tested basic principles of mechanics (including biomechan-20

ics) and exploring various aspects of physical interactions specific to skiing. In fact,21

there has already been a great deal of research in this area and a large number of inter-22

esting results can be found in various journals dedicated to sport, medicine, physics,23

engineering, etc. Basic theoretical principles are summarised in several monographs24

(e.g. Howe, 1983; Lind & Sanders, 1996). Although a significant progress has25

been made, we are still far from the point where researches can declare a complete26

understanding of the topic and provide a clear guidance to skiing enthusiasts and27

professionals. The main problem is that a skier and their equipment is a very com-28

plicated mechanical system with many degrees of freedom. In order to arrive to a29

treatable and comprehensible mathematical model, a great deal of simplification is30

required.31

The most basic approach is to treat the skier as a point mass moving under32

the action of the gravitational force, the snow reaction forces and the aerodynamic33

drag (Howe, 1983; Lind & Sanders, 1996). The snow reaction force is known34

to depend on the angle between the longitudinal axis of skis and their direction of35

motion, the so-called angle of attack. For example in order to brake and stop, skis36

are routinely pivoted to the angle of attack about 90◦. This force also depends on37

whether skis are flat on the snow or put at an angle with to it, called the edge angle.38

For example in order to halt side-slipping down the fall line, skiers increase the edge39

angle by increasing inclination of their body to the slope and/or its angulation. The40

inclination angle is also important for the lateral balance of skiers as deviation from41

the balanced inclination may result in a fall. In fact, in mathematical modelling of42

skiing it is commonly assumed that during straight runs, traversed runs, and even43

turns, skier’s body is in lateral balance. This dictates the position of their centre of44

mass (CM) over the skis and hence allows to introduce the ski edge angle into the45

dynamics of point mass (Howe, 1983; Lind & Sanders, 1996).46

At the over extreme we find more complex Hanavan-like models of skiers and47

their equipment, where they are represented by many rigid segments connected by me-48

chanical joints (Oberegger, Kaps, Mössner, Heinrich, & Nachbauer, 2010). While this49

approach is undoubtedly very useful in studying the ski-snow interaction (P. Federolf,50

Roos, Lüthi, & Dual, 2010; Mössner, Heinrich, Kaps, Schretter, & Nachbauer, 2008;51

Mössner, Heinrich, Kaps, Schretter, & Nachbauer, 2009; Mössner et al., 2006), the52

biomechanical response of a human body is very complex a hence very difficult to53

model accurately. It requires a significant element of artificial intelligence. Undoubt-54

edly, this is the future of computer modelling of skiing, but at the moment more basic55

models allowing simple interpretation and clear insights into the key factors of skiing56

dynamics seem more appropriate.57

The apparently lesser problem of the interaction between skis and snow is also58

complicated, and not only due to the non-trivial ski construction but also due to the59

existence of many different types of snow with their complex structure and physics.60
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Even for straight gliding one has to differentiate between the so-called dry friction,61

which arises in the case of direct contact of the ski base with the snow, and the62

wet friction, which arises due to meltwater lubrication of the ski base (e.g. Colbeck,63

1992; Nachbauer, Kaps, Hasler, & Mössner, 2016). In soft fresh snow and slush, the64

processes of snow compactification and plowing can be the dominant contributors to65

effective friction (e.g. Colbeck, 1992). On hard snow typical for machine-prepared66

pistes and race tracks, the snow-ski-edge interaction becomes important. This in-67

teraction may be analogous to that between a sharp hardened tool and a workpiece68

in machining operations (Brown, 2009; Merchant, 1945; Tada & Hirano, 2002).69

Indeed, ski racers meticulously keep the edges of their skis razor-sharp.70

A modern generic ski turn is hybrid in nature. It is initiated with pivoting71

skis towards the new turn direction and skidding, and it is finished as carving (e.g.72

LeMaster, 2010; Reid, 2010; Spörri, Kröll, Gildien, & Müller, 2016). At one73

extreme end of the distribution of hybrid turns, we have a pure skidded (or steered)74

turn, where a significant angle of attack is preserved from start to finish. The turning75

action of this turn arises due to the component of the snow reaction force which is76

normal to the direction of motion (Hirano, 2006; Nordt, Springer, & Kollár, 1999;77

Tada & Hirano, 2002). At the other extreme, we find a pure carved turn, where the78

angle of attack is almost zero and each ski moves along a curved groove it cuts in the79

snow. The groove curvature is determined by the geometry of the ski edge and the80

ski edge angle (Howe, 1983; Lind & Sanders, 1996). A simple way of determining81

the composition of a hybrid turn is via naked eye inspection of the tracks left by the82

skis on the snow. Where the tracks are wide, the turn is skidded, and where they83

are narrow, it is carved. The closer tracks are to narrow lines from start to finish84

the closer the turn is to a purely carved one. In terms of performance, the main85

advantage of carved turns is significant reduction of energy dissipation and hence86

increased speed.87

The advance of modern highly shaped skis has moved the focus of both competi-88

tive and high-performance recreational skiing from steered to carved turns. Nowadays89

even mass-produced skis are shaped, thus giving the opportunity to enjoy carving runs90

to all skiing enthusiasts. This has even made an impact on the way the alpine skiing91

is taught by some ski instructors, who now teach how to initiate a new turn not via92

pivoting but by rolling skis from edge to edge (e.g. Harb, 2006).93

The dynamics of carving turns has already received significant attention in the94

theory of skiing (Howe, 1983; Jentschura & Fahrbach, 2004; Lind & Sanders, 1996).95

Naively, one may think that skiers can change the edge angle of their skis at will and96

hence fully control the local shape (curvature) of their trajectory. However, this is not97

quite the case because the edge angle in largely dictated by the inclination angle of the98

skier, which is also an important parameter for skier’s lateral balance. For example, a99

stationary skier must stay more-or-less vertical to avoid falling to the one side or the100

other. If their whole body is aligned (or “stacked”) with the vertical direction then101

the ski edge angle equals the angle of the slope gradient. If their body is angulated102
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at their knees or hip, while keeping the CM above the skis, the edge angle is different103

but this variation is limited in amplitude. A similar analysis of skier’s balance during104

pure carving turns allows to derive a relatively simple equation which relates the edge105

angle and hence the local curvature of skier’s trajectory with their speed and direction106

of motion relative to the fall line (Howe, 1983; Jentschura & Fahrbach, 2004; Lind107

& Sanders, 1996). This so-called Ideal Carving Equation (ICE) removes the need108

for specifying the component of the snow reaction force responsible for the turning109

action, which is a significant gain. As a result, the motion of skiers’s CM can be fully110

determined in a model where only the gravity, dynamic friction and air resistance111

forces are explicitly taken into account.112

Testing the hypothesis that this simplified model adequately describes the dy-113

namics of carving turns is the main topic of this paper. In particular, Jentschura and114

Fahrbach (2004) discovered an upper limit on the skier speed imposed by ICE. They115

concluded that in slalom races the typical speed is below this limit and considered116

this as a justification of the model. By calculating the actual motion of a skier as117

governed by this model, one can trace the evolution of their speed and check the118

conditions under which it stays below the limit. This can be done not only for slalom119

but also for other race disciplines.120

Methods121

The characteristic scales of fall-line gliding122

Although recreational skiing can be very relaxed and performance skiing phys-123

ically most demanding, the dominant source of energy in both cases is the Earth’s124

gravity. The total available gravitational energy is125

U = mgh , (1)

where m is skier’s mass, g is the gravitational acceleration and h is the total vertical126

drop of the slope. If all this energy was converted into the kinetic energy of the skier,127

K = mv2/2, then at the bottom of the slope the speed would reach128

v =
√

2gh ≈ 227

(

h

200 m

)1/2

km/h . (2)

Although this not far from what is achieved in the speed skiing competitions where129

skiers glide straight down the fall line, the typical speeds in other alpine disciplines130

are significantly lower, indicating there are some forces working against gravity. Two131

of the candidates are the dynamic snow friction and the aerodynamic drag (Lind &132

Sanders, 1996).133

The friction force is antiparallel to the skier velocity vector v and its magnitude134

relates to the normal reaction force Fn. Although the physics of snow friction is quite135

complicated (e.g. Lind & Sanders, 1996), the basic Coulomb equation136

Ff = µFn , (3)
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is almost universally used both in describing the results of field studies and in mod-137

elling of ski runs (e.g. Lind & Sanders, 1996; Mössner et al., 2008; Nachbauer et138

al., 2016; Rudakov, Lisovski, Ilyalov, & Podgaets, 2010). The dynamic coefficient139

of friction µ depends on many factors, e.g. snow temperature, wax used and even140

the value of Fn, making the relation between Ff and Fn nonlinear (e.g. Nachbauer et141

al., 2016). Sometimes, even the effect of snowplowing in a skidded turn is described142

using the Coulomb law (Sahashi & Ichino, 1998), leading to very high values of the143

coefficient µ ≤ 0.3. For the purpose of our study it is sufficient to use constant µ and144

to address how its value affects the outcome of simulations.145

In the case of gliding down the fall line146

Fn = mg cosα , (4)

where α is the angle between the slope and the horizontal plane. Because the friction147

force does not depend on the skier’s speed, it cannot limit the speed but only reduces148

its growth rate. The aerodynamic drag force is also antiparallel to the velocity vector149

and has the magnitude150

Fd = κv2 where κ =
CdAρ

2
, (5)

where Cd is the drag coefficient, A is the cross-section area of the skier normal to151

the direction of motion and ρ is the mass density of the air (Lind & Sanders, 1996).152

The drag force grows with v and this results in speed saturation. The value of the153

saturation speed vs can be easily found from the energy principle. At this speed, the154

work carried out by the drag and friction forces over the distance L along the fall155

line,156

W = (Ff + Fd)L , (6)

must be equal to the gravitational energy U = mgh released over the same distance.157

This condition yields158

v2

s =
mg

κ
sinα(1 − µ cotα) (7)

(cf. Lind and Sanders (1996)). Incidentally, this result shows that the slope angle has159

to exceed αmin = arctan(µ). For the realistic value µ = 0.04 (Lind & Sanders, 1996),160

this gives αmin = 2.3o. Usually ski slopes are significantly steeper than this and the161

snow friction contribution is small. In this case, the saturation speed is determined162

mostly by the balance between the gravity and aerodynamic drag, which yields the163

characteristic speed scale164

Vg =

√

mg

κ
sinα . (8)

The time required to reach this speed under the action of gravity alone,165

Tg =
Vg

g sinα
=

√

m

κg sinα
, (9)
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is the corresponding characteristic time scale. The length scale166

Lg =
VgTg

2
=
m

2κ
(10)

is the corresponding distance along the slope. Interestingly, Lg does not depend on167

the slope gradient, which may not be very intuitive. Lind and Sanders (1996) state168

the values Cd = 0.5, m = 80 kg, A = 0.4 m2, and ρ = 1.2 kg/m3 as typical for downhill169

(DH) competitions. For these parameters170

Vg ≃ 150

√

sinα

sin 15◦
km/h , Tg ≃ 16

√

sin 15◦

sinα
s , Lg ≃ 0.33 km . (11)

These scales are well below the lengths of race tracks and durations of ski runs in all171

alpine disciplines, suggesting that Vg can be reached in all of them. For example, the172

length of Kitzbuhel’s famous DH track Streif is 3.3km (〈α〉 = 15◦) and the length of it173

slalom track Ganslern is 0.59km (〈α〉 = 19◦) (www.hahnenkamm.com). Although on174

some sections of downhill (DH) courses the skier speed can indeed approach Vg, with175

the current record of 162 km/h belonging to Johan Clarey (FIS WC race in Wengen,176

2013), the typical mean speed in DH is 〈v〉 ≃ 90 km/h, which is significantly lower177

than Vg (e.g. Gilgien, Spörri, Kröll, Crivelli, & Müller, 2014). In slalom (SL) it stays178

well below, only 40 − 50 km/h (e.g. Reid, 2010; Supej, Hebert-Losier, & Holmberg,179

2014), indicating that the applicability of the fall-line gliding model is rather limited.180

In equation (11) we used α = 15◦ as a typical mean gradient of red slopes. On steeper181

slopes, the limitation of the model is even more pronounced.182

Basic dynamics of alpine skiing183

Here we limit ourselves to the idealised case of a plane slope with constant184

gradient and introduce such system of Cartesian coordinates {x, y, z} associated with185

the slope that on its surface z = 0. The unit vectors parallel to the coordinate186

axes will be denoted as {i, j,k} respectively. For convenience, we direct the y-axis187

along the fall line, pointing downhill. We also introduce the vertical unit vector188

s = − sin(α)j + cos(α)k, so that the gravitational acceleration g = −gs (see figure189

1).190

When only the gravity, normal reaction, dynamic friction and aerodynamic drag191

forces are taken into account, the second law of Newtonian mechanics governing the192

motion of skier’s centre of mass (CM ) reads193

m
dv

dt
= Fg + Ff + Fd + Fn , (12)

where194

Fg = mg , Ff = −µFnu , Fd = −kv2u (13)
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Figure 1 . Geometry of the slope. Left panel: The vertical section of the slope along
the fall line. Right panel: The slope as seen at an angle from above. The curved line
in the middle is the skier trajectory.

are the total gravity, friction, aerodynamic drag, and snow reaction force acting on195

the skier, respectively, and Fn is the normal reaction. In these expressions, u is the196

unit vector in the direction of motion. It is convenient to introduce the angle of197

traverse β as the angle between −i and u for the right turns and between i and u198

for the left turns of a run (see figure 1). With this definition,199

u = ∓ cos(β)i + sin(β)j (14)

where the upper sign of cos β corresponds to the right turns and the lower sign to the200

left turns (we will use this convention throughout the paper).201

The normal reaction force Fn is not as easy to describe as the other forces.202

First, unless the skis are running flat on the slope, this force is normal not to the203

slope surface but to the contact surface between the snow and the skis, which is not204

the same thing. When skis are put on edge, they carve a platform (or a step) in the205

snow and the normal reaction force is normal to the surface (surfaces) of this platform206

(LeMaster, 2010). Second, the effective weight of the skier is determined not only by207

the gravity but also by the centrifugal force, which depends on the skier speed and208

the local curvature of their trajectory.209

Since the velocity vector v = vu we have210

dv

dt
= u

dv

dt
+ v

du

dt
. (15)

Ignoring the up and down motion of CM, we can write du/dt = c|dβ/dt|, where c is211

the centripetal unit vector which points towards the local centre of curvature of the212

CM trajectory. Hence,213

dv

dt
= u

dv

dt
+ vc

∣

∣

∣

∣

∣

dβ

dt

∣

∣

∣

∣

∣

. (16)
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Since dt = dl/v, where l is the distance measured along the skier trajectory, the last214

equation can also be written as215

dv

dt
= u

dv

dt
+
v2

R
c , (17)

where216

R =

∣

∣

∣

∣

∣

dl

dβ

∣

∣

∣

∣

∣

(18)

is the ( local ) radius of curvature of the trajectory. Hence, we can rewrite equation217

(12) as218

mu
dv

dt
+
mv2

R
c = Fg + Ff + Fd + Fn . (19)

Scalar multiplication of equation (19) with u delivers the equation governing219

the evolution of skier’s speed. Since u · c = 0 , u · u = 1 , u · s = − sinα sin β,220

this equation reads221

dv

dt
= g sinα sin β − µ

Fn

m
− k

m
v2 . (20)

The normal reaction force can be decomposed into components parallel to c and222

k:223

Fn = Fn,cc + Fn,kk . (21)

The scalar multiplication of equation (19) and k immediately yields224

Fn,k = mg cosα . (22)

Thus, the normal to the slope component of the snow reaction force Fn is the same225

as in the case of the fall-line gliding. This is what is needed to match exactly the226

normal to the slope component of the gravity force and hence to keep the skier on227

the slope.228

Since c = ± sin(β)i + cos(β)j, (see figure 2) and hence (s · c) = − sinα cos β,229

the scalar multiplication of equation (19) with c yields230

Fn,c =
mv2

R
−mg sinα cos β . (23)

This component of the normal reaction force is stronger in the lower-c part of the231

turn (90◦ < β < 180◦), where the angle between the gravity force and the centrifugal232

force is less than 90◦, and weaker in the upper-c part of the turn (0◦ < β < 90◦),233

where this angle is more than 90◦ (the terminology is from Harb (2006)).234

The total strength of Fn (and hence the effective weight of the skier) is235

Fn =
mg cosα

cos Φ
, (24)
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Figure 2 . The centripetal unit vector c for left and right turns.

where Φ is the angle between Fn and the normal direction to the slope k, given by236

tan Φ =
Fn,c

Fn,k
=

v2

gR

1

cosα
− tanα cos β . (25)

In the case of fall-line gliding, Φ = 0◦ and this equation reduces to the familiar237

Fn = mg cosα, as expected.238

Formally, equations (22,23) can be written as one vector equation239

Fn + Fc + Fg,lat = 0 , (26)

where240

Fg,lat = −(mg cosα)k + (mg sinα cos β)c (27)

is the lateral (normal to u) component of the gravity force and241

Fc = −(mv2/R)c (28)

is the centrifugal force. Equation (26) also holds in the accelerated (non-inertial)242

frame of the skier where Fc emerges as an inertial force. In this frame, the skier is at243

rest and equation (26) has the meaning of lateral force balance. As any inertial force,244

the centrifugal force has the same properties as the gravity force and their sum plays245

the role of effective gravity experienced by the skier. Introducing the lateral effective246

gravity247

Fg,eff = Fg,lat + Fc , (29)

equation (26) can be written as248

Fn + Fg,eff = 0 . (30)

The effective weight Fn is often measured in the units of the standard weight249

mg, in which case it is also called the g-force. Using equation (24), we find250

g-force =
cosα

cos Φ
. (31)

The expressions (24,25) for the strength and direction of Fn do not allow to close251

the system. Indeed, they involve the turn radius R which still remains undetermined.252
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Radius of balanced carving turn253

In the mechanics of solid bodies, by a balance we understand not only vanishing254

combined (total) force but also vanishing combined torque (Landau & Lifshitz, 1969).255

Although skiers are not exactly solid bodies, torques are still important in their256

dynamics. Here we focus on the lateral balance of skiers, that is the balance in the257

plane normal to the skier speed (the so-called frontal plane; LeMaster, 2010). The258

two forces parallel to this plane are the effective gravity Fg,eff and the normal reaction259

Fn. The effective gravity is applied directly at the CM, whereas the normal reaction260

force is applied at the skis and most of it originates from the inside edge of the outside261

(relative to the turn arc) ski (LeMaster, 2010). Hence, the condition of vanishing262

torque implies that both Fg,eff and Fn must act along the line connecting CM with263

the inside edge of the outside ski (see figure 3). In other words, the angle between264

this line, which we will refer to as the lever arm, and the slope normal, which is called265

the skier inclination angle, must be equal to the angle Φ given by equation (25).266

As a first step, here we focus on the case where the skier is “stacked”, which267

means that in the frontal plane their legs are aligned with their torso in the frontal268

plane. In this case, skier’s CM is located about their belly button and the lever arm269

is normal to the ski base, provided skier’s boots are properly adjusted (the so-called270

canting of ski boots; LeMaster, 2010). Hence, the angle Ψ between the ski base271

and the slope, which we will call the ski edge angle (see figure 3), equals the skier272

inclination angle273

Ψ = Φ . (32)

The running edge of a flattened carving ski is close to an arc of a circle. The274

radius of this circle is called the ski sidecut radius, Rsc. When the ski is placed at275

the edge angle Ψ to a hard flat surface and then pressed in the middle so it bends276

and comes into contact with the surface, its edge can still be approximated as an arc277

but of a smaller radius278

Re = Rsc cos Ψ (33)

(Howe (1983), Lind and Sanders (1996), and Appendix A). In pure carving turns,279

there is no side-slippage (skidding) and the ski is transported along the contact edge.280

This makes the edge curvature radius Re the same as the local curvature radius of281

the ski trajectory.282

Strictly speaking, this relation is based on the assumption that the penetration283

of snow surface by skis is negligibly small, which is best satisfied on an icy race track.284

If however the snow is soft, and hence the penetration is significant, it is important285

to know how the penetration depth is distributed along the ski. As the pressure286

distribution normally peaks under skier’s foot, one may expect the penetration to287

be deepest near the ski midpoint. Assuming that both the tip and the tail ends of288

the running edge remain on the surface, Howe (1983) derived a modified version of289

equation (33), which includes the penetration depth as a parameter and leads to a290
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CM

F

k

F

Fn

g,eff

Y

Figure 3 . Lateral balance of a stacked (un-angulated) skier. The normal reaction force
Fn and the effective gravity force Fg,eff act along the line connecting CM with the
inside edge of the outside ski, which results in vanishing torque. The skier inclination
angle Φ is the same as the ski edge angle Ψ. This configuration corresponds to the
lower-c part of the turn.

smaller value for Re. From the basic geometry of the problem it follows that the291

effect is significant when the width of the groove platform, on which the ski is resting,292

becomes comparable to the ski sidecut hsc, which is about 20 mm for a slalom ski.293

Although his analysis is fine for a stationary ski, the snow plasticity ensures that294

the ski tail does not return to the surface but instead glides over the platform made295

in the snow by the forebody of the ski, thus leading to a higher radius than that296

predicted by the modified Howe equation. Moreover, the finite-element model of297

the ski-snow interaction by M. Federolf, Lüthi, Roos, and Dual (2010) predicted the298

turn radius which for Ψ > 50◦ was even larger than that given by Howe’s formula299

with zero penetration. They speculated that this was due to the higher local sidecut300

radius of the ski afterbody. To the contrary, in the field study of turns performed by301

members of the Norwegian national team, Reid, Haugen, Gilgien, Kipp, and Smith302

(2020) found a good agreement with equation (33) up to Ψ ≃ 70◦.303

A differential twisting (torsion) of the ski about its longitudinal axis, leading to304

lower value of Ψ at its tip and tail compared to the mid-ski position, increases Re.305

However, this effect is likely to be marginal. Yoneyama, Scott, Kagawa, and Osada306

(2008) measured the deflection angle at the ski tip during a ski run to be δΨ ≤ 2◦
307

and concluded that it had little effect on the geometry of the running edge. Indeed,308

the effective sidecut of the edge is reduced by δh ≃ d(1 − cos δΨ), where d is the309

half-width of the ski at the tip. Even for δΨ as high as 10◦ and d = 60 mm this leads310

to δh ≈ 0.9 mm.311
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Obviously, the applicability of Howe’s formula (33) has to be clarified. In our312

study we adopt it, keeping in mind that it may be sufficiently accurate only for icy313

snow.314

The ski trajectory is not the same as the CM trajectory. It is longer and315

in general has higher curvature (e.g. LeMaster, 2010), and so R > Re. This is316

particularly pronounced in short slalom turns (e.g. Reid, 2010; Supej et al., 2014).317

However, the separation between the trajectories is limited by the length of skier318

leg and for sufficiently wide turns we may assume that R ≈ Re. Hence, combining319

equations (33) and (25) with the balance condition Φ = Ψ, we find320

(

(

Rsc

R

)2

− 1

)1/2

=
v2

gR

1

cosα
− tanα cos β . (34)

This is a different form of equation (10-1) in Howe (1983) and it is called by Jentschura321

and Fahrbach (2004) the Ideal-Carving Equation (ICE). It defines R as a function of322

skier’s velocity and therefore allows to close the CM equations of motion.323

According to equation (33), R is a monotonically decreasing function of Ψ. It is324

easy to see that R → Rsc as Ψ → 0 and hence the turn radius of marginally edged ski325

is about Rsc. At the other end of the range, R → 0 as Ψ → 90◦, which does not make326

much sense and reflects the approximate nature of (33). Obviously, there is a limit327

to how much a ski can be bent before it breaks. If rb = R/lski is the radius of ski328

curvature at the breaking point measured in ski lengths, then we have the constraint329

cos Φ > rb(lski/Rsc). For a slalom ski with lski = 1.65 m and Rsc = 13 m and the330

fairly reasonable rb = 2, this yields the condition on the ski edge angle Ψ < 75◦.331

Another upper limit is set by the g-force which builds up during the turn.332

According to LeMaster (2010) the best athletes can sustain the g-force up to about333

three. According to equation (31), this leads to the condition Φ < 70◦ (for the realistic334

slope gradient angle α = 15◦).335

Finally, as Φ increases so does the tangential to the slope component of the336

effective gravity. This is effectively a shearing force acting on the snow. Above a337

certain level it will cause snow fracturing, loss of grip and skidding (Mössner et al.,338

2009; Mössner et al., 2013). The snow shear stress S relates to Fn,c via339

Fn,c = lskieS , (35)

where e is the snow penetration depth in the direction normal to the slope. The340

snow fractures when the shear stress exceeds the critical value Sc. Based on equation341

(35) alone one might naively expect that Sc sets a lower limit on the snow penetra-342

tion. However, this ignores the fact that the penetration is dictated by the normal343

component Fn,k of the same force. These are related via344

Fn,k = HV , (36)
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where V = lskie
2/2 tan Ψ is the volume of the imprint made by the ski in the snow345

and H is the hardness parameter of the snow (Mössner et al., 2013). Combining346

equations (35,36,32) one finds347

e <
2Sc

H
, (37)

which is an upper limit on the penetration, contrary to the naive expectation. This
can be turned into the condition on the skier inclination angle. Indeed, using equa-
tions (22,32,36) one finds

e2 =
2mg cosα tan Φ

Hlski

and, upon the substitution of this result into equation (37), the condition348

tan Φ <
2S2

clski
mgH cosα

. (38)

According to the analysis in Mössner et al. (2013), a well-prepared race track can be349

attributed with Scr ≈ 0.52 N mm−2 and H ≈ 0.21 N mm−3. Using these values along350

with m = 70 kg, lski = 165 cm and α = 15o we obtain e < 5 mm and Φ < 81◦. Thus,351

all three conditions yield approximately the same upper limit on Φ.352

Looser snow will fracture under much lower shear stress, thus allowing only353

small-inclination carving. For example, in their sophisticated multi-body simula-354

tions, which incorporated a multi-segment ski model, Mössner et al. (2008) used355

H = 0.01 N mm−3 and Scr = 0.03 N mm−2 and observed a transition to skidding dur-356

ing the very first turn. As the turn progressed, the inclination angle of effective gravity357

increased from Φ = 0◦ to Φ ≈ 45◦. For these snow parameters, lski = 165 cm and358

m = 72 kg, used in their simulations, equation (38) yields the critical angle Φc = 24◦,359

which is consistent with the simulation results.360

Speed limits imposed by the Ideal Carving Equation361

Equation (34) can be written as362

(

ξ2 − 1
)1/2

= aξ + b , (39)

where ξ = Rsc/R, a = v2/gRsc cosα and b = − cos β tanα. From the definitions363

it follows that ξ ≥ 1, a > 0 and |b| < tanα. The right-hand side of (39) is the364

linear function g(ξ) ≡ tan Ψ(ξ) = aξ + b which monotonically increases with ξ. The365

left-hand side of (39) is the radical function f(ξ) ≡ tan Φ(ξ) =
√
ξ2 − 1 which also366

monotonically increases with ξ. Moreover, since f ′′ = −1/
√
ξ2 − 1 < 0, f ′ decreases367

monotonically from +∞ at ξ = 1 to 1 as ξ → +∞.368

Whether the solutions to (39) exist or not critically depends on whether a < 1369

or a > 1. The critical value a = 1 corresponds to v = Vsc where370

Vsc =
√

gRsc cosα (40)
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1
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tan F(x)

Figure 4 . Finding roots of the ideal carving equation (ICE). The solid line shows
tan Ψ(ξ) =

√
ξ2 − 1 and the dashed lines tan Φ(ξ) = aξ + b. The roots of ICE are

given by the intersection points of the curves. Left panel: The case a > 1. Depending
on the value of b, one can have none, one or two roots. Right panel: The case
0 < a < 1. Now one can have either one root or none.

(cf. Jentschura & Fahrbach, 2004).371

When a < 1 (v < Vsc), the gradient of g(ξ) is lower than the asymptotic gradient372

of f(ξ) and as illustrated in the right panel of figure 4 there is either one solution373

or none. The solution exists when a + b ≥ 0, which includes the case of b > 0 and374

hence there is always a unique solution for the lower-c part of the turn. This solution375

disappears when a + b < 0 which implies negative b and hence the upper-c part of376

the turn. In terms of the turn speed and the angle between the skier velocity and the377

fall line, γ = |β − 90◦|, the existence condition reads378

sin γ ≤ v2

gRsc sinα
. (41)

Thus, for sufficiently low speeds, namely v2 < gRsc sinα, carving is possible only close
to the fall line. In order to understand this result, consider a stationary skier whose
skis point perpendicular to the fall line. In order to stay in balance the skier has to be
aligned with the vertical direction and this implies ski edging which is consistent with
the lower-c part of the turn only. Hence, if the skier is pushed forward just a little bit
then their trajectory will turn not downhill but uphill. To turn downhill the skis must
be at least flat on the snow (or marginally edged) in which case they carve an arc of
the radius R = Rsc. The balance condition (26) then implies that the corresponding
centrifugal force mv2/Rsc must be high enough to balance the centripetal component
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of the gravity force mg sinα cos β. This yields the speed

v2 = gRsc sinα sin γ ,

in agreement with condition (41).379

When a > 1 (v > Vsc), the gradient of g(ξ) is higher than the asymptotic
gradient of f(ξ) and as one can see in the left panel of figure 4 there are three distinct
possibilities. If g(1) = a + b < 0 then there exists one and only one root. As we
increase b above −a, then initially there are two roots but eventually they merge and
disappear. The bifurcation occurs at the point ξc where

g(ξc) = f(ξc) and g′(ξc) = f ′ξc) .

Solving these two simultaneous equations for ξc and bc, we find that380

bc = −(a2 − 1)1/2 and ξc =
a

(a2 − 1)1/2
. (42)

There are no solutions when b > bc, which includes all positive values of b and hence381

the whole lower-c part of the turn. This means that at such high speeds balanced382

carving turns are impossible.383

What are the indications that a skier is about to hit the speed limit Vsc? Con-
sider the entrance point to the lower-c part of the turn. At this point β = 90◦, b = 0
and hence equation (39) reads

(

ξ2 − 1
)1/2

= aξ .

Its solution

ξ =
1√

1 − a2
→ ∞ as a → 1 .

Thus the turn becomes very tight (formally R → 0) and the skier’s body close to
horizontal (formally Φ → 90◦). On approach to this point something will give up. As
we discussed earlier this will be either the skis, the skier’s legs or the snow resistance
to the applied shearing force. If however the speed limit is exceeded in the upper-c
part of the turn, there may not be such a clear indicator. In fact, after this the turn
can be continued for a while until it reaches the critical traverse angle βc where

cos βc = cotα

(

(

v

Vsc

)4

− 1

)1/2

and384

tan Φc =

(

(

v

Vsc

)4

− 1

)−1/2

(43)

(see equations 42). When v grows slowly at the point of going over Vsc, the loss385

of balance occurs close to the fall line at extreme inclination angles. If however the386
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growth is fast, v may significantly overshoot Vsc quite early in the upper-c part of387

turn. In this case the loss of balance may also occur early and at Φ significantly below388

90◦.389

Figure 4 shows that when v > Vsc no balanced position exists because for any390

turn radius Φ > Ψ. The effective gravity is not directed along the lever arm but391

points away from it, resulting in non-vanishing net torque about the point where the392

carving ski is “pinned” to the snow. This torque pushes the skier body away from393

the slope towards the position with zero inclination.394

It is easy to show that395

Vsc = Vg

(

Rsc

Lg tanα

)1/2

. (44)

For the typical parameters of slalom competitions, this gives396

Vsc = 0.3Vg

(

Rsc

13 m

)1/2
(

Lg

200 m

)−1/2 (
tanα

tan 20◦

)−1/2

. (45)

Thus, for carving turns in slalom Vsc is significantly smaller than the characteristic397

speed Vg (see equation 8) set by the aerodynamic drag. This suggests that pure carv-398

ing turns are normally impossible for the typical parameters of slalom competitions399

and the racers have to shave their speed via skidding on a regular basis. The only400

exceptions are probably (i) low gradient sections of the track where the last factor401

of equation (45) can be sufficiently large, (ii) the first few turns right after the start,402

where the speed has not yet approached Vsc and (iii) the few turns at the transitions403

from steep to flat part of the race track. In the last case, Vsc significantly increases404

at the transition, giving to the racer the opportunity to increase their speed as well.405

It is easy to verify that the situation is quite similar in other race disciplines.406

Stability407

The equilibrium of a stacked skier who keeps all the load on the outside ski408

is similar to that of an inverted pendulum and hence unstable (Lind and Sanders409

(1996), Appendix B). However, skiers have ways of controlling this instability. Lind410

and Sanders (1996) discuss the stabilising arm moment, similar to what is used by411

trapeze artists. Ski poles can provide additional points of support when planted into412

or dragged against the snow. Some control can be provided by the body angulation413

(Appendix B). Finally and presumably most importantly, when both skis are suffi-414

ciently wide apart and loaded, instead of the unique balanced inclination angle we415

have a continuum of balanced positions (see Appendix B) and so small perturbations416

just shift the skier to nearby equilibria. Moreover, this gives to skiers a simple way417

of controlling their inclination angle – via relaxing and extending their legs.418
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Dimensionless equations of carving turn419

It is common practice of mathematical modelling to operate with dimensionless
equations, which are derived using a set of scales characteristic to the problem under
consideration, instead of standard units. This leads to simpler equations which are
easier to interpret and to the results which are at least partly scale-independent.
Since in ideal balanced carving the speed must stay below Vsc this is a natural speed
scale. Because the turn radius is limited by Rsc this is a convenient length scale.
The corresponding time scale is Tsc = Rsc/Vsc. In order to derive the dimensionless
equations of balanced carving we now write

v = Vscṽ , t = Tsct̃ , R = LscR̃ ,

substitute these into the dimensional equations and where possible remove common420

dimensional factors. Finally, we ignore tilde in the notation. In other words, we do421

the substitutions v → Vscv, t → Tsct, R → RscR and then simplify the results. For422

example, the substitution v → Vscv into the equation (7) gives the dimensionless423

equation for the saturation speed of fall-line gliding424

vs = Sr
√

1 − µ cotα , (46)

which includes the dimensionless speed parameter Sr = Vg/Vsc. Similarly, we deal425

with other dimensional variables should they appear in the equations, e.g. x → Rscx426

and y → Rscy. In particular, the application of this procedure to (20) gives the427

dimensionless speed equation428

dv

dt
= sin β tanα− µ

R
− Kv2 , (47)

where429

K =
Rsc

Lg
, (48)

is a dimensionless parameter which we will call the dynamic sidecut parameter. The430

g-force can be written as431

g-force =
cosα

R
. (49)

The dimensionless ideal-carving equation (34) reads432

(

1

R2
− 1

)1/2

=
v2

R
− cos β tanα . (50)

The equation governing the evolution of β follows from equation (18) upon the sub-433

stitution dl = vdt. It reads434

dβ

dt
=
v

R
(51)



CARVING TURNS IN SKIING 18

and the dimensionless skier coordinates can be found via integrating435

dx

dt
= ∓v cos β , (52)

where we use the sign minus for right turns and the sign plus for left turns, and436

dy

dt
= v sin β . (53)

Equations (47-53) determine the arc of a carving turn and the skier motion437

along the arc. What they do not tell us is when one turn ends and the next one438

begins. These transitions have to be introduced independently. In this regard the439

angle of traverse is a more suitable independent variable than the time because its440

value is a better indicator of how far the turn has progressed. Replacing t with β441

via equation (51) we finally obtain the complete system of equations which we use to442

simulate carving runs in this study. It includes three ordinary differential equations443

dv

dβ
=
R

v

(

sin β tanα− µ

R
− Kv2

)

, (54)

444

dx

dβ
= ∓R cos β , (55)

445

dy

dβ
= R sin β , (56)

and the constitutive equation446

(

1

R2
− 1

)1/2

=
v2

R
− cos β tanα . (57)

The definition of β implies that it increases both during the left and the right447

turns, but not in the transition between turns. In our simplified model of the transi-448

tion, the direction of motion u remains unchanged and hence the angle of traverse has449

to change from β to 180◦ − β. According to equation (57) this implies a jump in the450

local turn radius and hence the skier inclination. As a result, during the whole run,451

which may consist of many turns, β remains confined between 0◦ and 180◦, provided452

each turn terminates before going uphill.453

Finally, we observe that equations (54) and (57) do not involve x and y and hence454

can be solved independently from equations (55-56). However, all these equations455

should be integrated simultaneously when we are interested in a skier’s trajectory.456

Equation (51) should be added as well when we need to know the run evolves in time.457
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Results458

Here we present the results of our study of ideal carving runs as described459

by equations (54-57) with instantaneous transitions between turns. At the start we460

specify the initial angle of traverse βini and speed vini, achieved during the run-461

up phase. Each turn is terminated when the traverse angle reaches a given value,462

denoted as βfin. Hence, beginning from the second turn, all turns are initiated at463

βini = 180◦ − βfin. Initially we focus on the effect of slope steepness and fix the464

sidecut parameter to K = 0.0325 and the coefficient of friction to µ = 0.04. For the465

aerodynamic length scale Lg = 200 m this corresponds to SL skis with the dimensional466

radius of Rsc = 13 m. Later we discuss the effect of sidecut radius as well.467

Gentle slope468

First we consider a slope with α = 5◦. For such a gentle (“flat”) slope, the469

speed of fall-line gliding saturates at vs = 0.737Vg. However, the speed limit Vsc =470

0.612Vg < vs, indicating that the skier speed may eventually exceed Vsc.471

Here we present the results for the run with xini = yini = 0, βini = 0.3π (54◦),472

vini = 0.49Vsc (0.3Vg) and βfin = 0.9π (162◦). Figure 5 shows the trajectory of this473

run, which exhibits a rather slow evolution of the turn shape. This agrees with the474

data presented in Figure 6, which shows the evolution of R, v, Φ and the g-force475

for the first 20 turns. Indeed, the turn radius does not vary much along the track.476

Moreover, although each next turn is not an exact copy of the previous turn, for each477

of the variables we observe convergence to some limiting curve, which will refer to as478

the asymptotic turn solution. In practical terms, well down the slope each next turn479

becomes indistinguishable from the previous one. This is reminiscent of the so-called480

limit cycle solutions in the theory of dynamical systems.481

Interestingly, the speed of the asymptotic solution remains well below vs and482

even below Vsc, with the mean value 〈v〉 ≈ 0.75Vsc. This is due to the higher work483

done by the friction force compared to the fall-line gliding because of 1) the longer484

trajectory of this run compared to the straight fall line and 2) the fact that the485

effective weight of skier is higher than mg, leading to higher friction force. In order486

to verify this explanation one can use the equilibrium version of the speed equation487

(54)488

〈sin β〉 tanα− µ〈 1

R
〉 − K〈v2〉 = 0 , (58)

where 〈A〉 stands for the mean turn value of the quantity A. According to figure 6,
〈1/R〉 = 〈g-force〉/ cosα ≈ 1.2 whereas 〈sin β〉 can be estimated via

〈sin β〉 =
1

0.8π

0.9π
∫

0.1π

sin(β)dβ ≈ 0.796 .

Substituting the estimates into equation (58), we find 〈v〉 ≈ 0.8Vsc, which is quite489
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Figure 5 . The first few turns of the flat-slope run (α = 5◦).

close to what we see in the numerical data. For Rsc = 13 m, the corresponding490

dimensional value is 〈v〉 ≈ 27 km/h.491

Moderately steep slope492

Here we deal with a slope with α = 15◦. For this slope vs = 0.922Vg and493

Vsc = 0.35Vg is now significantly below vs. Figure 7 shows the trajectory of the run494

with the same initial parameters and βfin as in the case of flat slope. On can see495

that now the turns are much shorter and not so rounded, with the individual turn496

shape reminiscent of the letter “J”, rather than “C” . Figure 8 shows the evolution of497

R, v, Φ and the g-force for the first 20 turns of this run. Like in the flat-slope case,498

the solution converges to an asymptotic one but now this occurs very quickly – the499

individual turn curves become indistinguishable beginning from the forth turn. The500

top-left panel of figure 8 confirms that on average the turn radius is significantly lower501

than in the flat run. Moreover, it varies dramatically, from R ≈ 0.6Rsc at the turn502

initiation down to R ≈ 0.12Rsc soon after the fall-line. The latter is approximately503

1.6m (one SL ski length) when the solution is scaled to Rsc = 13m.504

Rather surprisingly, the speed of the asymptotic solution still remains below Vsc,505

but only just, and well below Vg. The latter shows that contrary to the expectations506

based on the analysis of fall-line gliding, in this slalom run the aerodynamic drag is not507

the dominant factor in determining the saturation speed. The reason is the extremely508

high effective weight and hence the friction force. According to Figure 8, 〈1/R〉 ≈ 5509

and 〈v〉 ≈ 1. Hence, in equation (58) the geometric term 〈sin β〉 tanα ≈ 0.213, the510

friction term 〈µ/R〉 ≈ 0.2 and the aerodynamic drag term K〈v2〉 ≈ 0.03. Thus, the511

geometric and the friction terms almost balance each other, whereas the contribution512

of the aerodynamic drag is small.513

The corresponding dimensional value of the mean skier speed in the asymptotic514

solution is v ≈ 35 km/h, which is not that far below the typical speed of slalom515

competitions. However, the inclination angle of this run reaches very high values,516

Φ ≈ 80◦ in the lower-c part of the turn and the g-force is extremely high. This shows517
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Figure 6 . Evolution of R(β), v(β), Φ(β) and Fn for the flat-slope run (α = 5◦)
during the first 20 turns. In each of these plots, there are 20 curves which show
the evolution of these variables during each turn. Each such curve (except the one
corresponding to the first turn which originates at β = 0.3π) originates at β = 0.1π
(the turn initiation point) and terminated at β = 0.9π (the turn completion point).
The transition between turns is a jump from the termination point of the previous
turn to the initiation point of the next turn. In the R-panel this transition is a jump
to the lower curve and in the v-, Φ- and Fn-panels to the upper curve.
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Figure 7 . The first few turns for the moderately steep slope (α = 15◦).

Figure 8 . The same as in figure 6 but for the moderately steep slope (α = 15◦).
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Figure 9 . The trajectories of ideal carving runs on the α = 13◦ slope with slalom
(solid), giant slalom (dashed) and downhill (dash-dotted) skis.

that in this run we are beyond what is achievable in practice.518

For a steep slope with α = 35◦, Vsc is reached very quickly and the carving run519

cannot be continued beyond the first turn.520

The approximate similarity of balanced carving runs521

How different are the carving turns in different alpine disciplines? The equations522

of carving turn (54–57) have only three dimensionless parameters that modify these523

equations and hence their solutions – the coefficient of dynamic friction µ, the slope524

angle α and the dynamic sidecut parameter K = Rsc/Lg ≪ 1. If K was negligibly525

small then the equations would be practically non-dependent on Rsc. This means526

that for the same slope angle and coefficient of friction (the same snow conditions527

and wax), the slalom and downhill carving runs would be just scale versions of each528

other, with the trajectory scaling as ∝ Rsc, skier’s speed as ∝ Vsc ∝
√
Rsc and the529

g-force and inclination angle both remaining unchanged.530

Equation (54) tells us that a higher value of K leads to a lower speed in the531

asymptotic solution. Because of this and the fact that K ∝ Rsc, the expect v/Vsc532

to be actually a bit smaller for a discipline where skis have larger Rsc. If so then533

equation (57) ensures a larger R/Rsc, equation (49) a weaker g-force and equation534

(33) a smaller inclination angle. To check this, we compared solutions corresponding535

to SL, GS (giant slalom) and DH skis for α = 13◦ and µ = 0.04. Figure 9 shows536

the dimensionless trajectories of these runs in the asymptotic regime. Although they537

are relatively similar they are still not exact copies of one another, with larger K538

yielding longer and smoother turns as expected. Figure 10 shows the behaviour of539

other parameters which also agrees with our expectations.540

In the speed equation (54), K is the coefficient of the aerodynamic drag term541

Kv2. Hence, we the deviation from the simple scaling found in the case K = 0 reflects542
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Figure 10 . The asymptotic turn parameters for ideal carving runs on the α = 13◦

slope with slalom (solid), giant slalom (dashed) and downhill (dash-dotted) skis.

the variation in the relative importance of the aerodynamic drag. Its role increases543

as we move from SL towards DH, which is a well-known fact.544

The snow friction and the critical slope gradient545

We extended the study described in the previous sections in order to determine546

the critical slope steepness αc,t above which pure balanced carving is impossible for547

SL, GS and DH skis even theoretically (v exceeds Vsc). The result is548

αc,t =















17◦ for K = 0.0325 (13m) ,

19◦ for K = 0.0875 (30m) ,

21◦ for K = 0.1250 (50m) ,

(59)

where in the brackets we show the dimensional sidecut radius corresponding to Lg =549

200m. Here we also observe only a relatively weak dependence on Rsc. When the550



CARVING TURNS IN SKIING 25

limitations based on the shear resistance of snow, physical strength of skiers and551

structural strength of skis are taken into account, the practical critical gradients552

become even smaller.553

The result (59) was obtained for the friction coefficient µ = 0.04. However,554

the coefficient depends on many factors and may vary significantly. Since a higher555

friction coefficient µ implies a lower saturation speed of the run and hence a weaker556

centrifugal force, this may also allow carving on steeper slopes. We explored this557

avenue using a little more pragmatic definition of executable carving turns. Namely,558

we demanded that the inclination angle Φ did not exceed Φc = 70◦.559

We run SL and DH models with µ=0.04, 0.07 and 0.10. For each model we560

used a simple iterative procedure aimed at identifying the slope angle for which in561

the asymptotic solution Φ peaked within one percent of Φc. The results are shown562

in figure 11. They are well fitted by the linear equations563

tanαc = 2.3µ+ 0.06 . (60)

for the SL skis (K = 0.0325) and564

tanαc = 2.2µ+ 0.16 . (61)

for the DH skis (K = 0.125).565

The effect of angulation566

So far we limited our analysis to the case of stacked skier where the skier incli-567

nation to the slope (the lever-arm inclination) is the same as the edge angle of their568

skis. However, skiers often angulate their body by moving hip and to some degree569

knees towards the inside of the turn. In this case, CM shifts from the belly button570

towards the outside of the turn and hence the edge angle becomes higher than the571

lever-arm inclination (see figure 12). As the torque balance still requires the incli-572

nation of the effective gravity force to be the same as the lever arm inclination, this573

leads to Θ = Ψ − Φ > 0.574

There are at least two benefits of such angulation. Firstly, it is known to575

introduce a better safety margin against accidental side-slipping of the skis (skidding).576

Secondly, it allows to vary the turn radius, thus introducing some control over the577

carving turn (e.g. Harb, 2006; Howe, 1983).578

We note here that when Θ > 0 the ski is pressed not only against the base of the579

platform it creates in the snow but also against the wall of this platform (see figure580

12). Hence, the total normal reaction force of the snow Fn = Fn,b + Fn,w is the sum581

of the force Fn,b originated from the base and the force Fn,w originated from the582

wall and because of this it may still be aligned with the effective gravity force.583

Using the notation introduced in our analysis of ICE, tan Ψ = (ξ2 − 1)1/2 and584

tan Φ = aξ + b . For 0 < Φ < Ψ < 90◦, we can write tan Ψ = η tan Φ where η > 1,585
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Figure 11 . The critical slope gradient as a function of the friction coefficient for
Φc = 70◦. The markers show the numerical data and the dashed lines their fit by the
linear functions (60,61).
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Figure 12 . Inclination and angulation. Left panel: Because of the angulation at the
hip, the ski edge angle Ψ is higher than the inclination angle of the skier Φ. Right
panel: Because Ψ > Φ the effective gravity has not only the component normal to
the platform cut in the snow by the ski (F⊥) but also the component parallel to the
platform and pushing the ski into the platform wall (F‖). The wall reacts with the
force Fn,w, balancing F‖.
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Figure 13 . Trajectories of attempted 360◦ carving turns with (solid line) and without
(dashed line) angulation. The trajectory of the turn without angulation terminates
at the point where the skier comes to halt, whereas the trajectory of the turn with
angulation is terminated arbitrary and the skier speed at the termination point does
not vanish.

which yields the modified ideal carving equation586

(ξ2 − 1)1/2 = η(aξ + b) . (62)

Introducing a′ = ηa > a and b′ = ηb > b, we can write equation (62) in exactly the587

same form as the original ICE (Eq.34) but with the primed parameters in the place588

of the original unprimed ones. This immediately allows us to deduce the effect of the589

angulation on the speed limits of balanced carving. Since a + b > 0 if and only if590

a′ + b′ > 0, the lower speed limit (41) remains unchanged. However, the condition591

a′ < 1 now yields the constraint592

v < Vsc(η) where Vsc(η) =

√

gRsc

η
cosα . (63)

Thus, the upper speed limit is reduced.593

In order to elucidate the effect of angulation further, we analysed the so-called594

360◦-carving turn. By this we understand a carving turn which continues in the595

clockwise (or counter-clockwise) direction all the way – first downhill, then uphill and596

finally downhill again without any interruption. In this example, we assumed that597

the skier angulation depended only on the inclination angle, Θ = Θ(Φ), as described598

by the equation599

tan Ψ = A+ tan Φ , (64)
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Figure 14 . The attempts at 360◦ turn with (solid lines) and without (dashed lines)
angulation.

where A is constant. It is easy to see that A = tan(Θ(0)). It is also easy to verify600

that Θ(Φ) is a monotonically decreasing function which vanishes as Φ → 90◦, and601

that it yields Ψ < 90◦ for all 0 ≤ Φ < 90◦.602

Here we present the results for the slope angle α = 5◦, the initial skier speed603

vini = 0.5Vg and the initial angle of traverse βini = 54◦. Such a high speed could604

be gained at a preceding steeper uphill section of the slope. Figures 13 and 14 show605

the results for two runs: one with no angulation (A = 0, dashed lines) and one with606

strong angulation (A = tan(30◦), solid lines). The run without angulation fells a bit607

short of success. It stops on approach to the summit as the skier’s speed drops to608

zero. In the run with angulation, the turn is much tighter and the skier reaches the609

summit retaining a fair fraction of the initial speed. This allows them to continue610

and complete the 360◦-turn. Because of the similar initial speed but the lower turn611

radius, the centrifugal force, and hence the total g-force of this run, is higher, making612

the turn physically more demanding. Moreover, the skier skeleton is no longer well613
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stacked and hence bears a smaller fraction of the total skier’s weight. This spells an614

increased risk of injury.615

The effect of loading the inside ski616

In our study here, we focused on the case where the skier balances entirely on617

the inner edge of the ski which is located on the outside of the turn’s arc. Indeed, one618

of the first things learned in ski lessons is keeping most of the load on the outside ski.619

However, some loading of the inside ski is needed to gain in stability, turn control620

and reduction of stress on the outside leg.621

Let us briefly analyse the effect of partial loading of the inside ski in carving622

turns. Denote as Fn,i and Fn,o the normal reaction forces from the inside and the623

outside skis, respectively, and as ri and ro the position vectors connecting the skier’s624

CM with the inner edges of the skis in the transverse plane. The force balance then625

reads626

Fg,eff + Fn,i + Fn,o = 0 , (65)

whereas the torque balance in the transverse plane is627

ri × Fn,i + ro × Fn,o = 0 . (66)

Provided the shanks of both legs are parallel to each other, equation (65) implies

Fn,i = −aFg,eff and Fn,o = (a− 1)Fg,eff ,

where 0 ≤ a ≤ 1. Substituting these into equation (66), we obtain

Fg,eff × (ari + (1 − a)ro) = 0

and hence
Fg,eff = A(ro + a(ri − ro)) .

Thus in balanced stance, Fg,eff points to the inner edge of the outside ski when a = 0,628

to the inner edge of the inside ski when a = 1 and to somewhere in between when629

0 < a < 1. Since a > 0 implies Φ < Ψ, the effect of loading of the inside ski is630

similar to the effect of the angulation. In particular, the upper speed limit is reduced631

compared to the case where only the outside ski is loaded. In order to ski in balance632

at speeds exceeding this reduced speed limit, the loading of the inside ski should633

decrease, a → 0.634

Discussion and Implications635

In this paper we described a simple mathematical model of balanced carving636

turns in alpine skiing, which can be applied to snowboarding as well. The model637

combines a system of ordinary differential equations governing the CM motion with638

the so-called Ideal Carving Equation (ICE), which emerges from the analysis of the639
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skier balance in the frontal plane. ICE relates the local radius of the CM trajectory640

to skier’s speed and direction of motion relative to the fall line and hence provides641

closure to the system.642

In the case of fall-line gliding, the skier speed grows until the gravity force is643

balanced by the aerodynamic drag and snow friction forces. Unless the slope is of644

very low gradient, the snow friction is a minor factor and can be ignored, whereas the645

balance between the gravity and the aerodynamic drag yields the saturation speed646

Vg. For this reason, Vg and the distance Lg required to reach it could be considered647

as the characteristic scales of alpine skiing. However, in the case of balanced carving648

turns, ICE introduces another characteristic speed, the carving speed limit Vsc. When649

the skier speed exceeds Vsc, the balance of forces acting on the skier can no longer650

be sustained. Because as a rule Vsc is lower than Vg, this suggests that Vsc is more651

relevant in the dynamics of carving turns. Moreover, the radius of carving turns652

cannot exceed the ski sidecut radius Rsc, making the latter a natural length scale of653

this dynamics. These two scales lead to the dimensionless equations of carving turn654

which have only three dimensionless control parameters: the slope gradient angle α,655

the dynamic coefficient of friction µ and the dynamic sidecut parameter K = Rsc/Lg,656

which appears as a coefficient of the term, Kv2, describing the aerodynamic drag657

force.658

We used the model to explore ski runs composed of linked carving turns on a659

slope with constant gradient. While in reality such turns are linked via a transition660

phase of finite duration, in our simulations the transitions are instantaneous and take661

place at a specified traverse angle (the angle between the skier trajectory and the fall662

line). At the transition, the skier speed and direction of motion remain invariant,663

whereas the inclination angle and hence the turn radius jump to the values corre-664

sponding to the next turn. Under these conditions, the solution either approaches a665

limit cycle, where the turns become indistinguishable one from another, or terminates666

after reaching the speed limit Vsc.667

When measured in the units of Rsc and Vsc, the balanced carving solutions668

corresponding to 13m < Rsc < 50m are rather similar. This is because 1) Rsc669

enters the problem only via the dynamic sidecut parameter K = Rsc/Lg ≪ 1 which670

determines the relative strength of the aerodynamic drag force, and 2) for V < Vsc671

this force remains relatively small. Yet the drag term is not entirely negligible and672

the solutions show some mild variation with Rsc. In particular, turns corresponding673

to a larger sidecut radius are less extreme, with smaller inclination angles and weaker674

g-forces.675

Our results show the existence of a critical slope angle αc,t above which the676

speed of balanced ideal carving run eventually exceeds Vsc. The value of αc,t depends677

on the coefficient of friction µ and to a lesser degree on the sidecut parameter of the678

skis. For µ = 0.04 we find αc,t = 17◦ for SL skis, 19◦ for GS skis and 21◦ for DH skis.679

In practice, a number of factors, such as the hardness of snow, structural integrity of680

skis and strength of human body, come into play well before this theoretical limit and681
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restrict balanced carving to slopes of even lower gradient. For example, demanding682

that the skier inclination angle remains below Φc = 70◦ (and hence the g-force below683

three), we find that for SL skis the critical inclination angle αc ≈ 9◦ if µ = 0.04 and684

αc ≈ 16◦ if µ = 0.1. For DH skis the corresponding values are αc ≈ 14◦ and 21◦.685

Overall, we find that the critical gradient increases linearly with µ.686

Slopes of sub-critical gradient can be roughly divided into the gentle and moder-687

ately steep groups. For slopes of gentle gradient (aka “flat slopes”), the aerodynamic688

drag is not dominant over the snow friction even in the case of fall-line gliding and in689

carving runs the turn speed saturates well below both Vg and Vsc. The carved arcs690

are nearly circular and their radius is only slightly below the sidecut radius of the691

skis. The skier inclination angle and the g-force stay relatively small.692

On slopes of moderate gradient the saturation speed of fall-line gliding is close693

to Vg, which is significantly above Vsc. However, the speed of carving runs saturates694

near Vsc, mostly because of the frictional energy losses. The closeness to the speed695

limit makes the carving turns quite extreme. Their shape deviates from the rounded696

shape of the letter C and reminds the letter J instead, with the local turn curvature697

significantly increasing on the approach to the fall line. As the curvature increases,698

the centrifugal force and hence the total g-force experienced by the skier grow. In699

order to stay in balance, they have to adopt large inclination to the slope. The700

significantly increased effective gravity leads to high normal reaction from the snow701

and hence significantly increased friction, which is the reason why the speed stays702

well below Vg.703

On slopes of super-critical gradient (α > αc) the speed quickly exceeds Vsc,704

after which the balanced carving cannot be continued.705

The fact that balanced carving requires ski slopes to be rather gentle (of the706

green gradient in the US colour-coding scheme) is interesting as most slopes of ski707

resorts are steeper, not to mention typical race tracks. In conflict with this, skillful708

skiers manage to execute on such slopes at least partly carved turns. One possible709

explanation is that they use the skidding phase of their hybrid turns to slow down710

and keep their speed below Vsc. This may be true for recreational skiers but not so711

for top racers in competitive runs. In Table 1 we show average speeds achieved in712

FIS World Cup races (Gilgien, Crivelli, Spörri, Kröll, & Müller, 2015; Gilgien et al.,713

2014; Supej et al., 2014) as well as the speed limit Vsc calculated using equation714

(40), which can be written in the following convenient form:715

Vsc = 40
(

Rsc

13 m

)1/2 ( cosα

cos 15◦

)1/2

km h−1 . (67)

One can see that in all the disciplines, the average racer speed exceeds the upper716

speed limit of balanced carving. Obviously, on fast sections of race course the conflict717

is even stronger. For example, in downhill competitions the current speed record is718

v = 162 km h−1 (racer Johan Clarey, Wengen track). This comparison shows that the719

restrictions set by the theory of balanced pure carving are not consistent with the720
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Table 1
Parameters of race runs (Gilgien et al., 2015, 2014; Supej et al., 2014). Rsc is
the sidecut radius of skis, α is the inclination angle of the slope, 〈Lv〉 and 〈Lh〉 are
the mean separations between the gates down the fall line and across the fall line,
respectively, Ra is the radius of the arc defined by the mean gate separations, V is the
skier speed, ζ = 〈V 〉2/gRsc is a dimensionless speed parameter and Lg is the distance
along the fall line required to reach the speed 〈V 〉.

Parameter SL GS SG DH
〈α〉 [◦] 20 18 ± 7 17 ± 7 14 ± 8
Rsc [m] ≤ 15 27 33 45

Rmin [m] 7 8.4 17.2 20.6
〈V 〉 [km/h] 45 62 82 86
Vsc [km/h] 43 57 63 75

practice of alpine ski racing and some of the assumptions made in the theory are not721

quite valid and require critical examination.722

One of the most obvious weaknesses of the model is that it cannot describe723

self-consistently the transition phase between carving turns. Such a transition does724

not arise naturally as a part of the solution of differential equations. Instead, it is725

introduced somewhat arbitrary as a link between two different solutions describing two726

different arcs of balanced carving. If the solution describing an arc is not terminated,727

the arc will continue uphill until the skier stops. The reason for this is that in the728

transition a skier cannot not be in balance and hence one has to go beyond the729

assumption of balanced carving in order to deal with it.730

Even the modelling of a single turn is not entirely self-consistent. On the one731

hand, the model assumes that at every point of the turn the total torque acting on the732

skier vanishes. On the other hand, the balance condition yields the skier inclination733

that varies throughout the turn, which can only be the case if the torque does not734

vanish. This shows that in reality the balance can be only approximate. The model735

may still be relevant provided the characteristic time of reaching balance is much736

shorter that the turn duration but in order to verify this condition a more advanced737

theory is required.738

Our analysis of the case with v > Vsc shows that for such high speeds the739

net torque pushes skier upwards, towards the position perpendicular to the slope, no740

matter what the skier inclination to the slope is. In other words, the centrifugal force741

always dominates gravity. This suggests that in this regime the dynamics of skier’s742

body may be similar to that of a pendulum, with its natural oscillations about the743

vertical position.744

Another obvious fact is that the typical speed of even elite racers is much lower745

than the limit set by the drop of potential energy and air resistance. As the wet snow746

friction is very low, this implies another channel of energy dissipation which is not747
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included in our model but plays a key role in the dynamics of a typical ski turn. As748

we have stated in the introduction, the typical turn is hybrid in nature and involves749

a significant degree of skidding in its initial phase. The high effective coefficient of750

friction associated with skidding (Sahashi & Ichino, 1998) shows that the skidding751

phase is most likely to be responsible for most of the energy dissipation in hybrid752

turns.753

Conclusion754

In this paper we explored in detail the model of carving turns in alpine skiing755

and snowboarding based on the usual assumption of approximate balance between756

forces and torques acting on the skier during the turn. In its basic form the model was757

proposed by Jentschura and Fahrbach (2004), where it was implicitly assumed that758

the skier was stacked and only one of the skis was loaded. We confirm the conclusion759

of Jentschura and Fahrbach (2004) that the approximation of torque balance yields760

an upper limit on the skier speed and show that it imposes a lower limit as well,761

with both these limits depending only on the sidecut radius of skis and the slope762

gradient. We use the model to simulate carving runs on slopes of constant gradient763

and find that in this model carving is possible only on relatively flat slopes, with the764

critical slope angle in the range of 8◦ − 20◦. The exact value depends mostly on the765

coefficient of snow friction and to a lesser degree on the sidecut radius of skis. We766

have extended the analysis to the case of an angulated skier and the case where both767

skis are loaded and found that in these cases the upper limits on the skier speed and768

the slope gradient are even more restrictive. This is in conflict with the practice of ski769

racing which demonstrates that carving is possible at higher speeds and on steeper770

slopes than the model allows. Our analysis of the torques exerted by the gravity and771

centrifugal forces shows that when the skier speed exceeds the upper limit of balanced772

carving, the lifting torque due to centrifugal force wins over the lowering torque of the773

gravity for any inclination angle of the skier. This suggests the possibility of carving774

runs where skiers swing from one side to another without settling to an equilibrium at775

any point of the turn, like a pendulum. A more advanced theory is needed to assess776

this hypothesis.777
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Appendix A
Edge radius of flexed skis

Here we analyse the geometry of a carving ski and how it changes when placed at the781

edge angle Ψ to a flat surface, which we assume to be hard and hence not changed782

in the process apart from a small cut possibly made in it by the ski’s sharp steel783
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Figure A1 . Left panel: Shaped ski, its sidecut hsc and sidecut radius Rsc. The dashed
line shows the ski tip which is not important for determining Rsc. Right panel: The
same ski with the edge BDF pressed against a hard flat surface at the edge angle Ψ
as seen in projection on the plane normal to the ski at its waist. In this projection,
DGB is a right-angle triangle.

edges. We start with the case where the ski lays flat as shown in the left panel of784

figure A1. In the figure, the ski is highly symmetric with no difference between its785

nose and tail sections. Although the real skis are wider at the nose this does not786

matter as long as their running edges can be approximated as circular arcs of radius787

Rsc, called the sidecut radius. Denote as D the point in the middle of the edge BF788

and as l the distance between B and D (or A and C) along the edge. As seen in789

this figure, l = Rscδ, where δ is the angular size of the edge DB as seen from its790

centre of curvature. This angle is normally rather small. For an SL ski of length791

lski ≈ 2l = 1.65 m and Rsc = 12.7 m we have δ ≈ 0.065 (3.◦7). For other kinds of792

racing skis, it is even smaller. The sidecut depth hsc is defined as the distance between793

D and the straight line BF connecting the opposite ends of the edge. Obviously,794

hsc = Rsc(1 − cos δ) . (68)

Using the first two terms of the Maclaurin expansion for cos δ

cos δ = 1 − 1

2
δ2 +O(δ4)

and then substituting δ = l/Rsc one finds the approximation795

hsc ≃ l2

2Rsc
. (69)

Now suppose that this ski is kept at the angle Ψ to a firm flat surface and796

that it is pressed in the middle until its lower edge comes into the contact with the797
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surface along its whole length (excluding the tip). In this position the edge can still be798

approximated as an arc but a different one. Denote its radius as Re and its “sidecut”799

depth as h (see the right panel of figure A1). Obviously Re and h are connected in800

the same way as Rsc and hsc801

h = Re(1 − cos δ) . (70)

where now δ = l/Re. When δ ≪ 1, this is approximated as802

h ≃ l2

2Re
(71)

and hence803

Re

Rsc
=
hsc

h
. (72)

Analysing the right angle triangle GDB of the right panel in figure A1, one finds that804

hsc = h cos Ψ and hence805

Re

Rsc
= cos Ψ . (73)

This is the same as equation (9-4) in Howe (1983) and equation (3.7) in Lind and806

Sanders (1996).807

Appendix B
Lateral stability

Here we analyse the stability of skier’s balanced position in the transverse plane,808

focusing on the simplified case of loading only the outside ski.809

We first consider the stability of a stacked skier. Suppose that in the equilibrium810

position the ski edge angle and the inclinations angle of the skier are Ψ0 and Φ0 = Ψ0811

respectively. Hence,812

tan Ψ0 = (ξ2

0
− 1)1/2 , tan Φ0 = aξ0 + b , (74)

where ξ0 stands for the equilibrium turn radius. Consider a perturbation that changes813

the ski angulation position but keeps the skier velocity unchanged (and hence a and814

b as well). However, the turn radius changes and so does the effective gravity. We815

need to determine if the modified effective gravity is a restoring force or ti pushes816

the system further away from the equilibrium. In the perturbed state Ψ = Ψ0 + δΨ,817

Ψ = Φ0 + δΦ and ξ = ξ0 + δξ, where δA stands for the perturbation of A. It is clear818

that when δΨ > 0 the instability condition reads Ψ > Φ or δΨ > δΦ, whereas for819

δΨ > 0 it is δΨ < δΦ. Both these cases are captured in the instability condition820

δΦ

δΨ
< 1 . (75)
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Using equation (74) we find821

δ(tan Ψ) =
ξ0

tan Ψ0

δξ , (76)

and822

δ(tan Φ) = aδξ . (77)

Hence,823

tan δΦ

tan δΨ
=
a tan Ψ0

ξ0

= a sin Ψ0 . (78)

According to the condition (40), in carving turns a < 1 and hence equation (78)824

immediately yields tan δΦ/tan δΨ < 1. This implies δΦ/δΨ < 1 and therefore we825

conclude the lateral equilibrium is unstable.826

While the balance of an angulated skier is still unstable, in this case there is827

an additional way of controlling the instability, namely by a suitable change of the828

angulation. If δΨ is the perturbation of the ski edge angle and δΦ is the corresponding829

perturbation of the effective gravity angle that the skier can restore their balance via830

changing their angulation by the amount831

δψ = δΨ − δΦ . (79)
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